Title: CDT and Horava-Lifshitz gravity

Date: Nov 08, 2009 05:00 PM

URL: http://pirsa.org/09110131

Abstract:

Pirsa: 09110131 Page 1/79

CDT and Horava-Lifshitz gravity

J. Ambjørn^{1, 3} A. Görlich² J. Jurkiewicz² S. Jordan³ R. Loll³

¹Niels Bohr Institute, Copenhagen, Denmark

² Jagellonian University, Krakow, Poland

³University of Utrecht, The Netherlands

Gravity at a Lifshitz point PI, November 8-10, 2009

QG main goal (at least in 80ties)

- Define the theory of QG
- Obtain the background geometry ($\langle g_{\mu\nu} \rangle$) we observe
- Study the fluctuations around the background geometry

What lattice gravity (dynamical triangulation, DT) offers:

- A non-perturbative QFT definition of QG using just standard QFT via the path integral.
- A background independent formulation.
- A path integral formulated directly as a sum over geometries (piecewise linear geometries as used, require no coordinates).

3

Virtues and drawbacks of DT

- V The Einstein-Hilbert action has a natural geometric realization on piecewise linear geometries (Regge).
- V The cut-off a is geometric (diffeomorphism invariant)
- D The formulation inherently Euclidean (Euclidean QG ? (action unbounded from below)).
- V The cut-off a automatically acts as a regularization of the unboundedness of Euclidean QG.
- D Gravity becomes "emergent": a subtle interplay between quantum measure and the action used.
- V Works beautifully when Euclidean QG is well defined: in 2d.

Main DT drawback: no interesting IR limit for d > 2. That led to DT \rightarrow CDT (causal dynamical triangulations)

Page 4/79

CDT virtues and drawbacks

- V Path integral a sum over Lorentzian geometries.
- One assumes the existence of a global time foliation.
- V Each configuration allows a rotation to Euclidean geometry, corresponding to t → t₄ = it. One can then i.e. using Monte Carlo simulations. (The corresponding set of geometries will be different from the full set of Euclidean geometries).

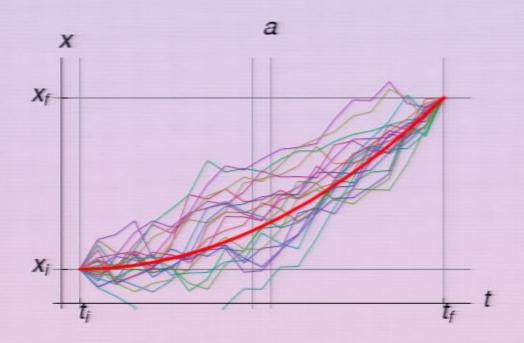
Main CDT virtue: An interesting IR limit seems to exist.

Main questions: Is the theory UV complete and if so, what are the short distance properties of the theory.

Lattice gravity: causal dynamical triangulations

Basic tool: The path integral

Text-book example: non-relativistic particle in one dimension.



$$x(t) = \langle x(t) \rangle + y(t)$$

 $\langle |y| \rangle \propto \sqrt{\hbar/m\omega}$

In QG we want $\langle x(t) \rangle$

$$\langle |y| \rangle \propto \sqrt{\hbar G}$$

Transition amplitude as a weighted sum over all possible trajectories. On the plot: time is discretized in steps a, trajectories are piecewise linear.

Page 6/79

In a continuum limit $a \rightarrow 0$

$$G(\mathbf{x}_i, \mathbf{x}_f, t) := \int_{\text{trajectories: } \mathbf{x}_i \to \mathbf{x}_f} e^{iS[\mathbf{x}(t)]}$$

where $S[\mathbf{x}(t)]$ is a classical action.

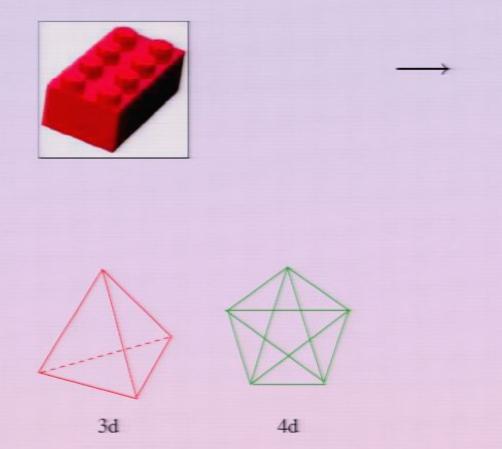
The QG amplitude between the two geometric states separated a proper time t

$$G(\mathbf{g}_i, \mathbf{g}_f, t) := \int\limits_{\text{geometries: } \mathbf{g}_i o \mathbf{g}_f} \mathrm{e}^{iS[\mathbf{g}_{\mu\nu}(t')]}$$

To define this path integral we need a geometric cut-off a and a definition of the class of geometries entering.

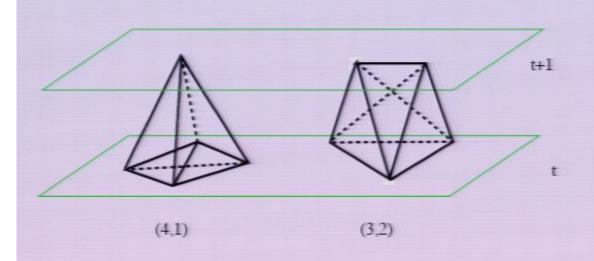
9

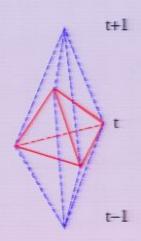
showcasing piecewise linear geometries via building blocks:



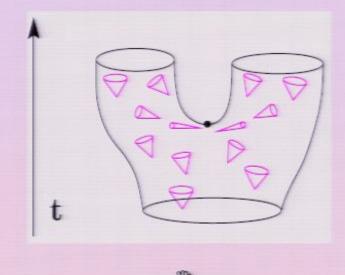
要

2d

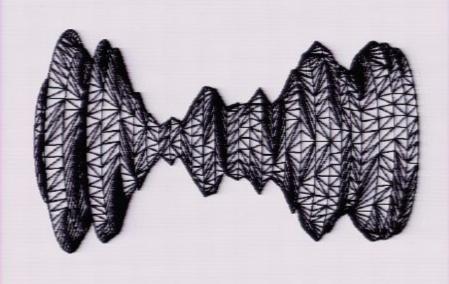




CDT slicing in proper time. Topology of space preserved. Situation below not allowed.



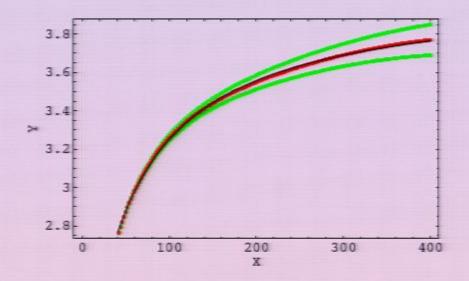
$$G(\mathbf{g}_i, \mathbf{g}_f, t) := \int_{\substack{\text{geometries: } \mathbf{g}_i \to \mathbf{g}_f \\ a \to 0}} \int_{\substack{\text{geometries: } \mathbf{g}_i \to \mathbf{g}_f \\ T: T_i^{(3)} \to T_f^{(3)}}} e^{iS[\mathbf{g}_{\mu\nu}(t')]}$$



Relation to the Horava model?

The set-up is precisely as in the Horava model.

In addition the so-called spectral dimension in CDT and in the Horava model show the same characteristic behavior:



But the actions in the two models seemingly unrelated?

We now have to choose a specific action ($a_t^2 = \tilde{\alpha} a_s^2$, $\tilde{\alpha} > 7/12$)

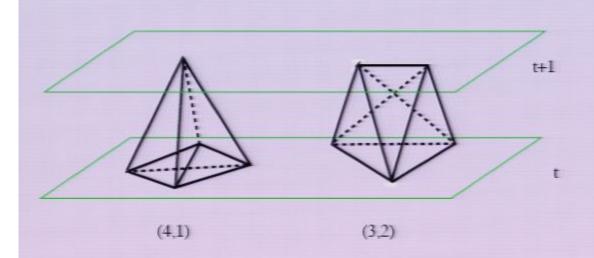
$$\begin{split} S_{E} &= -k^{(b)}\pi\sqrt{4\tilde{\alpha}-1}N_{0} \\ &+ N_{4}^{(4,1)} \left(k^{(b)}\sqrt{4\tilde{\alpha}-1} \left[-\frac{\pi}{2} - \frac{\sqrt{3}}{\sqrt{4\tilde{\alpha}-1}} \arcsin\frac{1}{2\sqrt{2}\sqrt{3\tilde{\alpha}-1}} \right. \right. \\ &\left. + \frac{3}{2}\arccos\frac{2\tilde{\alpha}-1}{6\tilde{\alpha}-2} \right] + \lambda^{(b)}\frac{\sqrt{8\tilde{\alpha}-3}}{96} \right) \\ &+ N_{4}^{(3,2)} \left(k^{(b)}\sqrt{4\tilde{\alpha}-1} \left[-\pi + \frac{\sqrt{3}}{4\sqrt{4\tilde{\alpha}-1}} \arccos\frac{6\tilde{\alpha}-5}{6\tilde{\alpha}-2} \right. \right. \\ &\left. + \frac{3}{4}\arccos\frac{4\tilde{\alpha}-3}{8\tilde{\alpha}-4} + \frac{3}{2}\arccos\frac{1}{2\sqrt{2}\sqrt{2\tilde{\alpha}-1}\sqrt{3\tilde{\alpha}-1}} \right] \\ &\left. + \lambda^{(b)}\frac{\sqrt{12\tilde{\alpha}-7}}{96} \right). \end{split}$$

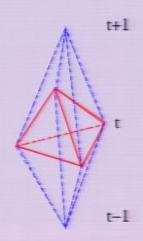
This expression can be summarized as

$$\textit{S}_{\textit{E}} = - \left(\kappa_0 + 6 \Delta \right) \textit{N}_0 + \kappa_4 \left(\textit{N}_4^{(4,1)} + \textit{N}_4^{(3,2)} \right) + \Delta \left(2 \textit{N}_4^{(4,1)} + \textit{N}_4^{(3,2)} \right)$$

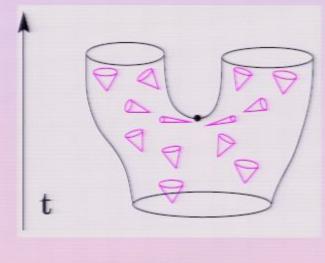
 Δ is a function of \tilde{a} the asymmetry parameter between the space and lattice links. $\Delta = 0$ corresponds to $a_t = a_s$, i.e. $\tilde{a} = 1$.

In a given computer simulation $N_4 = N_4^{(4,1)} + N_4^{(3,2)}$ is kept fixed and thus effectively we have only two coupling constants: κ_0 and Δ .





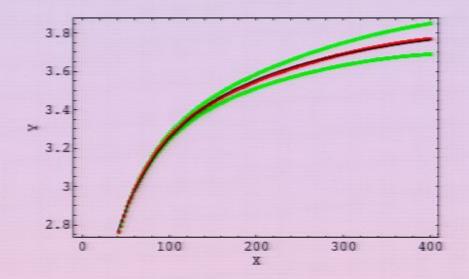
CDT slicing in proper time. Topology of space preserved. Situation below not allowed.



Relation to the Horava model?

The set-up is precisely as in the Horava model.

In addition the so-called spectral dimension in CDT and in the Horava model show the same characteristic behavior:



But the actions in the two models seemingly unrelated?

We now have to choose a specific action ($a_t^2 = \tilde{\alpha} a_s^2$, $\tilde{\alpha} > 7/12$)

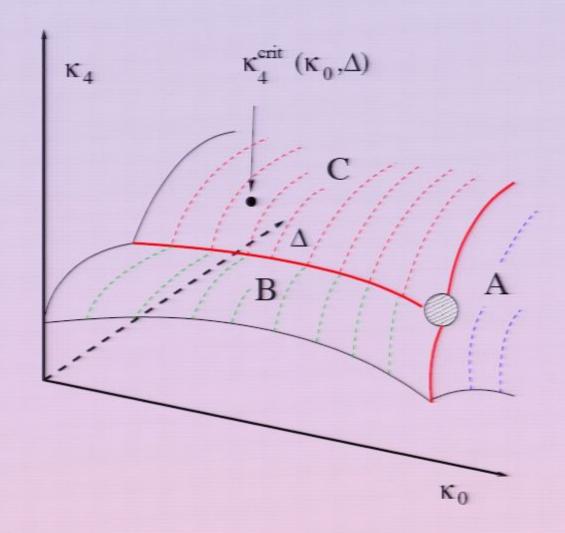
$$\begin{split} S_{E} &= -k^{(b)}\pi\sqrt{4\tilde{\alpha}-1}\,N_{0} \\ &+ N_{4}^{(4,1)} \left(k^{(b)}\sqrt{4\tilde{\alpha}-1}\left[-\frac{\pi}{2} - \frac{\sqrt{3}}{\sqrt{4\tilde{\alpha}-1}}\arcsin\frac{1}{2\sqrt{2}\sqrt{3\tilde{\alpha}-1}}\right. \right. \\ &\left. + \frac{3}{2}\arccos\frac{2\tilde{\alpha}-1}{6\tilde{\alpha}-2}\right] + \lambda^{(b)}\frac{\sqrt{8\tilde{\alpha}-3}}{96} \right) \\ &+ N_{4}^{(3,2)} \left(k^{(b)}\sqrt{4\tilde{\alpha}-1}\left[-\pi + \frac{\sqrt{3}}{4\sqrt{4\tilde{\alpha}-1}}\arccos\frac{6\tilde{\alpha}-5}{6\tilde{\alpha}-2}\right. \right. \\ &\left. + \frac{3}{4}\arccos\frac{4\tilde{\alpha}-3}{8\tilde{\alpha}-4} + \frac{3}{2}\arccos\frac{1}{2\sqrt{2}\sqrt{2\tilde{\alpha}-1}\sqrt{3\tilde{\alpha}-1}}\right] \\ &\left. + \lambda^{(b)}\frac{\sqrt{12\tilde{\alpha}-7}}{96} \right). \end{split}$$

This expression can be summarized as

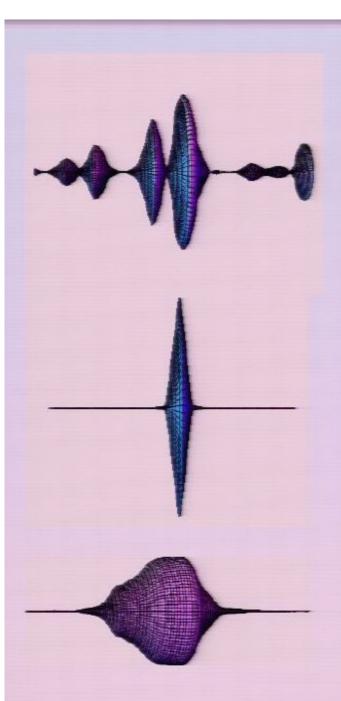
$$\mathcal{S}_{E} = - \left(\kappa_{0} + 6 \Delta \right) N_{0} + \kappa_{4} \left(N_{4}^{(4,1)} + N_{4}^{(3,2)} \right) + \Delta \left(2 N_{4}^{(4,1)} + N_{4}^{(3,2)} \right)$$

 Δ is a function of \tilde{a} the asymmetry parameter between the space and lattice links. $\Delta = 0$ corresponds to $a_t = a_s$, i.e. $\tilde{a} = 1$.

In a given computer simulation $N_4 = N_4^{(4,1)} + N_4^{(3,2)}$ is kept fixed and thus effectively we have only two coupling constants: κ_0 and Δ .



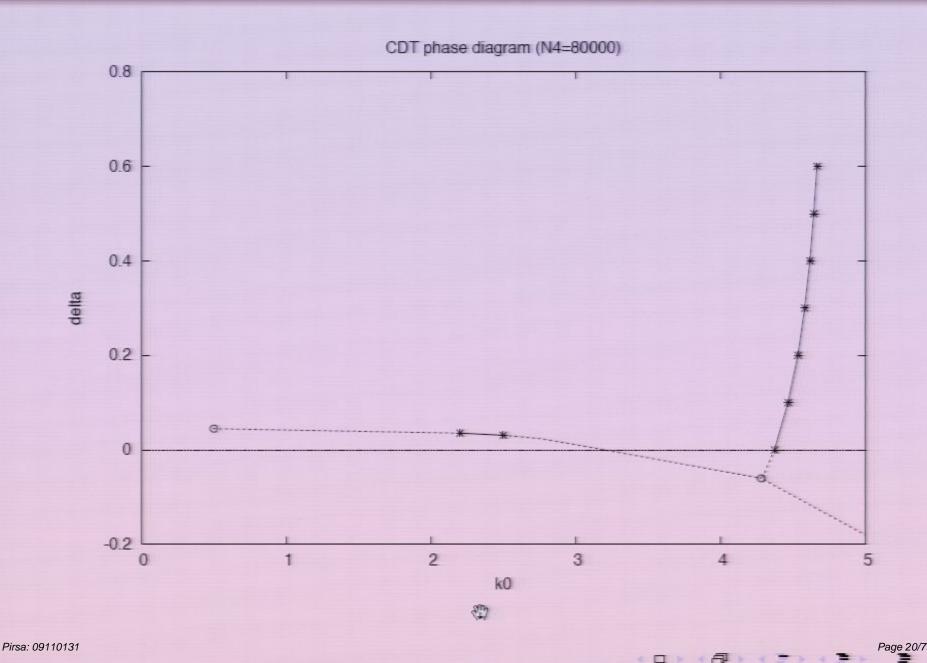
Asymmetry between space and time ? (like in Horava model)

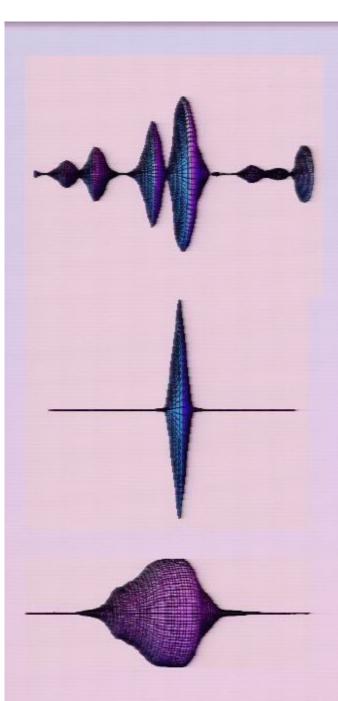


• Phase A. Inhomogeneous in time. Dominance of the conformal factor for small bare $1/\kappa_0$. Recall conformal factor appears like $-\dot{\phi}^2(t)$

Phase B. Inhomogeneous in space.
 Effective compactification into a 3d
 Euclidean DT, but in an "crumpled" inhomogeneous 3d space.

Phase C. Extended de Sitter phase. d_H = 4. Lattice time extension depends on △ but configurations identified by redefinition of a_t.

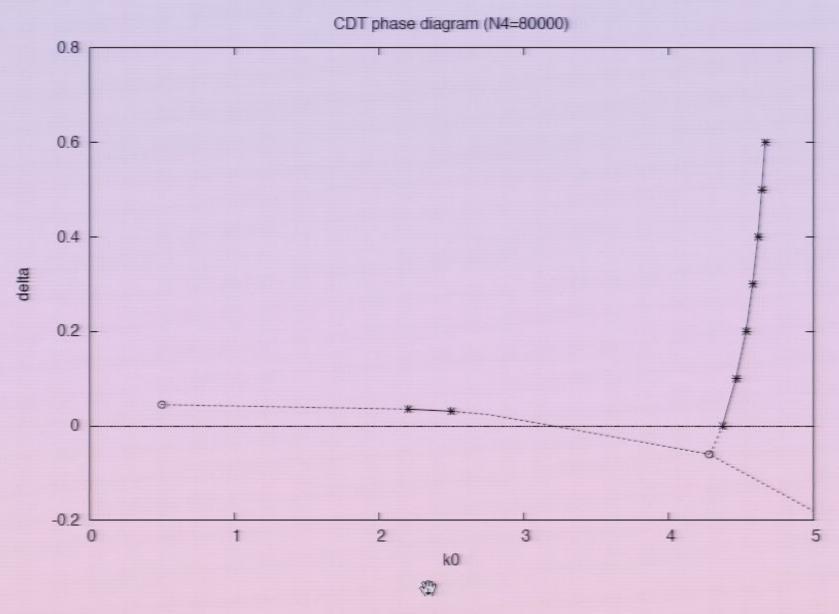




• Phase A. Inhomogeneous in time. Dominance of the conformal factor for small bare $1/\kappa_0$. Recall conformal factor appears like $-\dot{\phi}^2(t)$

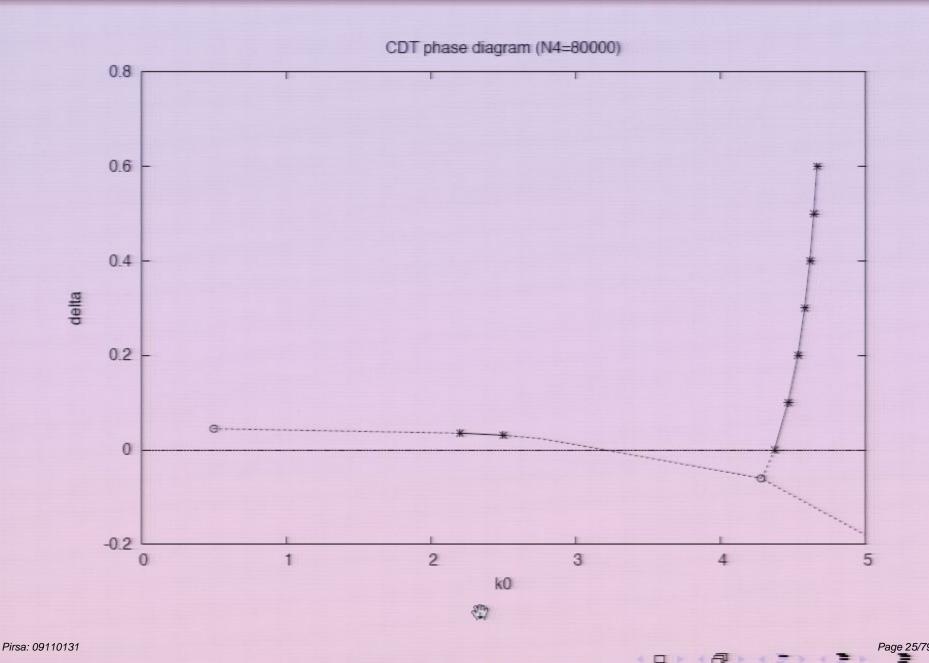
Phase B. Inhomogeneous in space.
 Effective compactification into a 3d
 Euclidean DT, but in an "crumpled" inhomogeneous 3d space.

• Phase C. Extended de Sitter phase. d_H = 4. Lattice time extension depends on ∆ but configurations identified by redefinition of a_t.

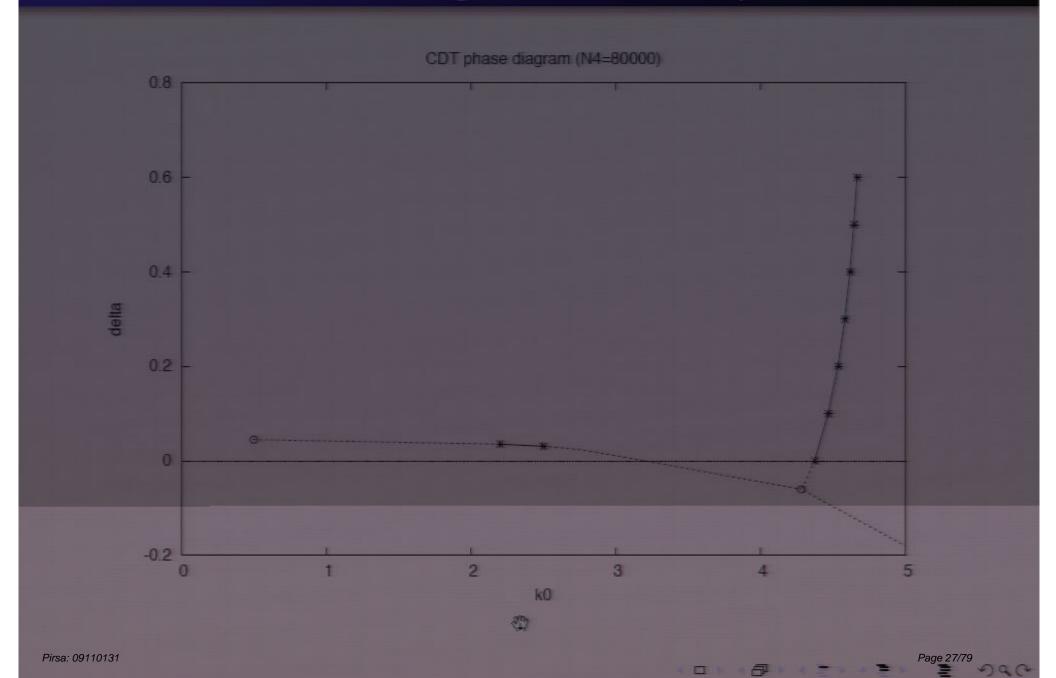


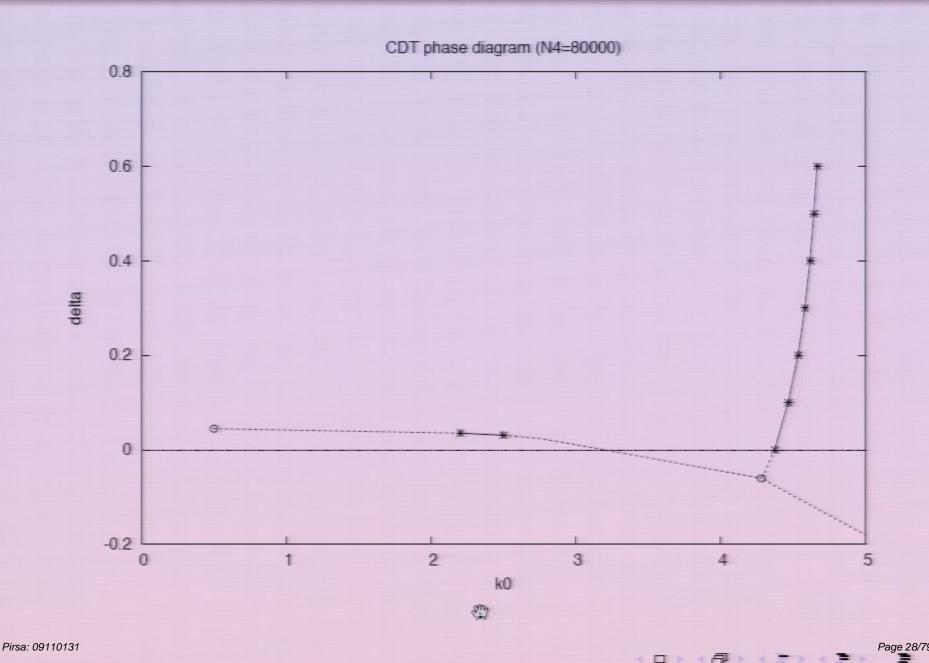
Pirsa: 09110131

== = (P,m) = m2c2+F"p+F"pp1

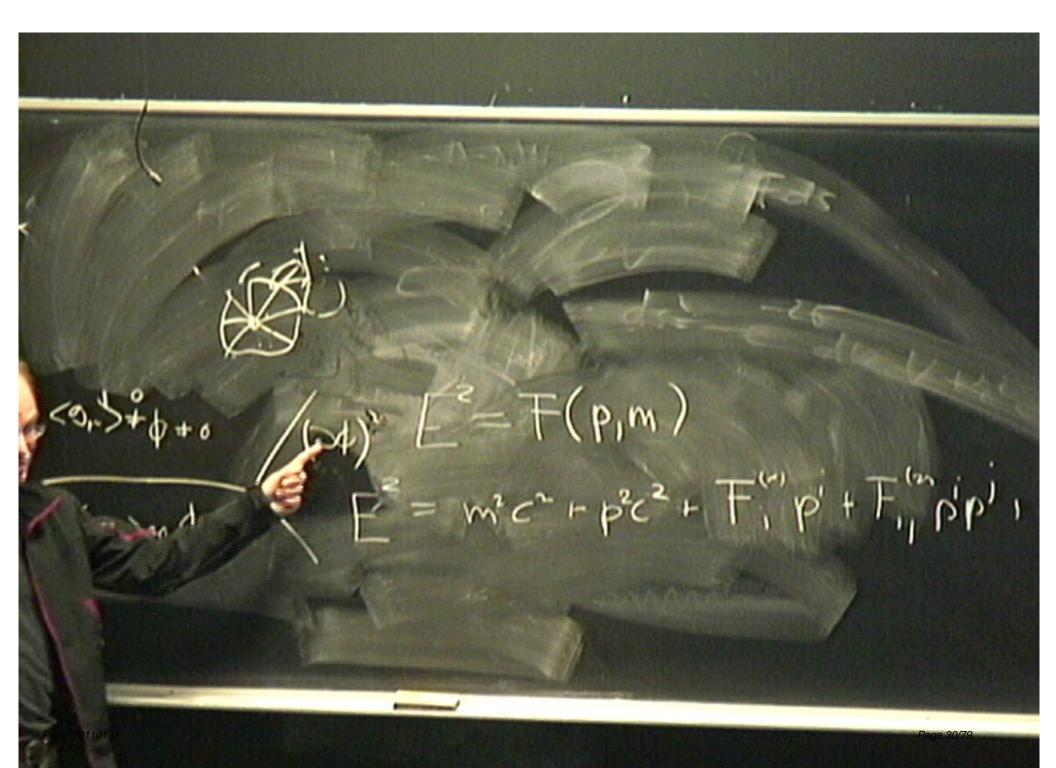


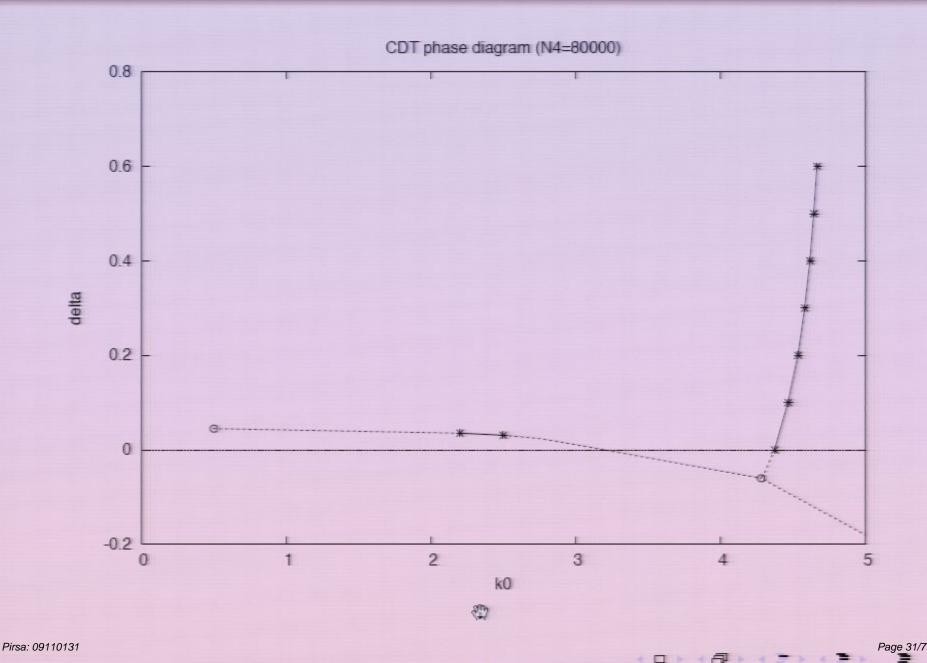
Pirsa: 09110131





Pirsa: 09110131





order A-C phase transition

The transition from Euclidean deSitter space-time (phase C) to phase A (dominated by the conformal factor) is 1. order. Difficult to imagine to use it to define a UV completion of the IR deSitter behavior.

A naively defined lattice Horava model would presumably also have an unphysical A-phase, since also such model is unbounded in the Euclidean sector (wrong sign of the second order time derivative).

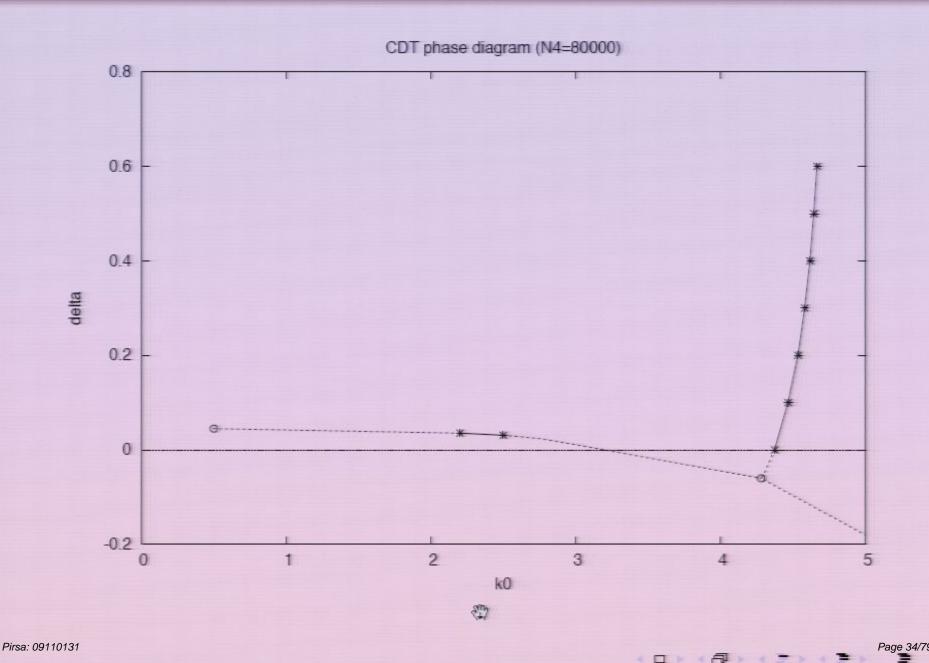
The transition line B-C

Could be 2. order phase transition line, verdict still up.

Can it serve as a Horava-Lifshitz UV completion of QG?

Horava scaling:

$$V_3 = a^3 (\Delta r)^3$$
, $T = a^3 \Delta t$ $\frac{\Delta t}{\Delta r} \propto (\Delta r)^2$



order A-C phase transition

The transition from Euclidean deSitter space-time (phase C) to phase A (dominated by the conformal factor) is 1. order. Difficult to imagine to use it to define a UV completion of the IR deSitter behavior.

A naively defined lattice Horava model would presumably also have an unphysical A-phase, since also such model is unbounded in the Euclidean sector (wrong sign of the second order time derivative).

The transition line B-C

Could be 2. order phase transition line, verdict still up.

Can it serve as a Horava-Lifshitz UV completion of QG?

Horava scaling:

$$V_3 = a^3 (\Delta r)^3$$
, $T = a^3 \Delta t$ $\frac{\Delta t}{\Delta r} \propto (\Delta r)^2$



Figure: $N_4 = 22k$, 45k, 91k, 182k

$$\langle N_3(i) \rangle \propto N_4^{3/4} \cos^3 \left(\frac{i}{s_0 N_4^{1/4}} \right)$$

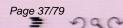
$$\sigma \propto i/N_4^{1/d}$$
 $N_3(i) \propto N_4^{(d-1)/d}P(\sigma)$

In phase C, deSitter space-time:

3

Best d = 4

(日) (日) (王) (王)



Scenario 1: dimension of space is 3: $(\Delta r)^3 \sim N_3$

In Phase C, away from the B-C line: $\Delta t = s_0(\Delta)N_3^{1/3}$ If 2. order line: $s_0(\Delta)N_3^{1/3} \to \mathrm{const.}N_3^{\nu}$.

"Observations" $\nu \leq 1/3$: $\frac{\Delta t}{\Delta r} \rightarrow 0$. no Horava scaling

Scenario 2: dimension of space is d_H : $(\Delta r)^{d_H} \sim N_3$

$$\frac{\Delta t}{\Delta r} \propto r^2 \quad \rightarrow \quad \frac{\Delta N_3^{\nu}}{N_3^{1/d_H}} \propto N_3^{2/d_H}$$

Horava scaling if $\nu = 3/d_H$

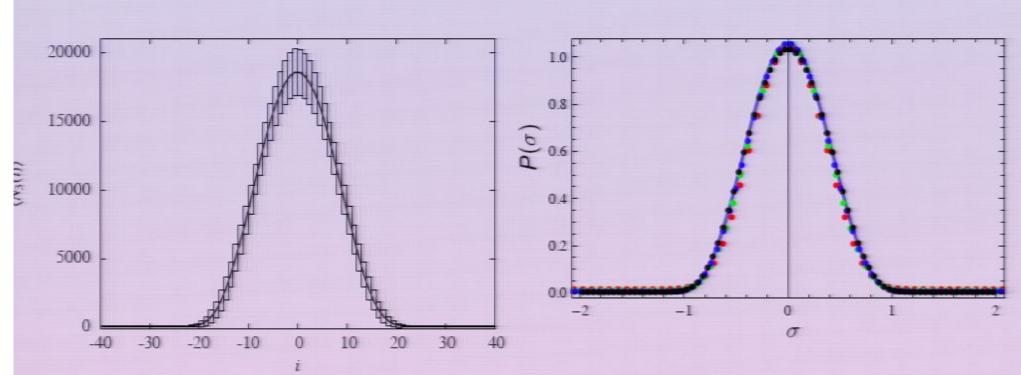


Figure: $N_4 = 22k$, 45k, 91k, 182k

$$\langle N_3(i) \rangle \propto N_4^{3/4} \cos^3 \left(\frac{i}{s_0 N_4^{1/4}} \right)$$

$$\sigma \propto i/N_4^{1/d}$$
 $N_3(i) \propto N_4^{(d-1)/d}P(\sigma)$

In phase C, deSitter space-time:

3

Best d = 4

(D) (A) (E) (E)

Page 39/79

The transition line B-C

Could be 2. order phase transition line, verdict still up.

Can it serve as a Horava-Lifshitz UV completion of QG?

Horava scaling:

$$V_3 = a^3 (\Delta r)^3$$
, $T = a^3 \Delta t$ $\frac{\Delta t}{\Delta r} \propto (\Delta r)^2$

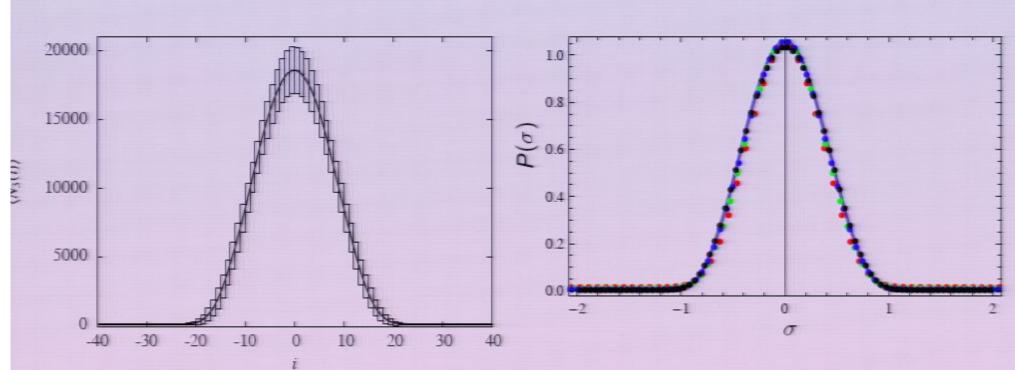


Figure: $N_4 = 22k$, 45k, 91k, 182k

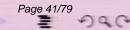
$$\langle N_3(i) \rangle \propto N_4^{3/4} \cos^3 \left(\frac{i}{s_0 N_4^{1/4}} \right)$$

$$\sigma \propto i/N_4^{1/d}$$
 $N_3(i) \propto N_4^{(d-1)/d}P(\sigma)$

In phase C, deSitter space-time:

Best d = 4

(D) (B) (E) (E



Scenario 1: dimension of space is 3: $(\Delta r)^3 \sim N_3$

In Phase C, away from the B-C line: $\Delta t = s_0(\Delta)N_3^{1/3}$ If 2. order line: $s_0(\Delta)N_3^{1/3} \to \mathrm{const.}N_3^{\nu}$.

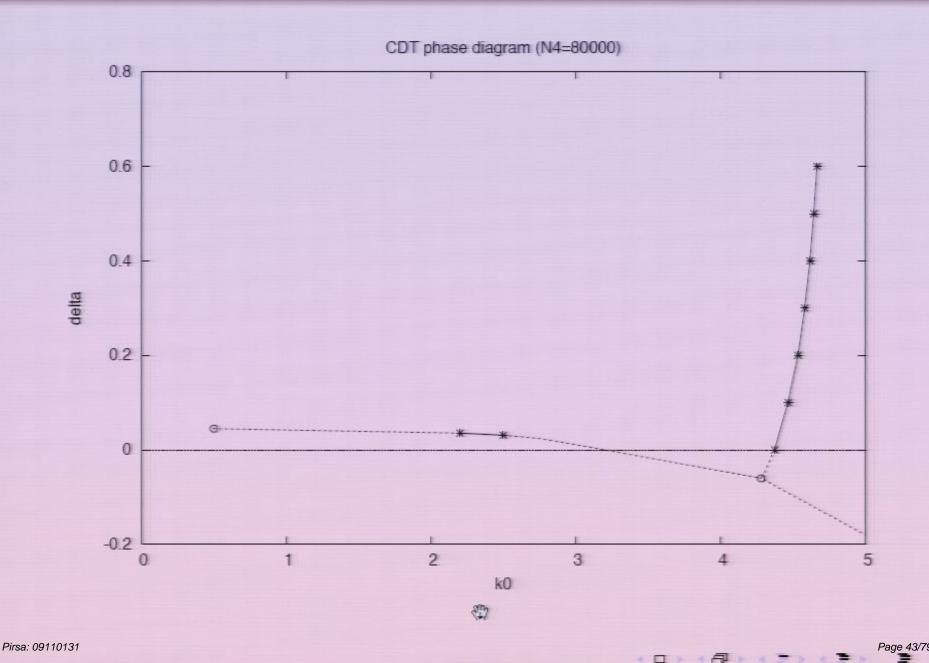
"Observations" $\nu \leq 1/3$: $\frac{\Delta t}{\Delta r} \rightarrow 0$. no Horava scaling

Scenario 2: dimension of space is d_H : $(\Delta r)^{d_H} \sim N_3$

$$\frac{\Delta t}{\Delta r} \propto r^2 \quad \rightarrow \quad \frac{\Delta N_3^{\nu}}{N_3^{1/d_H}} \propto N_3^{2/d_H}$$

Horava scaling if $\nu = 3/d_H$

Phase diagram in $\kappa_0 - \Delta$ plane



order A-C phase transition

The transition from Euclidean deSitter space-time (phase C) to phase A (dominated by the conformal factor) is 1. order. Difficult to imagine to use it to define a UV completion of the IR deSitter behavior.

A naively defined lattice Horava model would presumably also have an unphysical A-phase, since also such model is unbounded in the Euclidean sector (wrong sign of the second order time derivative).

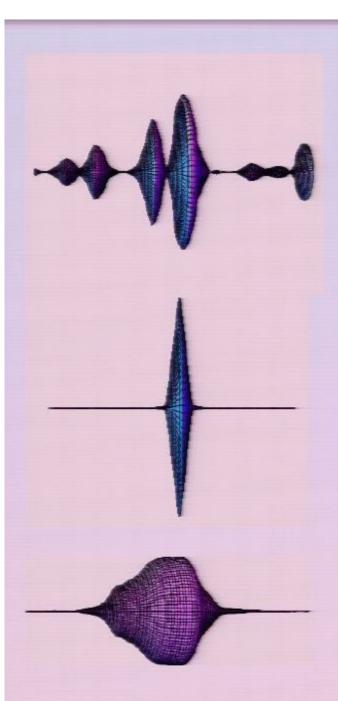
The transition line B-C

Could be 2. order phase transition line, verdict still up.

Can it serve as a Horava-Lifshitz UV completion of QG?

Horava scaling:

$$V_3 = a^3 (\Delta r)^3$$
, $T = a^3 \Delta t$ $\frac{\Delta t}{\Delta r} \propto (\Delta r)^2$

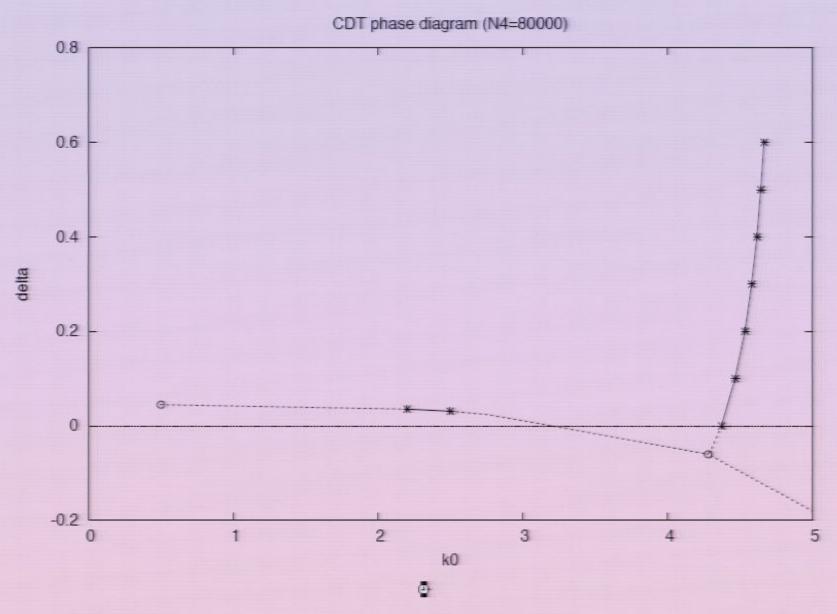


• Phase A. Inhomogeneous in time. Dominance of the conformal factor for small bare $1/\kappa_0$. Recall conformal factor appears like $-\dot{\phi}^2(t)$

Phase B. Inhomogeneous in space.
 Effective compactification into a 3d
 Euclidean DT, but in an "crumpled" inhomogeneous 3d space.

• Phase C. Extended de Sitter phase. d_H = 4. Lattice time extension depends on △ but configurations identified by redefinition of a_t.

Phase diagram in $\kappa_0 - \Delta$ plane



order A-C phase transition

The transition from Euclidean deSitter space-time (phase C) to phase A (dominated by the conformal factor) is 1. order. Difficult to imagine to use it to define a UV completion of the IR deSitter behavior.

A naively defined lattice Horava model would presumably also have an unphysical A-phase, since also such model is unbounded in the Euclidean sector (wrong sign of the second order time derivative).

The transition line B-C

Could be 2. order phase transition line, verdict still up.

Can it serve as a Horava-Lifshitz UV completion of QG?

Horava scaling:

$$V_3 = a^3 (\Delta r)^3$$
, $T = a^3 \Delta t$ $\frac{\Delta t}{\Delta r} \propto (\Delta r)^2$

Scenario 1: dimension of space is 3: $(\Delta r)^3 \sim N_3$

In Phase C, away from the B-C line: $\Delta t = s_0(\Delta)N_3^{1/3}$ If 2. order line: $s_0(\Delta)N_3^{1/3} \to \mathrm{const.}N_3^{\nu}$.

"Observations" $\nu \leq 1/3$: $\frac{\Delta t}{\Delta r} \rightarrow 0$. no Horava scaling

Scenario 2: dimension of space is d_H : $(\Delta r)^{d_H} \sim N_3$

$$\frac{\Delta t}{\Delta r} \propto r^2 \quad \rightarrow \quad \frac{\Delta N_3^{\nu}}{N_3^{1/d_H}} \propto N_3^{2/d_H}$$

Horava scaling if $\nu = 3/d_H$

Summary

- The set-up with a global time foliation is common to CDT and HL-gravity.
- The spectral dimension when measured in the deSitter phase of CDT varies from 4 (long distance) to 2 (short distance). Similar results were found by Horava, hinting that maybe the two theories have the same UV completion.
- We have argued that Horava scaling is a posibility along the B-C phase transition line if Δt = N₃^ν and ν = 3/d_H (and if it is second order.....)
- CDT is in principle ideally suited to study lattice HL gravity, given a suitable lattice action.

9

Scenario 1: dimension of space is 3: $(\Delta r)^3 \sim N_3$

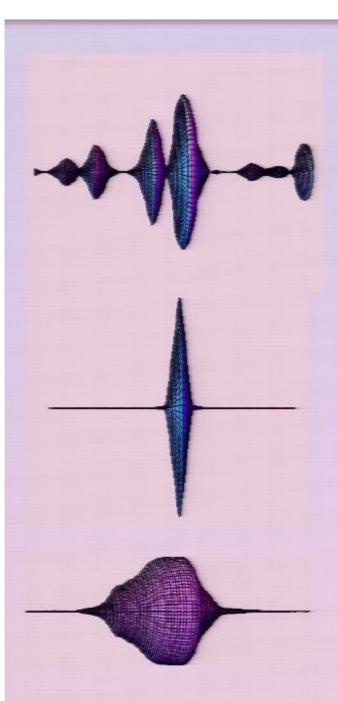
In Phase C, away from the B-C line: $\Delta t = s_0(\Delta)N_3^{1/3}$ If 2. order line: $s_0(\Delta)N_3^{1/3} \to \mathrm{const.}N_3^{\nu}$.

"Observations" $\nu \leq 1/3$: $\frac{\Delta t}{\Delta r} \rightarrow 0$. no Horava scaling

Scenario 2: dimension of space is d_H : $(\Delta r)^{d_H} \sim N_3$

$$\frac{\Delta t}{\Delta r} \propto r^2 \quad \rightarrow \quad \frac{\Delta N_3^{\nu}}{N_3^{1/d_H}} \propto N_3^{2/d_H}$$

Horava scaling if $\nu = 3/d_H$



• Phase A. Inhomogeneous in time. Dominance of the conformal factor for small bare $1/\kappa_0$. Recall conformal factor appears like $-\dot{\phi}^2(t)$

Phase B. Inhomogeneous in space.
 Effective compactification into a 3d
 Euclidean DT, but in an "crumpled" inhomogeneous 3d space.

• Phase C. Extended de Sitter phase. d_H = 4. Lattice time extension depends on △ but configurations identified by redefinition of a_t.

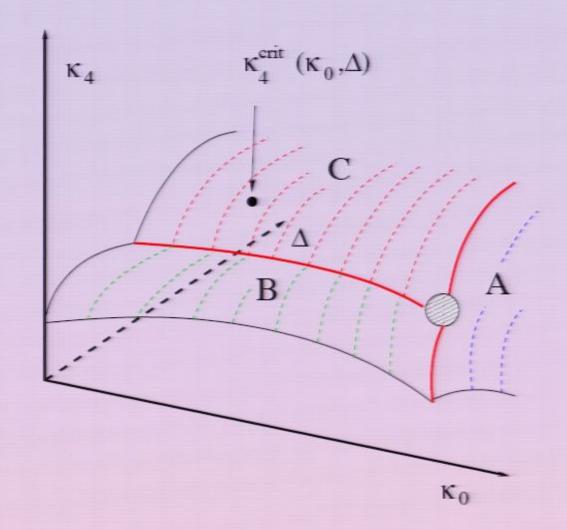
The transition line B-C

Could be 2. order phase transition line, verdict still up.

Can it serve as a Horava-Lifshitz UV completion of QG?

Horava scaling:

$$V_3 = a^3 (\Delta r)^3$$
, $T = a^3 \Delta t$ $\frac{\Delta t}{\Delta r} \propto (\Delta r)^2$

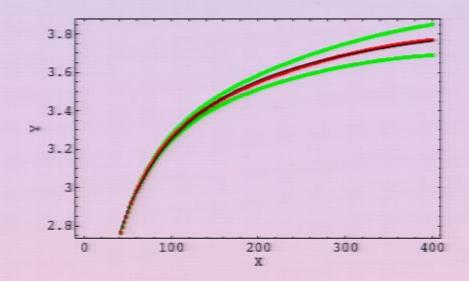


Asymmetry between space and time ? (like in Horava model)

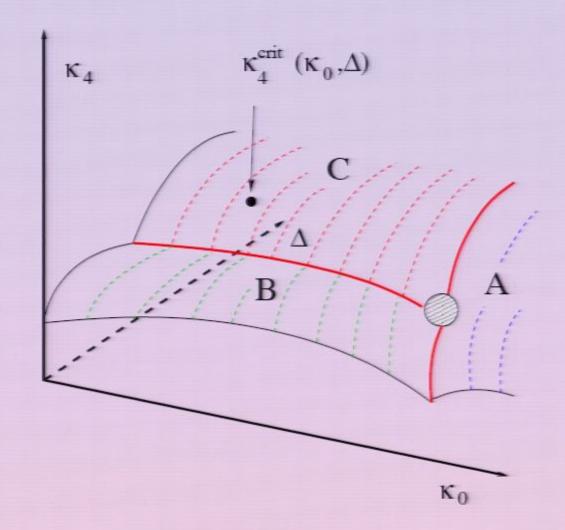
Relation to the Horava model?

The set-up is precisely as in the Horava model.

In addition the so-called spectral dimension in CDT and in the Horava model show the same characteristic behavior:



But the actions in the two models seemingly unrelated?



Asymmetry between space and time ? (like in Horava model)

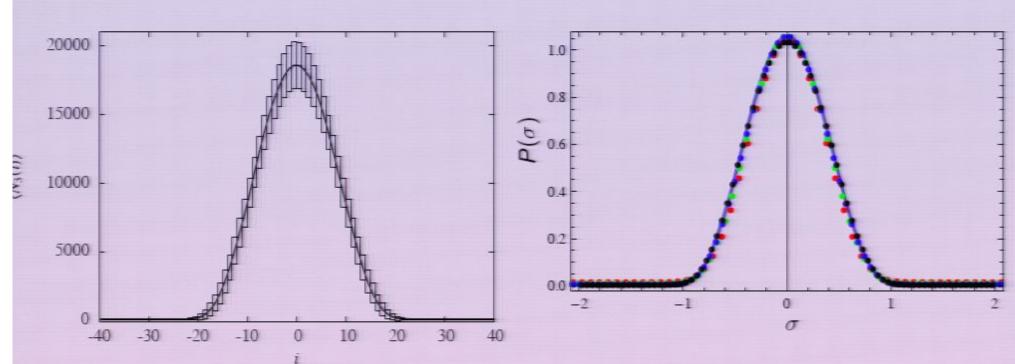


Figure: $N_4 = 22k$, 45k, 91k, 182k

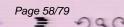
$$\langle N_3(i) \rangle \propto N_4^{3/4} \cos^3 \left(\frac{i}{s_0 N_4^{1/4}} \right)$$

$$\sigma \propto i/N_4^{1/d}$$
 $N_3(i) \propto N_4^{(d-1)/d}P(\sigma)$

In phase C, deSitter space-time:

3

Best d = 4



Scenario 1: dimension of space is 3: $(\Delta r)^3 \sim N_3$

In Phase C, away from the B-C line: $\Delta t = s_0(\Delta)N_3^{1/3}$ If 2. order line: $s_0(\Delta)N_3^{1/3} \to \mathrm{const.}\,N_3^{\nu}$.

"Observations" $\nu \leq 1/3$: $\frac{\Delta t}{\Delta r} \rightarrow 0$. no Horava scaling

Scenario 2: dimension of space is d_H : $(\Delta r)^{d_H} \sim N_3$

$$\frac{\Delta t}{\Delta r} \propto r^2 \quad \rightarrow \quad \frac{\Delta N_3^{\nu}}{N_3^{1/d_H}} \propto N_3^{2/d_H}$$

Horava scaling if $\nu = 3/d_H$

Minisuperspace model

The semiclassical distribution can be obtained from the minisuperspace effective action of Hartle and Hawking

$$S_{\text{eff}} = rac{1}{24\pi G} \int dt \sqrt{g_{tt}} \left(rac{g^{tt} \dot{V_3}^2(t)}{V_3(t)} + k_2 V_3^{1/3}(t) - \lambda V_3(t)
ight),$$

The discretization of this action is (and we have reconstructed it from the date (the 3-volume—3-volume correlations))

$$S_{discr} = k_1 \sum_{i} \left(\frac{(N_3(i+1) - N_3(i))^2}{N_3(i)} + \tilde{k}_2 N_3^{1/3}(i) - \tilde{\lambda} N_3(i) \right),$$

$$G = \frac{a^2 \sqrt{C_4} s_0^2}{k_1^{3/3} \sqrt{6}}.$$

Pirsa: 09110131

Page 60/79

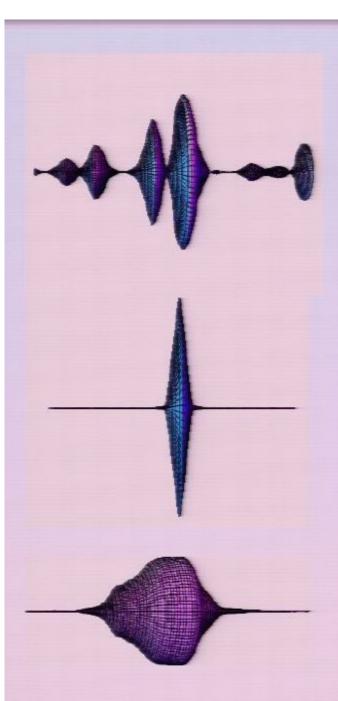
The transition line B-C

Could be 2. order phase transition line, verdict still up.

Can it serve as a Horava-Lifshitz UV completion of QG?

Horava scaling:

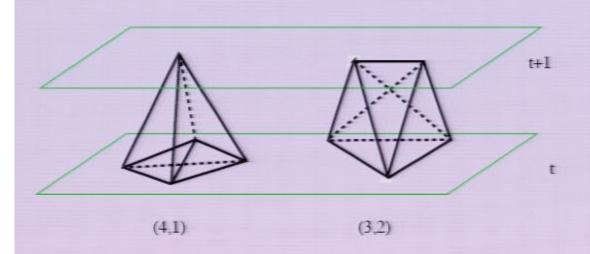
$$V_3 = a^3 (\Delta r)^3$$
, $T = a^3 \Delta t$ $\frac{\Delta t}{\Delta r} \propto (\Delta r)^2$



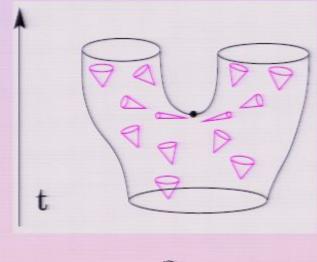
• Phase A. Inhomogeneous in time. Dominance of the conformal factor for small bare $1/\kappa_0$. Recall conformal factor appears like $-\dot{\phi}^2(t)$

Phase B. Inhomogeneous in space.
 Effective compactification into a 3d
 Euclidean DT, but in an "crumpled" inhomogeneous 3d space.

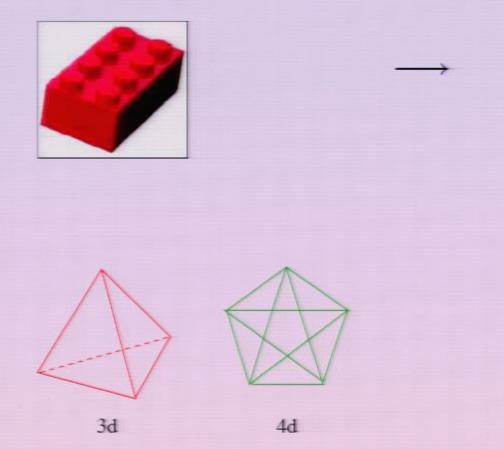
• Phase C. Extended de Sitter phase. d_H = 4. Lattice time extension depends on ∆ but configurations identified by redefinition of a_t.

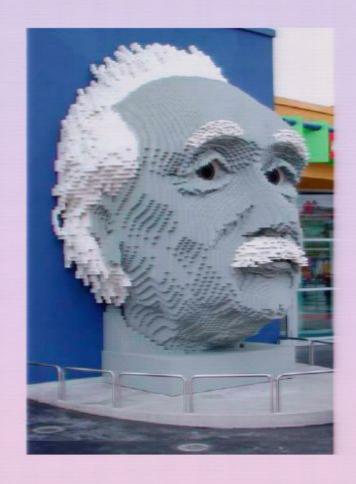


CDT slicing in proper time. Topology of space preserved. Situation below not allowed.



showcasing piecewise linear geometries via building blocks:

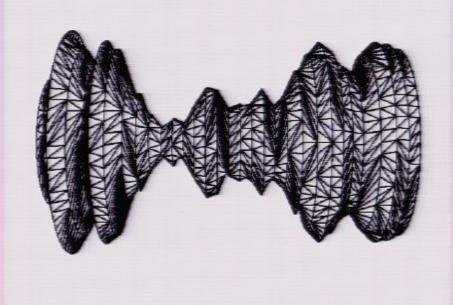




3

2d

$$G(\mathbf{g}_i, \mathbf{g}_f, t) := \int_{\substack{geometries: \mathbf{g}_i \to \mathbf{g}_f \\ a \to 0}} \int_{\substack{geometries: \mathbf{g}_i \to \mathbf{g}_f \\ T: T_i^{(3)} \to T_f^{(3)}}} e^{iS[\mathbf{g}_{\mu\nu}(t')]}$$

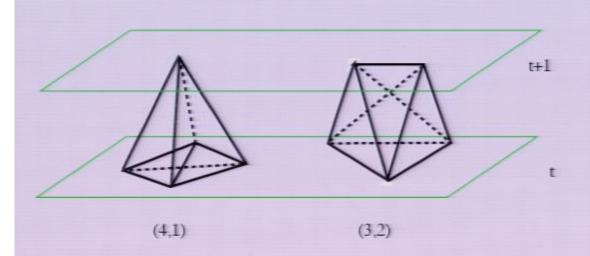


This expression can be summarized as

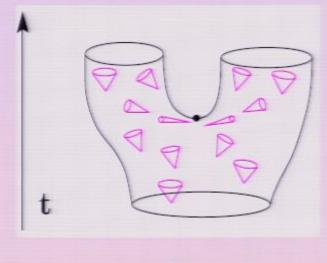
$$\textit{S}_{\textit{E}} = - \left(\kappa_0 + 6 \Delta \right) \textit{N}_0 + \kappa_4 \left(\textit{N}_4^{(4,1)} + \textit{N}_4^{(3,2)} \right) + \Delta \left(2 \textit{N}_4^{(4,1)} + \textit{N}_4^{(3,2)} \right)$$

 Δ is a function of \tilde{a} the asymmetry parameter between the space and lattice links. $\Delta = 0$ corresponds to $a_t = a_s$, i.e. $\tilde{a} = 1$.

In a given computer simulation $N_4 = N_4^{(4,1)} + N_4^{(3,2)}$ is kept fixed and thus effectively we have only two coupling constants: κ_0 and Δ .



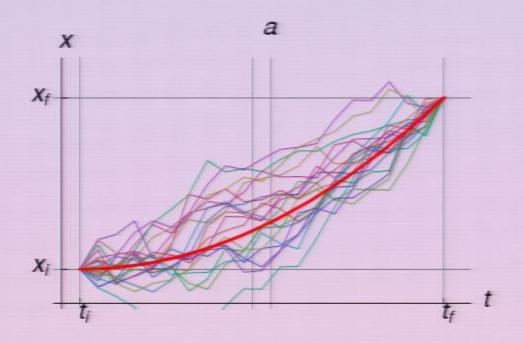
CDT slicing in proper time. Topology of space preserved. Situation below not allowed.



Lattice gravity: causal dynamical triangulations

Basic tool: The path integral

Text-book example: non-relativistic particle in one dimension.



$$x(t) = \langle x(t) \rangle + y(t)$$

 $\langle |y| \rangle \propto \sqrt{\hbar/m\omega}$

In QG we want $\langle x(t) \rangle$

$$\langle |y| \rangle \propto \sqrt{\hbar G}$$

Transition amplitude as a weighted sum over all possible trajectories. On the plot: time is discretized in steps a, trajectories are piecewise linear.

Page 68/79

In a continuum limit $a \rightarrow 0$

$$G(\mathbf{x}_i, \mathbf{x}_f, t) := \int_{\text{trajectories: } \mathbf{x}_i \to \mathbf{x}_f} e^{iS[\mathbf{x}(t)]}$$

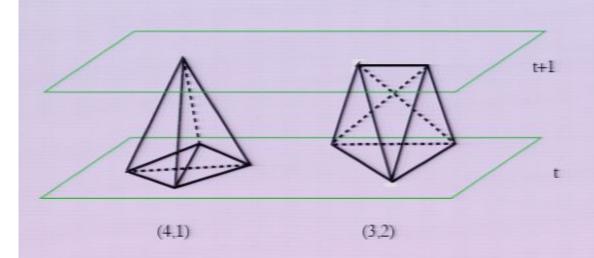
where $S[\mathbf{x}(t)]$ is a classical action.

The QG amplitude between the two geometric states separated a proper time t

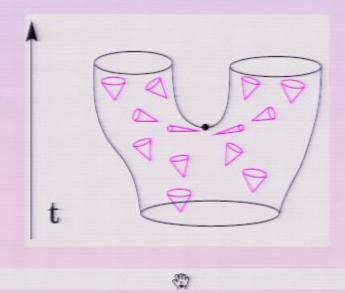
$$G(\mathbf{g}_{\mathrm{i}},\mathbf{g}_{\mathrm{f}},t):=\int\limits_{\mathrm{geometries:}}\mathrm{e}^{iS[\mathbf{g}_{\mu
u}(t')]}$$

To define this path integral we need a geometric cut-off *a* and a definition of the class of geometries entering.

Page

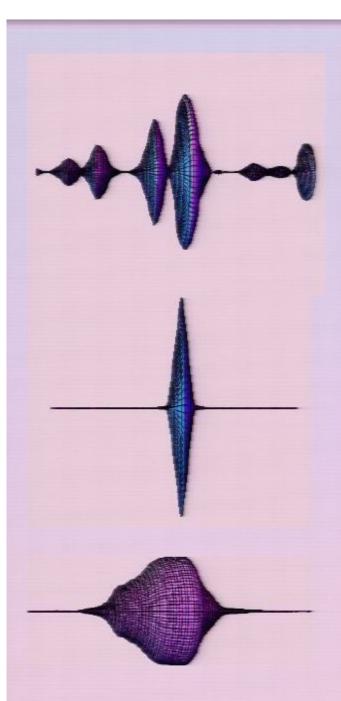


CDT slicing in proper time. Topology of space preserved. Situation below not allowed.



We now have to choose a specific action ($a_t^2 = \tilde{\alpha} a_s^2$, $\tilde{\alpha} > 7/12$)

$$\begin{split} S_{E} &= -k^{(b)}\pi\sqrt{4\tilde{\alpha}-1}\,N_{0} \\ &+ N_{4}^{(4,1)} \left(k^{(b)}\sqrt{4\tilde{\alpha}-1}\left[-\frac{\pi}{2} - \frac{\sqrt{3}}{\sqrt{4\tilde{\alpha}-1}}\arcsin\frac{1}{2\sqrt{2}\sqrt{3\tilde{\alpha}-1}}\right. \right. \\ &\left. + \frac{3}{2}\arccos\frac{2\tilde{\alpha}-1}{6\tilde{\alpha}-2}\right] + \lambda^{(b)}\frac{\sqrt{8\tilde{\alpha}-3}}{96} \right) \\ &+ N_{4}^{(3,2)} \left(k^{(b)}\sqrt{4\tilde{\alpha}-1}\left[-\pi + \frac{\sqrt{3}}{4\sqrt{4\tilde{\alpha}-1}}\arccos\frac{6\tilde{\alpha}-5}{6\tilde{\alpha}-2}\right. \right. \\ &\left. + \frac{3}{4}\arccos\frac{4\tilde{\alpha}-3}{8\tilde{\alpha}-4} + \frac{3}{2}\arccos\frac{1}{2\sqrt{2}\sqrt{2\tilde{\alpha}-1}\sqrt{3\tilde{\alpha}-1}}\right] \\ &\left. + \lambda^{(b)}\frac{\sqrt{12\tilde{\alpha}-7}}{96} \right). \end{split}$$



• Phase A. Inhomogeneous in time. Dominance of the conformal factor for small bare $1/\kappa_0$. Recall conformal factor appears like $-\dot{\phi}^2(t)$

Phase B. Inhomogeneous in space.
 Effective compactification into a 3d
 Euclidean DT, but in an "crumpled" inhomogeneous 3d space.

Phase C. Extended de Sitter phase. d_H = 4. Lattice time extension depends on △ but configurations identified by redefinition of a_t.

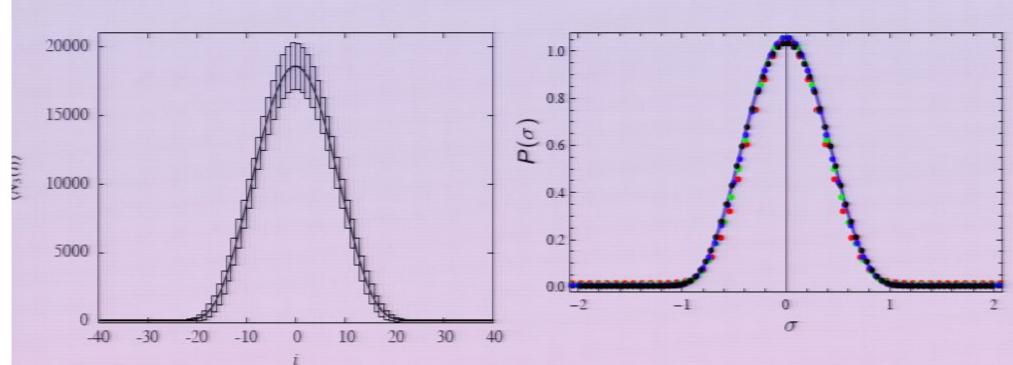


Figure: $N_4 = 22k$, 45k, 91k, 182k

$$\langle N_3(i) \rangle \propto N_4^{3/4} \cos^3 \left(\frac{i}{s_0 N_4^{1/4}} \right)$$

$$\sigma \propto i/N_4^{1/d}$$
 $N_3(i) \propto N_4^{(d-1)/d}P(\sigma)$

In phase C, deSitter space-time:

要

Best d = 4

Page 73/79

Minisuperspace model

The semiclassical distribution can be obtained from the minisuperspace effective action of Hartle and Hawking

$$S_{\text{eff}} = rac{1}{24\pi G} \int dt \sqrt{g_{tt}} \left(rac{g^{tt} \dot{V_3}^2(t)}{V_3(t)} + k_2 V_3^{1/3}(t) - \lambda V_3(t)
ight),$$

The discretization of this action is (and we have reconstructed it from the date (the 3-volume—3-volume correlations))

$$S_{discr} = k_1 \sum_{i} \left(\frac{(N_3(i+1) - N_3(i))^2}{N_3(i)} + \tilde{k}_2 N_3^{1/3}(i) - \tilde{\lambda} N_3(i) \right),$$

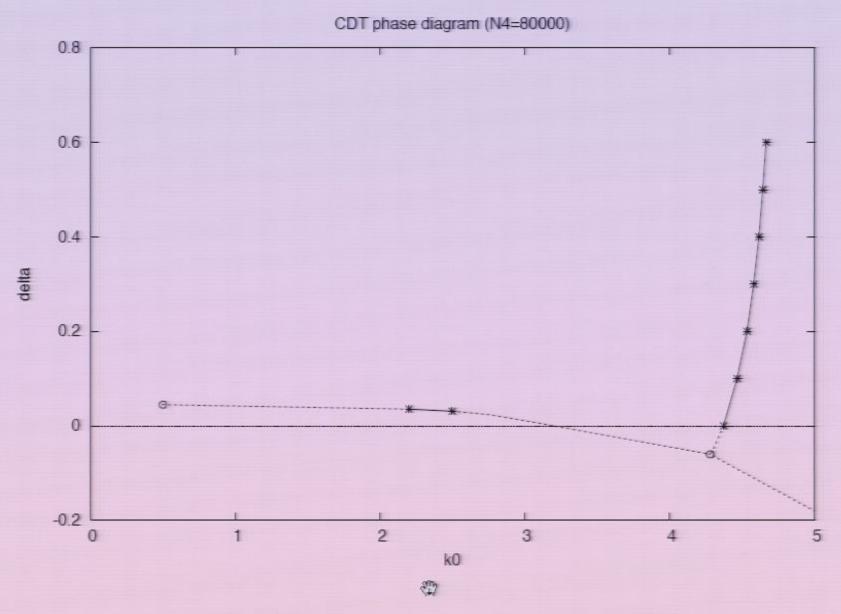
$$G = \frac{a^2 \sqrt{C_4} s_0^2}{k_1 \sqrt[3]{6}}.$$

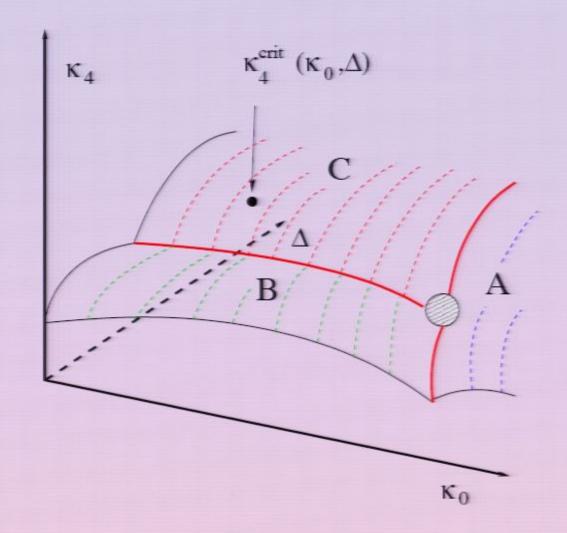
Pirsa: 09110131

Summary

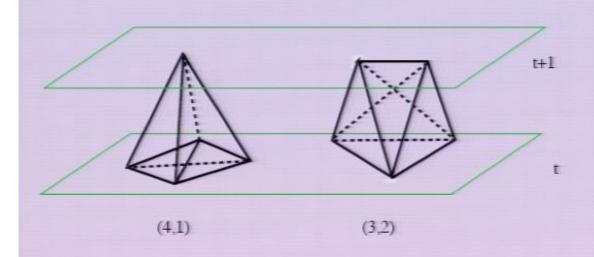
- The set-up with a global time foliation is common to CDT and HL-gravity.
- The spectral dimension when measured in the deSitter phase of CDT varies from 4 (long distance) to 2 (short distance). Similar results were found by Horava, hinting that maybe the two theories have the same UV completion.
- We have argued that Horava scaling is a posibility along the B-C phase transition line if Δt = N₃^ν and ν = 3/d_H (and if it is second order.....)
- CDT is in principle ideally suited to study lattice HL gravity, given a suitable lattice action.

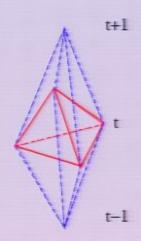
Phase diagram in $\kappa_0 - \Delta$ plane



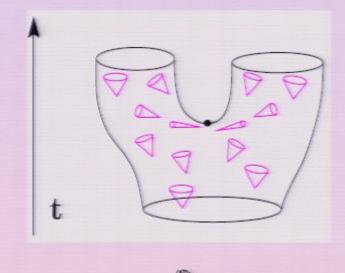


Asymmetry between space and time ? (like in Horava model)

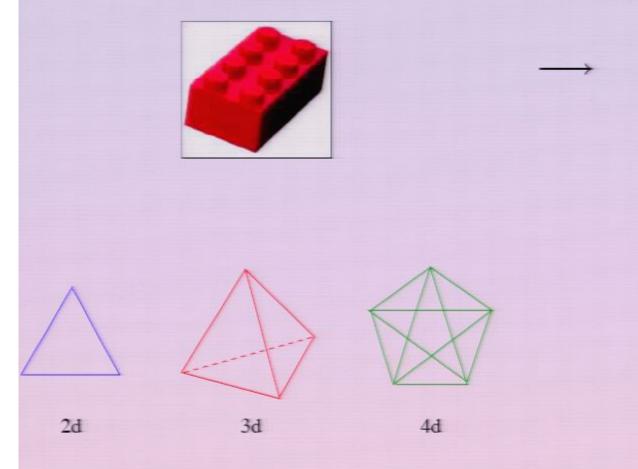




CDT slicing in proper time. Topology of space preserved. Situation below not allowed.



showcasing piecewise linear geometries via building blocks:



雪