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QG main goal (at least in 80ties)

@ Define the theory of QG
@ Obtain the background geometry ((g,....)) we observe
@ Study the fluctuations around the background geometry

What lattice gravity (dynamical triangulation, DT) offers:

@ A non-perturbative QF I definition of QG using just
standard QFT via the path integral.

@ A background independent formulation.

@ A patih integral formulated directly as a sum over
geometries (piecewise linear geometries as used, require
no coordinates).
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Virtues and drawbacks of DT

V' The Einstein-Hilbert action has a natural geometric
realization on piecewise linear geometries (Regge).

V' The cut-off a is geometric (diffeomorphism invariant)

D The formulation inherently Euclidean (Euclidean QG ?
(action unbounded from below)).

V' The cut-off a automatically acts as a regularization of the
unboundedness of Euclidean QG.

D Gravity becomes "emergent’: a subtle interplay between
quantum measure and the action used.

V' Works beautifully when Euclidean QG is well defined: in
2d.

Main DT drawback: no interesting IR limit for d > 2.
Thatledio DT — CDT (causal Qynamical friangulations)

irsa: 09110131 Page 4/79

I = = =




CDT virtues and drawbacks

V Path integral a sum over Lorenizian geometries.
D One assumes the existence of a global time foliation.

V' Each configuration allows a rotation to Euclidean
geomeiry, corresponding to t — & = if. One can then i.e.
using Monte Carlo simulations. (The corresponding set of
geometries will be different from the full set of Euclidean
geomeiries).

Main CDT virtue: An interesting IR limit seems to exist.
Main guestions: Is the theory UV complete and if so, what are
the short distance properties of the theory.
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| attice gravity: causal dynamical triangulations

Basic tool: The path integral

Text-book example: non-relativistic particle in one dimension.

< x(tf) = (x(1)) + y(1)
¥ o

Transition amplitude as a weighted sum over all possible
trajectories. On the plot: time is discreiized in steps a,
frajeciories are piecewise linear=
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In a continuum limita — 0
G(Xi. Xs. f) = / efS[x( )]
tmjectm:i::s: X,—Xs

where S[x()] is a classical action.

The QG amplitude between the two geometric states separated
a proper time t

G(gi. gr. 1) = / oS (1)

geometries: §; —Gs

To define this path integral we need a geometric cut-off 2 and a
definition of the class of geomeiries entering.
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showcasing piecewise linear geometries via building blocks:
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CDT slicing in proper time. Topology of space preserved.
Situation below not allowed.
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Relation to the Horava model ?

The set-up is precisely as in the Horava model.

In addition the so-called spectral dimension in CDT and in the
Horava model show the same characieristic behavior:

a 108 200 300 400
X

But the actions in the two models seemingly unrelated ?

&
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We now have to choose a specific action (& = daZ. a > 7/12)

Se = — kP nv/aa — 1Ny

T 3 1
+NgHY (k(b) Vaa — 1 { ___Y° _ arcsin

2 aa-—1 2v2v/3a —1

3 20 — 1 vV8& — 3
< arccos A(B)
+2 6 — 2} = )

_, 3 6 — 5
+Nf'2) (k(b)\/ilﬁ = {_; + ¥ arccos =

= 66 — 2
+3 arccos s + 3 arccos ! ]
4 = 5 - 2/2/75— 1/3a— 1

126 —7
D) ¥ :
* 96
o
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This expression can be summarized as

s (HO +6A) e (Nf‘” n Nga.z)) +A(2Nf'” +,\,‘5113_2))

A is a function of & the asymmetry parametier between the
space and lattice links. A = 0 corresponds to a; = a., i.e.
a=1.

In a given computer simulation Nsy — Nf‘” = - Nf'g) Is kept fixed
and thus effectively we have only two coupling constants: «g
and A.
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CDT slicing in proper time. Topology of space preserved.
Situation below not allowed.
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Relation to the Horava model ?

The set-up is precisely as in the Horava model.

In addition the so-called spectral dimension in CDT and in the
Horava model show the same characieristic behavior:

a 104 200 3a0 400
X

But the actions in the two models seemingly unrelated ?
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We now have to choose a specific action (a? ﬂag. a>1/12)

SE = —k(b)ﬁv’;‘drﬁ —1Np

T '3 1
+NSD | P25 —1 [ = e —
2 vaa — 1 2V Zev3a— 1
3 2 — 1 vV8a& — 3
= arccos (D)
2 66 — 2} - 96 )
, V3 66 — 5
NEE S fae 1l = _ arccos
= b = 66 — 2
+3 arccos s = = arccos ! ]
- 8 -4 2 2v2v2a —1/3a — 1
126 —7
A(B) Y :
L 96
o
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This expression can be summarized as

S (HO +6A) e (Nfr.n 4 N£3,2)) +A(2Nf'” +Nf'2))

A is a function of a the asymmeitry parameter between the
space and lattice links. A = 0 corresponds o a; = ag, i.e.
a—1

In a given computer simulation Ny — Nf‘” = - Nf'z) Is kept fixed
and thus effectively we have only two coupling constants: «g
and A.

irsa: 09110131 Page 17/79
= = = = = a9qc




Ko

Asymmetry between space and time ? (like in Horava model)
@
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@ Phase A. Inhomogeneous in time.
Dominance of the conformal factor
for small bare 1 /. Recall
conformal factor appears like —o2(t)

@ Phase B. Inhomogeneous in space.
Effective compactification into a 3d
Euclidean DT, but in an "crumpled”
iInhomogeneous 3d space.

@ Phase C. Exiended de Sitter phase.
dy = 4. Latiice time exiension de-
pends on A but configurations
id%ntified by redefinition of a;.
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Phase diagram in xo — A plane

CDT phase diagram (N4=80000)
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@ Phase A. Inhomogeneous in time.
Dominance of the conformal factor
for small bare 1/xg. Recall
conformal factor appears like —o2(t)

@ Phase B. Inhomogeneous in space.
Effective compactification into a 3d
Euclidean DT, but in an "crumpled”
iInhomogeneous 3d space.

@ Phase C. Extended de Sitter phase.
dy = 4. Lattice time extension de-
pends on A but configurations
id%ntified by redefinition of a;.

irsa: 09110131 Page 21/79
= = = = E aqc




Phase diagram in o — A plane

CDT phase diagram (N4=80000)
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Phase diagram in o — A plane

CDT phase diagram (N4=80000)
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CDT phase diagram (N4=80000)
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Phase diagram in o — A plane

CDT phase diagram (N4=80000)
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1. order A-C phase transition

The transition from Euclidean deSitter space-time (phase C) o
phase A (dominated by the conformal factor) is 1. order.
Difficult to imagine to use it to define a UV completion of the IR
deSitier behavior.

A naively defined lattice Horava model would presumably also
have an unphysical A-phase, since also such model is
unbounded in the Euclidean secior (wrong sign of the second
order time derivative).

&
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The transition line B-C

Could be 2. order phase transition line, verdict still up.

Can it serve as a Horava-Lifshiiz UV completion of QG ?

At
Va = a(Ar)?. T=2aAt Tl (Ar)?
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Phase diagram in o — A plane

CDT phase diagram (N4=80000)
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1. order A-C phase transition

The transition from Euclidean deSitter space-time (phase C) o
phase A (dominated by the conformal factor) is 1. order.
Difficult to imagine to use it to define a UV completion of the IR
deSitier behavior.

A naively defined lattice Horava model would presumably also
have an unphysical A-phase, since also such model is
unbounded in the Euclidean secior (wrong sign of the second
order time derivative).
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The transition line B-C

Could be 2. order phase transition line, verdict still up.

Can it serve as a Horava-Lifshitz UV completion of QG ?
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Scenario 1: dimension of space is 3: (Ar)> ~ N3 J

In Phase C, away from the B-C line: At = so(A)NS/>
If 2. order line: sp(A)NL/> — const. N .

"Observations” v < 1/3: % — 0. no Horava scaling
Scenario 2: dimension of space is dy: (Ar)% ~ Ns J
At ANZ
T - o el
Na,f H
Horava scaling if v = 3/dy J
%.
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The transition line B-C__ _

Could be 2. order phase transition line, verdict still up.

Can it serve as a Horava-Lifshitz UV completion of QG ?
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Scenario 1: dimension of space is 3: (Ar)> ~ N3 J

In Phase C, away from the B-C line: At = so(A)NS/>
If 2. order line: so(A)NL/> — const. N .

"Observations” v < 1/3: At . 0. no Horava scaling

Ar
Scenario 2: dimension of space is dy: (Ar)% ~ Ns J
At ANE
&_ - f2 e (113 x Ng_de
r N:;f H
Horava scaling if » = 3/dy J
il
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Phase diagram in o — A plane

CDT phase diagram (N4=80000)
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1. order A-C phase transition

The transition from Euclidean deSitter space-time (phase C) 1o
phase A (dominated by the conformal factor) is 1. order.
Difficult to imagine to use it to define a UV completion of the IR
deSitier behavior.

A naively defined lattice Horava model would presumably also
have an unphysical A-phase, since also such model is
unbounded in the Euclidean secior (wrong sign of the second
order time derivative).
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The transition line _B-C

Could be 2. order phase transition line, verdict still up.

Can it serve as a Horava-Lifshiiz UV completion of QG ?
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@ Phase A. Inhomogeneous in time.
Dominance of the conformal factor
for small bare 1 /. Recall
conformal factor appears like —o2(t)

@ Phase B. Inhomogeneous in space.
Effective compactification into a 3d
Euclidean DT, but in an "crumpled”
iInhomogeneous 3d space.

@ Phase C. Exiended de Sitter phase.
dy = 4. Latiice time exiension de-
pends on A but configurations
id%ntified by redefinition of a;.
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Phase diagram in xo — A plane

CDT phase diagram (N4=80000)
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1. order A-C phase transition

The transition from Euclidean deSitter space-time (phase C) o
phase A (dominated by the conformal factor) is 1. order.
Difficult to imagine to use it to define a UV completion of the IR
deSitier behavior.

A naively defined lattice Horava model would presumably also
have an unphysical A-phase, since also such model is
unbounded in the Euclidean secior (wrong sign of the second
order time derivative).
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The transition line B-C |

Could be 2. order phase transition line, verdict still up.

Can it serve as a Horava-Lifshiiz UV completion of QG ?
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Scenario 1: dimension of space is 3: (Ar)> ~ N3 J

In Phase C, away from the B-C line: At = sp(A) N;;,,-s
If 2. order line: so(A)NL/> — const. N .

"Observations” v < 1/3: At . 0. no Horava scaling

Ar
Scenario 2: dimension of space is dy: (Ar)% ~ Ns J
At ANE
A— X !'2 — f(? X ngde
r N:;,f H
Horava scaling if » = 3/dy J
o
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@ The set-up with a global time foliation is common to CDT
and HL-gravity.

@ The spectral dimension when measured in the deSitier
phase of CDT varies from 4 (long distance) to 2 (short
distance). Similar resulis were found by Horava, hiniing
that maybe the two theories have the same UV completion.

@ We have argued that Horava scaling is a posibility along
the B-C phase transition line it At = N3 and v = 3/dy (and
If it is second order.....)

@ CDT is in principle ideally suited to study lattice HL gravity,
given a suitable lattice action.
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Scenario 1: dimension of space is 3: (Ar)> ~ N5 J

In Phase C, away from the B-C line: At = so(A)NS/>
If 2. order line: sp(A)NL/> — const. N .

"Observations” v < 1/3: % — 0. no Horava scaling
Scenario 2: dimension of space is dy: (Ar)% ~ Ns J
At ANZ
r N:;f H
Horava scaling if v =3/dy J
@.
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@ Phase A. Inhomogeneous in time.
Dominance of the conformal factor
for small bare 1 /xq. Recall
conformal factor appears like —o2(t)

@ Phase B. Inhomogeneous in space.
Effective compactification into a 3d
Euclidean DT, but in an "crumpled”
Inhomogeneous 3d space.

@ Phase C. Exiended de Sitter phase.
dy = 4. Lattice time exiension de-
pends on A but configurations
id%ntiﬁed by redefinition of a;.
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The transition line B:C_

Could be 2. order phase transition line, verdict still up.

Can it serve as a Horava-Lifshiiz UV completion of QG ?

At
Va = a(Ar)?. T=2aAt o (Ar)?
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Asymmetry between space and time ? (like in Horava model)
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Relation to the Horava model ?

The set-up is precisely as in the Horava model.

In addition the so-called speciral dimension in CDT and in the
Horava model show the same characieristic behavior:

a 108 200 300 400
X

But the actions in the two models seemingly unrelated ?
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Asymmetry between space and time ? (like in Horava model)
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Scenario 1: dimension of space is 3: (Ar)> ~ N3 J

In Phase C, away from the B-C line: At = so(A)NS/>
If 2. order line: so(.&)N:;f3 — const. N .

"Observations” » < 1/3: % — 0. no Horava scaling
Scenario 2: dimension of space is dy: (Ar)% ~ N3 J
At ANZ -
A F - g el
r N:;f H
Horava scaling if » = 3/dy J
i
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Minisuperspace model

The semiclassical distribution can be obtained from the
minisuperspace effective action of Hartle and Hawking

=
== — ([ g"V5 (1) 1/3

The discretization of this action is (and we have reconsirucied
it from the date (the 3-volume—3-volume correlations))
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The transition line B-C

Could be 2. order phase transition line, verdict still up.

Can it serve as a Horava-Lifshiiz UV completion of QG ?

At
Va = a(Ar)?. T=2aAt = (Ar)?
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@ Phase A. Inhomogeneous in time.
Dominance of the conformal factor
for small bare 1 /xq. Recall
conformal factor appears like —o2(t)

@ Phase B. Inhomogeneous in space.
Effective compactification into a 3d
Euclidean DT, but in an "crumpled”
iInhomogeneous 3d space.

@ Phase C. Extended de Sitter phase.
dy = 4. Lattice time exiension de-
pends on A but configurations
id%ntified by redefinition of a;.
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CDT slicing in proper time. Topology of space preserved.
Situation below not allowed.
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showcasing piecewise linear geometries via building blocks:
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This expression can be summarized as

= (Ho +6A) N +H4(N§4'1) - N£(13.2)) +,&(2N§4-1) N NiS_z))

A is a function of & the asymmeitry parameter between the
space and lattice links. A = 0 corresponds o a; = a., i.e.
a—1

In a given computer simulation Ny — Nf‘” = Nf'z) Is kept fixed
and thus effectively we have only two coupling constants: «g
and A.
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(4.1) 32) =

CDT slicing in proper time. Topology of space preserved.
Situation below not allowed.
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| attice gravity: causal dynamical triangulations

Basic tool: The path integral

Text-book example: non-relativistic particle in one dimension.

= x{l) — -::.x(t)jj::: + y(t)

4. l 3 s ‘fy‘ ' X

In QG we want (x(t))

(yl) o VhG

Transition amplitude as a weighted sum over all possible
trajectories. On the plot: time is discreiized in steps a,
trajeciories are piecewise linear=
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In a continuum limita — 0
G(Xi. Xs. f) = / efS[x(f)]
trajectoti:i*s: X,—X¢

where S[x()] is a classical action.

The QG amplitude between the two geometric states separated
a proper time t

G(gi. gr. 1) = / oS (1)

geometries: §; —Gs

To define this path integral we need a geometric cut-off 2 and a
definition of the class of geomeiries entering.

E.
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(4.1) 32

CDT slicing in proper time. Topology of space preserved.
Situation below not allowed.
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We now have to choose a specific action (a? Eiag. a>71/12)

Se = —k®Pxv/4a — 1Ny

. T 3 1
+NAD | k(B /ag — 7 { __¥°  aresin —-
2 vaa — 1 2vV2v3a — 1
3 2 — 1 vV8& — 3
< arccos \(B)
2 6a— 2] L 96 )
= V3 66 — 5
T e L ] . _ arccos
+3 arccos s 1 e arccos ! ]
4 8 -4 2 2vV2v2a —1/3a — 1
Va7
A(P) :
. 96
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@ Phase A. Inhomogeneous in time.
Dominance of the conformal factor
for small bare 1 /xq. Recall
conformal factor appears like —o2(t)

@ Phase B. Inhomogeneous in space.
Effective compactification into a 3d
Euclidean DT, but in an "crumpled”
iInhomogeneous 3d space.

@ Phase C. Extended de Sitter phase.
dy = 4. Latiice time exiension de-
pends on A but configurations
id%ntiﬂed by redefinition of a;.
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Figure: Ny = 22k, 45k, 91k, 182k
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Minisuperspace model

The semiclassical distribution can be obtained from the
minisuperspace efiective action of Hartle and Hawking

- - 2
= ([ g"V5 (1) /3

The discretization of this action is (and we have reconsirucied
it from the date (the 3-volume—3-volume correlations))
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@ The set-up with a global time foliation is common to CDT
and HL-gravity.

@ The spectral dimension when measured in the deSitier
phase of CDT varies from 4 (long distance) to 2 (short
distance). Similar resulis were found by Horava, hiniing
that maybe the two theories have the same UV completion.

@ We have argued that Horava scaling is a posibility along
the B-C phase transition line it At = N3 and v = 3/dy (and
If it is second order.....)

@ CDT is in principle ideally suited to study lattice HL gravity,
given a suitable lattice action.
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Phase diagram in o — A plane

CDT phase diagram (N4=80000)
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Asymmetry between space and time ? (like in Horava model)
=

Pirsa: 09110131 Page 77/79
= = = = = a9ac




.rljl%‘.
e+l FEVY
. T
t
.\‘ ;j-'
@.1) 3G2) VA

CDT slicing in proper time. Topology of space preserved.
Situation below not allowed.
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showcasing piecewise linear geometries via building blocks:
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