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scenario is mainly discussed in the context of a
quantum theory for gravity
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& Recently, the AS scenano for QG has received strong support thanks to new
techniques in non-perturbative quantum feld theory.
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However, the setting of the AS scenario is more general and might also be applied
to other QFTs that have problems with non-renormalizability
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Both problems could be solved within the AS scenario.

As 3 tov model for the SM we will investigate 2
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» Higgs field is parametrized in terms of a bosonic field ¢ with a Lagrangian

a Perturbative computation of the one-loop correction to the four-Higgs-boson
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coupling yields relation between the bare and the renormalized coupling
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a Higgs field is parametrized in terms of a bosonic field ¢ with a Lagrangian

& Perturbative computation of the one-loop correction to the four-Higgs-boson

= — o

coupling vields relation between the bare and the renormalized coupling
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Landau-pole indicates breakdown of perturbative QFT — new d.o.f.?
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Perturbation theory relies on an expansion around zero coupling.

“

- Near the Landau pole perturbation theory will loose its validity since A\ grows large

Need non-perturbative tool to study triviality & take into account fermions!
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The Higgs mass renormalizes quadratically (dm= ~ A-). In perturbation theory the

relation between bare and renormalized coupling is given by
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We cbserve a huge hierarchy in the standard model:

10°GeV < Agur ~ 10°°GeV

\Ew

normalizes quadratically (dm- ~ A-). In perturbation theory the

m

The Higgs mass r
relation between bare and renormalized coupling is given by

I;[_;éll\“.'._ 1 ¥4 I'ul L i —_I“" |;1—-|'-.| o
nith 3 counterterm om~- = X - 10°-GeV~
& Perform a fine-tuning with a precision of Ag, /Ag+ ~ 107

@ [his seems to be “unnatural’
A hierarchy problem corresponds to the existence of a large critical exponent O,

at a fixed point, e.g. in o*-theory we find at the GFP 8 =2
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Exact renormalization group equations (ERGE) derived from path-integral
representation (Wetterich 93)
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representation (Wetterich 93)
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[
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Plugging in an effective average action ;; 1O, we obtain J-functions

With the eigenvectors V * and eigenvalues &° of the stability matrix we give a general
solution of the linearized fixed-point equation
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3 Re 81 > 0 relevant coupling (to be fixed by experiment)
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representation (Wetterich 93)

WL [®] = =STRH{T 2 (0] + Ri] (eR0)}, O = k—

—

Plugging in an effective average action ['.|®| =) . ¢, . O;, we obtain J-functions

p—

With the eigenvectors V' * and eigenvalues B“ of the stability matrix we give 3 general
solution of the linearized fixed-point equation

— 7 i B -'I|-|'_;'

3 Re 81 > (- relevant coupling (to be fixed by experiment
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a Re &1 < () irrelevant coupling ( prediction for physical observable in the IR)
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Effective average action: ['i|y| = N " g; £0,. Scale dependence: A Ti[x] =Y 3; 1O
S — Ce—

! critical surface S

P

=1 -~ 9,
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3 Dimension of the

T

critical surfacee A = dimS = number of relevant directions.

If 3 non-GauBian fixed point (NGFP) exists we can draw the limit A — > and
the system is independent from the UV cutoff

NGFP solves the triviality problem, because the UV limit is well-defined.
s If A

xx — system is predictive, because there is only a fimite number of
parameters to be fixed (by experiment)

We find a hierarchy problem if there exist large critical exponents 9

RG computation will show how large the S are at 3 NGFP
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a NGFP solves the triviality problem, because the UV limit is well-defined.
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Np left-handed fermions v

ane right-handed fermion

V1. complex bosons ¢

invanant under chiral U'( Ny ) © Ul1l)g transformations

define p =

&« & & & & &

dimensioniess quantities:

=— K -rl _”-:".I -.;l-_ { [} — “l I L - [ 2
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Vi left-handed fermions
ane right-handed fermion
V1. complex besons o
invanant under chiral U'( Ny )y © U(1)g transformations
define p = 0% 0"
dimensionless quantities:
2d 2 __ pd—432 — E—4Fr [

= f -
] I " s . LD

&« & & & & &

For the regime with spontanecusly broken
svmmetry (SSB), we expand the effective
potential about its minimum

T— ) i
mn
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V1 left-handed fermions
one right-handed fermion w
."~.|_ -:.'ETT'I[C}|E.r' b‘C'E'E‘IE

]
-
a4
& invariant under chiral U'( Ny )p © U(1)g transformations
3 define p = @

¢ dimensioniess guantities:

=" "8 =5 K i o o — 0]

For the regime with spontanecusly broken

3S f b
symmetry (SSB), we expand the effective
potential about its minimum
N — -'Irr'”n i1
\ \ . = |
o= o L : 0
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Loop contributions to the running of &

hk = —I1K + bosonic interactions — fermionic mteractions 1
i|
L
\
k.
3
N
|
. * '_I h‘ﬁTﬁ-
fermionie fluetnations osonic fluctuations
lomintate domintate

a dominating fluctuations of the boson field allow for a positive &°

¢ a suitable x-dependence flattens the J-function near the fixed-point, which
reduces the hierachv problem

L & near the FP the vev exhibits 3 conformal behaviour v ~ k (cf. talk by H. Gies)
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Locp contributions to the running of &

dtk = —2K + bosonic mteractions — fermionic mteractions 1
X,
L
-"|
L
!
"-.
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. ! .- E‘ET-
fermionic fluctuations osonic fluctuations
lOmIntate domintate

a dominating fluctuations of the boson field allow for a positive x*

@ a suitable x-dependence flattens the J-function near the fixed-point, which
reduces the hierachy problem

126 o near the FP the vev exhibits a2 conformal behaviour v ~ k (cf. talk bv H. Gies)




a Whether or not the balancing is possible crucially depends on the d.o.f. of the
madel.

9110126




a Whether or not the balancing is possible crucially depends on the d.o.f. of the
madel.

& A leading order truncation can be parametrized by three couplings: h=. A. &

9110126




a Whether or not the balancing is possible crucially depends on the d.o.f. of the
model.

& A leading order truncation can be parametrized by three couplings: A= \. &

9110126




& Whether or not the balancing is possible crucially depends on the d.o.f. of the
madel.

& A leading order truncation can be parametrized by three couplings: h=. A&

— we obtain 3 conditional fixed-point

4 'y — -
The 3.-function receives the contributions
— —2x + bosonic interactions — fermionic interactions
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a Whether or not the balancing is possible crucially depends on the d.o.f. of the
madel.

» A leading order truncation can be parametrized by three couplings: h=. \. &

The J.-function receives the contributions
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We find a NGFPs for 1 < N <57
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We find 3 NGFPs for 1 < N; < 57
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potential and Np = 10:
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3 Convergence of the fixed-point potential u" at LO:

e
j’l
- = y =
|— — i Y — |_ } —tr= |
Critical exponents 5, = 1.05i 2y = —{.1] Py = —Z.Jok

9110126




& Example for a leading-order truncation expanded up to —2p" in the effective
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& Convergence of the fixed-point potential u” at LO:

b
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3 One relevant direction, corresponding to one physical parameter to be fixed.

a All other parameters are predictions from the theory
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a Example for a leading-order truncation expanded up to ~2p" in the effective
potential and Ny = 10

3 Convergence of the fixed-point potential " at LO:

_J ]
FP = (0.0152 E =1213 “ —=57.4]
Critical exponents 9 =1.056. G =-0.175. G5 =-2350

3 One relevant direction, corresponding to one physical parameter to be fixed.
a All other parameters are predictions from the theory

9110126 & The real part of the relevant direction is 1.056 and not anymaore 2 — Hierarchy

problem weaker




3 The flow can be fixed by one parameter
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e.gz. the IR value of »
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& In a realistic model this would correspond to the vey

which can be determined
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from the Z/W-boson masses

= M V ZKA
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@ In a realistic madel this would correspond to the vev

which can be determined
from the 7/ W-boson masses

¥ *1i
— Il V ZAA

3 |R values of the other tw

0 parameters are predictions and are related to the Higgs
and the top mass

9110126




& The flow can be fixed by one parameter, e.g. the IR value of
3 In 2 realistic model this would correspond to the vev which can be determined
from the Z/ W-boson masses
= I V ZKK
Il

IR values of the other two parameters are predictions and are rel
and the top mass

-

ated to the Higgs

@ Choosing v

246GeV and N = 10 as an example, we find

\
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a The present theory reveals a possible AS mechanism for the standard model.

» Next to leading order in derivative expansion: NGFP might be destabilized due to
Goldstone fluctuations and large values for the Yukawa coupling.

3 We have massless Goldstone and fermion fluctuations, which are not present in
the standard model

—

3 In 3 simple Z,-symmetric Yukawa model (without Goldstone fluctuations) we

sbserve a NLO fixed-point for N
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The present theory reveals a possible AS mechanism for the standard maodel.

2
3 Next to leading order in derivative expansion: NGFP might be destabilized due to

Goldstone fluctuations and large values for the Yukawa coupling.

2 We have massless Goldstone and ferrmion fluctuations, which are not present in

the standard model

a In a simple Z;-symmetric Yukawa model (without Goldstone fluctuations) we
observe a NLO fixed-point for N,
3 Also gravitational effects can be included: O. Zanusso, L. Zambelli, G. P. Vacca

A
& R. Percaca
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The present theory reveals a possible AS mechanism for the standard model.

& Next to leading order in derivative expansion: NGFP might be destabilized due to
Goldstone fluctuations and large values for the Yukawa coupling.

ssiess Goldstone and fermion fluctuations, which are not present in

a Weh a
the standard model

ve m

(<1

a In a simple Z,-symmetric Yukawa model (without Goldstone fluctuations) we
observe a NLO fixed-point for N, < 1/3

& Alsa gravitational effects can be included: O. Zanusso, L. Zambelli, G. P. Vacca
& R. Percaca

& Next step: Include SU( Ny ) gauge bosons (work in progress with H. Gies and S.
Rechenberger|
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3 The flow can be fixed by one parameter, e.g. the IR value of »

3 In a realistic model this would correspond to the vev which can be determined
from the Z/ W-boson masses

= M v ZK

a IR values of the other two parameters are predictions and are related
and the top mass

to the Higes

==

3 Choosing v

146GeV and N = 10 as an example, we find

W
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a Example for a leading-order truncation expanded up to ~2p" in the effective
potential and Ny = 10

o Convergence of the fixed-point potential u" at LO:
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We find a NGFPs for 1 < N < 5
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