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Infinity!

The concept of conformal infinity is important for:

e |dentifying proper boundary conditions for fields
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Infinity!

The concept of conformal infinity is important for:

e |dentifying proper boundary conditions for fields
e Analyzing causal properties of spacetimes (e.g. black holes)
e Defining asymptotic charges

e AdS/CFT correspondence

e ... efc.
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Infinity in General Relativity

e Penrose’s definition: boundary of the manifold under a conformal embedding in
an auxiliary spacetime

9
G =g, (1)
e Uses Weyl rescalings of the spacetime metric

e Consistent because diffeomorphisms preserve the group Weyl transformations:

x, 8.] = Ox () (2)

e Useful because it preserves causal structure

irsa: 09110065 Page 8/78




i

Infinity in Hofava-Lifshitz Gravity

e Foliation + higher spatial derivatives — causal structure is degenerate

So: Weyl transformations more restrictive than necessary

e Smaller symmetry group — weaker consistency conditions

e When there is anisotropy between spatial and temporal metric components, it is
unnatural to scale them the same way

Much more natural to have an anisotropic concept of conformal infinity.
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Infinity in Hofava-Lifshitz Gravity

e Foliation + higher spatial derivatives — causal structure is degenerate
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Asymptotically Anisotropic Spacetimes

e Recent interest in possible duals to condensed matter systems

e Superconductors, cold atoms, Lifshitz-like fixed points
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AdS/CFT Correspondence: Very Quick Review

e Indications that quantum gravity should be holographic

e In AdS-like spaces partition function is a functional of boundary conditions on
fields at spatial infinity

e Partition function can be viewed as the generating functional for a field theory
living on the boundary:

Zgrartty[@l-' . : = <E:{p (% -/'{I’I'{.I'.]O;‘(I}dl'-)> (3)
CFT

e Scale invariance ~ bulk isometry of dsid:‘" = fﬂ'us''*]1‘_.a':r*“f:l’:.‘z“u + du?).
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Asymptotically Anisotropic Spacetimes

e Recent interest in possible duals to condensed matter systems
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Asymptotically Anisotropic Spacetimes

e Recent interest in possible duals to condensed matter systems
e Superconductors, cold atoms, Lifshitz-like fixed points
e Systems displaying anisotropic scaling exponents: e.g.

t— XNt Er> AF (4)

e Example: Quantum gravity on “Lifshitz" backgrounds (z = 2):

, —dr? dF?+dp’
ge = —— = =% (5)
p P~
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Asymptotically Anisotropic Spacetimes
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t—> Xt Er> AF (4)

e Example: Quantum gravity on “Lifshitz" backgrounds (z = 2):

des = == - = = = (5)
p p?

irsa: 09110065 Page 17/78




Degenerate Asymptopia of Lifshitz Space

e Metric has degenerate boundary; finite metric obtained in coordinate system

- —dr? L+ dr?/4 17-
B Bl e e (6)

3
e T

e Penrose boundary has dimension 1:

—_

ds? = —dr? (7)

e Consistent boundary conditions for fields can depend on ¥ coordinates

e Penrose definition with codimension > 1 boundary does not properly describe
boundary geometry — dysymptopia of Lifshitz space cannot support field theory
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Anisotropic Infinity?

e Need concept of infinity compatible with geometric anisotropy
e Conservatively: use local rescalings as in usual conformal boundary

e To do this we need Weyl transformations consistent with anisotropy.
Problem: Weyl transformations need to close with diffeomorphisms (complete group
must be a semi-direct product)

Natural to look to anisotropic gravity models for inspiration even when doing
General Relativity!
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Degenerate Asymptopia of Lifshitz Space

e Metric has degenerate boundary; finite metric obtained in coordinate system

5 —d - —d 24 ff_ﬂ
= aT ar-—, = | (6)

9
F r

e Penrose boundary has dimension 1:
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e Consistent boundary conditions for fields can depend on F coordinates
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Anisotropic Infinity?

e Need concept of infinity compatible with geometric anisotropy
e Conservatively: use local rescalings as in usual conformal boundary

e To do this we need Weyl transformations consistent with anisotropy.
Problem: Weyl transformations need to close with diffeomorphisms (complete group
must be a semi-direct product)

Natural to look to anisotropic gravity models for inspiration even when doing
General Relativity!
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Foliations

e Manifold foliated by spatial slices

e ADM Decomposition

ds® = —dr* + gij(dx* + N'dr)(dx? + N'dt)

e Under foliation-preserving diffeomorphism X = (f,£%):
SN = XPO,N+Nf
ON; = XM9,N;+ N;9,€ + g;; ::;:J

irsa: 09110065
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Anisotropic Weyl Rescalings

e Foliated manifold and a metric with an ADM-type decomposition
e Anisotropic Weyl transformations with critical exponent z:

N—Q°N N, —QN, g, — Q% (12)

i L

e (Close with foliation-preserving diffeomorphisms: for (2 = 1 + w infinitesimal,

[6x,0.] = dx (o (13)
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Anisotropic Weyl Rescalings

e Foliated manifold and a metric with an ADM-type decomposition
e Anisotropic Weyl transformations with critical exponent z:

N — Q*N N. — 2N, g:;; — g, (12)

1

e Close with foliation-preserving diffeomorphisms: for (2 = 1 + w infinitesimal,

[0x 5 0] = Ox () (13)
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Defining an Anisotropic Conformal Infinity

e We now have a natural definition if the theory is already foliated...
e ... but we want to apply this to geometries in general relativity (e.g,

from AdS/CFT), where diffeomorphisms do not close on anisotropic Weyl
transformations.
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Anisotropic Infinity of Lifshitz Space
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Anisotropic Infinity of Lifshitz Space

e Lifshitz space metric in ADM decomposition:

e Critical exponent: z = 2
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Anisotropic Infinity of Lifshitz Space

e Lifshitz space metric in ADM decomposition:

i 1 . d;;
N = ) +\'r =0 9i; — & (14)
P p-
e Critical exponent: z = 2
e With 2 = p the rescaled metric is
Is ——dr? +d&> +dp?, (15)

e and the induced boundary metric is now nice:

dsg = —dr* + dz". (16)
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Other Consistent Weyl Scalings
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Other Consistent Weyl Scalings
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Other Consistent Weyl Scalings

e Unsatisfactory results in other situations (e.g., Warped AdS and Schrodinger
spacetimes)

e We have learned the following lesson: modifying Weyl transformations requires
altering the diffeomorphism group.
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Other Consistent Weyl Scalings

e Unsatisfactory results in other situations (e.g.,, Warped AdS and Schrodinger
spacetimes)

e We have learned the following lesson: modifying Weyl transformations requires
altering the diffeomorphism group.

e Take this a step further: modify the action of diffeomorphisms on metric
components. Consider a 2-dimensional foliated spacetime with coordinates

(7,z) and let the transformation under diffeomorphisms under an FPD X =

f(t)0; + h(7,x)0, be
0gss = X (get) + 2he £ (1) 0giz = X(gez) + hez(f(t) + R'(t, 7)) (17)

0Grr = X(gzz) + 2g.-h'(t, T) (18)

irsa: 09110065 Page 41/78




Other Consistent Weyl Scalings

e [These rules can be obtained from a non-relativistic limit analogous to (but
distinct from) the original presentation of foliation-preserving diffeomorphisms.
They also come naturally from the geometry.]
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Other Consistent Weyl Scalings

e [These rules can be obtained from a non-relativistic limit analogous to (but
distinct from) the original presentation of foliation-preserving diffeomorphisms.
They also come naturally from the geometry.]

e Postulate the anisotropic scalings

et — Qgg” Gtz — ng: Gzxr — Yz=x (19)

e Rescalings close with the transformation rules given in the previous slide.
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Example: Warped AdS Space

)
: : dr=
ds® = — | re + l}du'1 -

4p° =
- (rdu + dv)~

re 41

e Asymptotic isometries:

(Fi,u:+t7(i_1))i)u+ (G{ur-l—@(l
L
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Example: Warped AdS Space

) D,
dr- 4

ds® = —(r’ + 1)du’® + — — —(rdu + dv)” (20)

ri+1 243

e Asymptotic isometries:

re r

(F{ul —|—O(é)) 0, + (G{u'r-l—(’] (l)) 8, — (rF'(u)+0O(1)) 8, (21)

e Allowed diffeomorphisms are asymptotically foliation-preserving
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Example: Warped AdS Space

e Diffeomorphism symmetries consistent with anisotropic conformal weights:

Guul =2 [Gue] =1  [gu] =0 (22)

e Using these weights one finds the metric at anisotropic infinity to be

)

— ;i-

— =
dsgy = —du” +

(du + dv)* (23)

v2 + 3
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Schrodinger Space

e We can also consider the slightly more complicated space

2 _ _dt"  2dtdf+ dz* + du’

s = 1 - (24)
u u=
e (Proposed dual geometry to e.g. fermions at unitarity.)
e We assign the scalings from warped AdS to t and # and the scaling g;; — --Egu.

obtaining the metric at anisotropic conformal infinity:

—

s% = —dt~ + 2dt df + dF".
ds%, it? + 2dt df + d7> (25)
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Schrodinger Space

W
e We can also consider the slightly more complicated space
=t _df | 2dtdf + di‘-" + du? (2)
u us
e (Proposed dual geometry to e.g. fermions at unitarity.)
e We assign the scalings from warped AdS to t and # and the scaling g;; — -.Eyu.

obtaining the metric at anisotropic conformal infinity:

—

ds?, = —dt* + 2dt df + d7°. (25)
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Near-Horizon Extreme Kerr

e Metric in the near-horizon limit:

oy 0 ) dt 0
= + df” + A°(9)(do™ + —}*) (26)
3 Y

by ] ) _dtl B _1" .
ds? = 2GI0%(9) ( e

e Proposed to be described by some CFT dual

e Supported by Einstein-Hilbert action
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Near-Horizon Extreme Kerr

e Metric in the near-horizon limit:

» ) oy df )
= +df” + A~ (0)(do” + —}*) (26)
u Yy

) > _dtl E d 2
ds? — 2G.J02(6) ( =

e Proposed to be described by some CFT dual

e Supported by Einstein-Hilbert action

e Clearly an example of an asymptotically anisotropic spacetime: [gss] = 0,
making ¢ an ultralocal dimension
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Near-Horizon Extreme Kerr

e Metric in the near-horizon limit:

= o —dt* + du? . 5, _ T
ds” = 2GJQ(9) ( . — +de®+ A°(0)(do~ + —}“) (26)
. u= Y
e Proposed to be described by some CFT dual
e Supported by Einstein-Hilbert action
e Clearly an example of an asymptotically anisotropic spacetime: [gss] = 0,

making ¢ an ultralocal dimension

e Still need to make sense of the boundary geometry — 2D CFT77
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Anisotropic Conformal Equivalence

e New concept of conformal transformation — new concept of anisotropic
conformal equivalence classes of metrics

e Anisotropic conformal equivalence: two metrics are equivalent if related by an
anisotropic Weyl transformation

e Anisotropic conformal mapping: a foliation-preserving diffeomorphism that
preserves the anisotropic conformal equivalence class
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Near-Horizon Extreme Kerr

e Metric in the near-horizon limit:

0y ) —dtl N d 2 ' Iy oy dt )
ds® = 2GJ0%(8) ( 1+ d6? + A%(0)(de? + —}-) (26)
. u- 4

e Proposed to be described by some CFT dual
e Supported by Einstein-Hilbert action

e Clearly an example of an asymptotically anisotropic spacetime: [gss] = 0,
making ¢ an ultralocal dimension

e Still need to make sense of the boundary geometry — 2D CFT7?
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Anisotropic Conformal Equivalence

e New concept of conformal transformation — new concept of anisotropic
conformal equivalence classes of metrics

e Anisotropic conformal equivalence: two metrics are equivalent if related by an
anisotropic Weyl transformation

e Anisotropic conformal mapping: a foliation-preserving diffeomorphism that
preserves the anisotropic conformal equivalence class
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Anisotropic Conformal Equivalence

New concept of conformal transformation — new concept of anisotropic
conformal equivalence classes of metrics

Anisotropic conformal equivalence: two metrics are equivalent if related by an
anisotropic Weyl transformation

Anisotropic conformal mapping: a foliation-preserving diffeomorphism that
preserves the anisotropic conformal equivalence class
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Generalized Warped AdS Space

e Now we generalize warped AdS to spacetimes of the following form:

Guu = J-'_-'uL.r.-]'"2 —*—O{r) Guv = TuuT + O(1) Gvv = Yov

Gur = Olir_l} Gur — O{r_l]' Grr = — + ON r'_'i]

where v, = O(1) as r — oc

e Phase space is preserved by all diffeomorphisms of the form

(27)

(28)

1 1
(F{'u} + O (—;)) d. + (G{ u.v)+ QO (—)) 0, — (rH(u) +O(1)) 0, (29)
r? r

irsa: 09110065
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Warped AdS Space: Boundary Geometry

e Boundary “metric’ is then 7,
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Warped AdS Space: Boundary Geometry

e Boundary “metric” is then v,

e Using the leading-order terms and the vector fields above, we find that the
induced behavior on the boundary metric is:

JA'L[I'J. — -Y(n-'uu] _+_ 2ﬂ:"l'.-lLnté_)u‘F'{‘;""‘“:| (30)
Cp‘.’ut = -Y{h'ut'} + q.'ur_'{ UuF{ U‘,} + U?G{ u, "—T}} (31)
ow = X(Vouv) + 2Vwe0.G(u,v). (32)

as we saw previously.

e Look for boundary metrics with diffeomorphisms that are anisotropic conformal
mappings...
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Warped AdS Space and Anisotropic Conformal Maps

e Simplest case: V., Vuw, Yoo constant (= warped AdS)

e We need a vector field X and an anisotropic rescaling 1 + w satisfying

- e [ a2 )
_ - —= - —_ g
[1"\ (v — f}*. fpr — < Ll 71 %
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Warped AdS Space and Anisotropic Conformal Maps

e Simplest case: V.., Vuv, You constant (= warped AdS)

e We need a vector field X and an anisotropic rescaling 1 + w satisfying

(per),

v (33)

"5.\'*'1..1;-* —— J;",u:x =
e Solution to this problem:

X =F(u)d, + G(u)d, w = F'(u). (34)

e Just as in AdS space, the solution to this geometric problem (finding the maps
that preserve the boundary metric up to conformal rescaling) are precisely the
maps induced on the boundary by the asymptotic isometries.
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Conformal Boundary of Warped AdS Black Holes
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Conformal Boundary of Warped AdS Black Holes

e Warped AdS supports black holes:

15> - ~ ~
— 3 [3[1}‘) —1r+ 2 +3)(ro+r) — w\/rir_(v2+3) de?

= ]

-

drdf + dr2 +

] dr?

- [‘]pr — V”r*r_{wj + 3) } (35)

(2 + 3)(r —re Jir—r_

e Like BTZ black holes, warped AdS black holes are quotients of warped AdS, so

they are locally isometric to it
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Conformal Boundary of Warped AdS Black Holes

e Local isometry from black hole space to global warped AdS:

- = arr;:ta,n( NEYS Erae © }:‘inh [“j = : }H}) (36)

2r —r, —7r_ 1
= p2+3(27'+ [y(r_fr_}—v"r,r_{vj#—:})? 6') (37)

1y ' J

2r —r. —r_ 2+ 3)(ry —r_)
_arccrjth( L SR [“ )¢ eD (38)
ry —r_ 4

2/ (r—ri)(r—r_ 2+ 3)(ry —r_

N (r—ry)(r—r }(‘n:-;h{“ )(ry —T }’9] (39)
ry — 7 1
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Conformal Boundary of Warped AdS Black Holes

e These are not foliation-preserving

e However, they are asymptotically foliation-preserving:

(2 +3)(ry —r_
u ~ arctansinh [ E = H; : ]H} (40)
U~ s (2:" + [U(r_ +r_)—V (W2 + 3Jr+r_] H) (41)
v
Y 24 Ny, —
p ~ '—rcosh [{U Ll r_']{?} (42)
e 1

e Therefore they should induce anisotropic conformal maps between the boundaries
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Conformal Boundary of Warped AdS Black Holes

e Local isometry from black hole space to global warped AdS:

—— arr:tan( V -{}r‘ e —r }5i11h [{b’ +3)(r r }H}) (36)
A g 1

v = =5 A ('ET + [y(r_ +r_) —rer_ (12 +23}? 6) (37)
1y ' ' ' J

2r—ry—r_ 2 +3)(ro—r_)
_arccmth( == [“ ¥ ’eD (38)
Ee— 4

2/ (r—r)(r—r_ 2 +3)(ry —r_

P ke ¢ 11u:m-_:h {“ R = }9] (39)

ry —7— 4
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Conformal Boundary of Warped AdS Black Holes

e These are not foliation-preserving

e However, they are asymptotically foliation-preserving:

u

2+ 3Nry —r
arctan sinh [{y s HI : )H} (40)
p‘j _3 f =
) r, . === /(142 == = :

= (_. — [I(F_—FI_} Vv (v 3]r+r_J 6’) (41)

9 24 Nr., —

=2 cosh [{U P ]9:{ (42)
r. —r_ 4

e Therefore they should induce anisotropic conformal maps between the boundaries
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Conformal Boundary of Warped AdS Black Holes

e | he induced conformal class of metrics is

"y i Yy :j‘ "Fj — ]_ g .
ds2, = 2 ( &2 + 2wdtde + 2 — 1) g2 (43)
o 1

e Using the rescaled coordinates

Qut 2
T — 9 - D 4—4-
f;j +3 L-"j +3 ( )
one obtains
o A‘J . ) —11-*': ) 9
ds2, — —2do” + (2dT + *dB)* 45
. 4wf+3}( ; = I sellide ) (%)
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Conformal Boundary of Warped AdS Black Holes

e Finally one can perform an anisotropic rescaling with Q% = f;l'r to obtain the
vacuum boundary metric

P P i
v+ 3 \pv-+.

— "‘3 _; jﬂ # =
f'f.'-?-ﬂ = ( )E - (dr + df )~ — tfb}”) : (¢6)
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Summary

Both Horava-Lifshitz gravity and standard general relativity require more general
concept of infinity; structures arising in HL gravity provide a natural solution to
this problem

General relativity: need to pay attention to the group of symmetries (vs.
diffeomorphisms)

Provides consistent geometric framework in which interesting gravity solutions
(Warped AdS;3, Schrodinger space, etc.) can be given sensible geometric
boundaries — holographic renormalization, stress tensor, etc.

Framework for evaluating partition function of anisotropic gravity models/gravity

on anisotropic backgrounds and may give additional information about
holography
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Partition Function of an Anisotropic Gravity Model?

e Additional gauge symmetry kills scalar degree of freedom, leaving no propagating
modes

e Classical solutions are all locally isomorphic (c.f. black holes in AdS;)

e Usual prescription: sum over contributions of all classical geometries with a
given conformal infinity

e For HL theories: sum of contributions from all classical geometries with a given
anisotropic conformal infinity

e Holography? Geometric structure of boundary theory?

e Similar questions arise in TMG on warped AdS; backgrounds.
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Summary

Both Hofava-Lifshitz gravity and standard general relativity require more general
concept of infinity; structures arising in HL gravity provide a natural solution to
this problem

General relativity: need to pay attention to the group of symmetries (vs.
diffeomorphisms)

Provides consistent geometric framework in which interesting gravity solutions
(Warped AdS3, Schrodinger space, etc.) can be given sensible geometric
boundaries — holographic renormalization, stress tensor, etc.

Framework for evaluating partition function of anisotropic gravity models/gravity

on anisotropic backgrounds and may give additional information about
holography
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Summary
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Summary

Both Horava-Lifshitz gravity and standard general relativity require more general
concept of infinity; structures arising in HL gravity provide a natural solution to
this problem

General relativity: need to pay attention to the group of symmetries (vs.
diffeomorphisms)

Provides consistent geometric framework in which interesting gravity solutions
(Warped AdS3, Schrodinger space, etc.) can be given sensible geometric
boundaries — holographic renormalization, stress tensor, etc.

Framework for evaluating partition function of anisotropic gravity models/gravity

on anisotropic backgrounds and may give additional information about
holography
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