Title: Spin Systems and Emergent Gauge Fields at Lifshitz points

Date: Nov 10, 2009 09:30 AM

URL: http://pirsa.org/09110062

Abstract:

Spins and Emergent Gauge Fields at Lifshitz points

Sumit R. Das

S.R. Das and G. Murthy, 0906.3261 (PRD)

S.R. Das and G. Murthy, 0909.3064

Pirsa: 09110062 Page 2/100

This talk is not about Horava-Lifshitz gravity.

Pirsa: 09110062 Page 3/100

- This talk is not about Horava-Lifshitz gravity.
- It is not even about gravity.

Pirsa: 09110062 Page 4/100

- This talk is not about Horava-Lifshitz gravity.
- It is not even about gravity.
- It is about an example of emergent gauge fields and its dynamics in situations where the UV theory is not Lorentz invariant.

Pirsa: 09110062 Page 5/100

- This talk is not about Horava-Lifshitz gravity.
- It is not even about gravity.
- It is about an example of emergent gauge fields and its dynamics in situations where the UV theory is not Lorentz invariant.
- The motivation is to find possible applications in condensed matter systems.

Pirsa: 09110062 Page 6/100

- This talk is not about Horava-Lifshitz gravity.
- It is not even about gravity.
- It is about an example of emergent gauge fields and its dynamics in situations where the UV theory is not Lorentz invariant.
- The motivation is to find possible applications in condensed matter systems.
- However, there could be some lessons which may have implications to low-energy behavior of other Lifshitz theories, including gravity.

Pirsa: 09110062 Page 7/100

Background: CP^{N-1} models

• There is an interesting way to rewrite the O(3) sigma model fields \vec{n} as

$$\vec{n} = \phi^{\dagger} \vec{\sigma} \phi$$

- ϕ is a 2-component complex vector SPINON
- The constraint $\ \vec{n}\cdot\vec{n}=1$ then becomes the constraint $\phi^\dagger\phi=1$
- However, this is a redundant description so there is a compact U(1) gauge symmetry

$$\phi(x) \sim e^{i\theta(x)} \phi(x)$$

- Then the number of degrees of freedom work out right.
- This is the CP¹ model.

• If we have a N component complex vector ϕ with the conditions

$$\phi^{\dagger}\phi = 1$$
 $\phi(x) \sim e^{i\theta(x)} \phi(x)$

we have a CP^{N-1} model.

For the original O(3) sigma model, the lagrangian becomes

$$\frac{1}{2}(\partial \vec{n})^2 = \frac{1}{2}[\partial_\mu \phi^\dagger \partial^\mu \phi - j_\mu j^\mu]$$

$$j_{\mu} = \frac{1}{2i} [\phi^{\dagger} \partial_{\mu} \phi - (\partial_{\mu} \phi^{\dagger}) \phi]$$

If we have a N component complex vector φ with the conditions

$$\phi^{\dagger}\phi = 1$$
 $\phi(x) \sim e^{i\theta(x)} \phi(x)$

we have a CP^{N-1} model.

For the original O(3) sigma model, the lagrangian becomes

$$\frac{1}{2}(\partial \vec{n})^2 = \frac{1}{2}[\partial_\mu \phi^\dagger \partial^\mu \phi - j_\mu j^\mu]$$

$$j_{\mu} = \frac{1}{2i} [\phi^{\dagger} \partial_{\mu} \phi - (\partial_{\mu} \phi^{\dagger}) \phi]$$

This model of course has gauge symmetry – but as yet no gauge field. We can introduce a gauge field and rewrite this

$$L = \frac{1}{2}(D_{\mu}\phi^{\dagger})(D^{\mu}\phi)$$
 , $D_{\mu} = \partial_{\mu} + iA_{\mu}$

Integrating out A_{μ} leads to the above lagrangian.

- The same lagrangian defines the usual CP^{N-1} model when the vector ϕ is N component.
- It is useful to absorb the overall coupling constant f into the field and impose the constraint

$$\phi^{\dagger}\phi = \frac{1}{f^2}$$

by a Lagrange multiplier field χ

$$L = \frac{1}{2} (D_{\mu} \phi^{\dagger}) (D^{\mu} \phi) + \chi (\phi^{\dagger} \phi - \frac{1}{f^2})$$

- We have introduced redundant degrees of freedom to describe the system – and therefore a gauge field – which has no dynamics.
- What is the use of all this?

Emergent Gauge Dynamics

- In the 1980's this model in euclidean d=2 was popular among particle theorists as a model of dynamical mass generation.
- Like other nonlinear sigma models in d = 2 the coupling f is asymptotically free.
- As a result it flows to strong coupling in the IR and the Lagrange multiplier field χ acquires a nonzero expectation value. This means that the spinon acquires a dynamically generated mass,

$$m_{\phi} = <\chi> \sim \Lambda e^{-1/f^2N}$$

• Here Λ is a UV cutoff. The beta function is therefore

$$\beta(f) \sim -f^3 N$$

Pirsa: 09110062 Page 12/100

- The same lagrangian defines the usual CP^{N-1} model when the vector ϕ is N component.
- It is useful to absorb the overall coupling constant f into the field and impose the constraint

$$\phi^{\dagger}\phi = \frac{1}{f^2}$$

by a Lagrange multiplier field χ

$$L = \frac{1}{2} (D_{\mu} \phi^{\dagger}) (D^{\mu} \phi) + \chi (\phi^{\dagger} \phi - \frac{1}{f^2})$$

- We have introduced redundant degrees of freedom to describe the system – and therefore a gauge field – which has no dynamics.
- What is the use of all this?

Emergent Gauge Dynamics

- In the 1980's this model in euclidean d = 2 was popular among particle theorists as a model of dynamical mass generation.
- Like other nonlinear sigma models in d = 2 the coupling f is asymptotically free.
- As a result it flows to strong coupling in the IR and the Lagrange multiplier field χ acquires a nonzero expectation value. This means that the spinon acquires a dynamically generated mass,

$$m_{\phi} = <\chi> \sim \Lambda e^{-1/f^2N}$$

• Here Λ is a UV cutoff. The beta function is therefore

$$\beta(f) \sim -f^3 N$$

Pirsa: 09110062 Page 14/100

 This makes the gauge field dynamical. In fact the one loop diagram

leads to the effective action for the gauge field

$$\frac{1}{m_{\phi}^2} F_{\mu\nu} F^{\mu\nu}$$

- In terms of the spin model, there was no gauge theory at all
- Introduction of redundant variables leads to a gauge invariance, but the gauge field has no dynamics at the classical level
- Quantum effects induce this dynamics.
- All these results can be seen explicitly in the 't Hooft large N expansion

$$f \to 0$$
 $N \to \infty$ $f^2 N = \lambda = \text{finite}$

- However in d=2 gauge fields are rather boring.
- There are no photons.
- The potential between charges is always confining.
- In a sense one does not gain very much by introducing this redundancy.

Pirsa: 09110062 Page 16/100

- In d=3 this model is of interest in condensed matter systems and the situation becomes interesting.
- Now there is a phase transition between ordered and disordered phases – there is a IR unstable non-trivial fixed point.

• The ordered phase $\lambda_0 < \lambda_{0c}$ is gapless, while the disordered phase $\lambda_0 > \lambda_{0c}$ has a gap.

$$<\sqrt{\chi}>\sim \Lambda\left(\frac{1}{\lambda_{0c}}-\frac{1}{\lambda_0}\right)$$

- Thus $<\chi>\neq 0$ only for $\lambda_0>\lambda_{0c}$
- The beta function reflects this

$$\beta(\lambda_0) \sim -\lambda_0(\lambda_0 - \lambda_{0c})$$

Pirsa: 09110062 Page 17/100

• In d=3 there is a photon — with a single polarization.

Pirsa: 09110062 Page 18/100

- In d=3 there is a photon with a single polarization.
- However, as Polyakov showed 30 years ago, a compact U(1) gauge theory confines due to proliferation of monopole instantons and gives rise to a mass gap. Charged particles have a linear confining potential between them.

Pirsa: 09110062 Page 19/100

- In d=3 there is a photon with a single polarization.
- However, as Polyakov showed 30 years ago, a compact U(1) gauge theory confines due to proliferation of monopole instantons and gives rise to a mass gap. Charged particles have a linear confining potential between them.
- This means that normally there is no excitation corresponding to a massless photon in the original spin model.

Pirsa: 09110062 Page 20/100

- In d=3 there is a photon with a single polarization.
- However, as Polyakov showed 30 years ago, a compact U(1) gauge theory confines due to proliferation of monopole instantons and gives rise to a mass gap. Charged particles have a linear confining potential between them.
- This means that normally there is no excitation corresponding to a massless photon in the original spin model.
- There are, however, several situations where such monopoles are suppressed. The gauge theory – which is effectively noncompact – does not confine.

Pirsa: 09110062 Page 21/100

- In d=3 there is a photon with a single polarization.
- However, as Polyakov showed 30 years ago, a compact U(1) gauge theory confines due to proliferation of monopole instantons and gives rise to a mass gap. Charged particles have a linear confining potential between them.
- This means that normally there is no excitation corresponding to a massless photon in the original spin model.
- There are, however, several situations where such monopoles are suppressed. The gauge theory – which is effectively noncompact – does not confine.
- In these situations, a gapless photon mode remains something which would have been rather difficult to discover in the original spin language. Most dramatic – deconfined criticality (Balents, Fisher, Sachdev, Senthil & Viswanath) with emergent photon.

Pirsa: 09110062 Page 22/100

- In this talk I will describe another situation where a gapless photon remains..
- This is a multi-critical point of CP^{N-1} model tuned at a Lifshitz fixed point.

Pirsa: 09110062 Page 23/100

- In this talk I will describe another situation where a gapless photon remains..
- This is a multi-critical point of CP^{N-1} model tuned at a Lifshitz fixed point.

S.R. Das and G. Murthy, 0906.3261 (PRD)

S.R. Das and G. Murthy, 0909.3064

Lifshitz CP^{N-1} models

The general model is defined by

$$S_L = \frac{1}{2} \int dt \int d^dx \left[(D_0 \vec{\phi})^* (D^0 \vec{\phi}) + \alpha (D_i \vec{\phi})^* (D^i \vec{\phi}) + |\mathcal{D}^z \vec{\phi}|^2 \right]$$

• With the usual constraint $\phi^\dagger\phi=rac{1}{f^2}$ \mathcal{D}^z is O(d) invariant and contains z derivatives. For z=2

$$|\mathcal{D}^z \phi|^2 \equiv a \left(D_i D_j \vec{\phi} \right)^* \cdot \left(D_i D_j \vec{\phi} \right) + b \left(D^2 \vec{\phi} \right)^* \cdot \left(D^2 \vec{\phi} \right)$$

Lifshitz CP^{N-1} models

The general model is defined by

$$S_L = \frac{1}{2} \int dt \int d^dx \left[(D_0 \vec{\phi})^* (D^0 \vec{\phi}) + \alpha (D_i \vec{\phi})^* (D^i \vec{\phi}) + |\mathcal{D}^z \vec{\phi}|^2 \right]$$

• With the usual constraint $\phi^\dagger\phi=rac{1}{f^2}$ \mathcal{D}^z is O(d) invariant and contains z derivatives. For z=2

$$|\mathcal{D}^z \phi|^2 \equiv a \left(D_i D_j \vec{\phi} \right)^* \cdot \left(D_i D_j \vec{\phi} \right) + b \left(D^2 \vec{\phi} \right)^* \cdot \left(D^2 \vec{\phi} \right)$$

The point $\,\alpha=0$ has Lifshitz scaling with dynamical critical exponent z, under which $t\to \gamma^z t$ $x\to \gamma t$

$$[\vec{\phi}] \sim [L]^{\frac{z-d}{2}} \qquad [f] \sim [L]^{\frac{d-z}{2}}$$

- The coupling is now asymptotically free for all $\,d=z\,$
- This may be seen in the large-N expansion as follows. First introduce a lagrange multiplier field as usual

$$\frac{\mathcal{L}}{2} = (D_0 \vec{\phi})^2 + \alpha (D_i \vec{\phi})^2 + (\mathcal{D}^z \vec{\phi})^2 + \chi (\vec{\phi}^\dagger \cdot \vec{\phi} - \frac{1}{f^2})$$

• Then integrate out the field $\vec{\phi}$ to get

$$S_{eff} = \text{Tr} \log \left[-D_0^2 - \alpha D_i^2 + (-1)^z (\mathcal{D}^z)^2 + \chi \right] + \frac{1}{2f^2} \int dt d^d x \ \chi$$

• To leading order in large-N, the functional integral over χ and A_μ is dominated by a saddle point with vanishing gauge field and a constant $\chi(t,x)=\chi_0$. The saddle point equation is

$$2N \int \frac{d\omega d^2k}{(2\pi)^3} \frac{1}{\omega^2 + \alpha \vec{k}^2 + \vec{k}^{2z} + \chi_0} = \frac{1}{f^2}$$

Pirsa: 09110062 Page 27/100

• At a Lifshitz line, $\alpha = 0$ the solution is

$$m^2 = \chi_0 = \Lambda^{2z} \exp[-\frac{A}{f^2 N}]$$

· This immediately shows asymptotic freedom

$$\Lambda \frac{df}{d\Lambda} = -\frac{f^3 N}{A}$$

 The leading 1/N correction is obtained by expanding around this saddle point solution

$$\chi(t,x) = \chi_0 + \frac{1}{\sqrt{N}}\delta\chi$$
 $A_{\mu}(t,x) \to \frac{1}{\sqrt{N}}A_{\mu}(t,x)$

• We now evaluate the effective action for the gauge field explicitly for z=d=2.

The Gauge Field Action

We need to evaluate a determinant,

$$\operatorname{tr} \log[-D_0^2 + (\mathcal{D}^2)^2 + m^2]$$

Using de-Witt-Schwinger representation

$$S_{eff} = -N \int_0^\infty \frac{ds}{s} e^{-m^2 s} \text{tr} e^{-sH}$$

$$H = -D_0^2 + (a+b)(D^2)^2 + aB^2 - ia\epsilon^{ij}(\partial_i B)D_j$$

• Where $B = \epsilon^{ij} F_{ij}$

Pirsa: 09110062 Page 29/100

The Gauge Field Action

We need to evaluate a determinant,

$$\operatorname{tr} \log[-D_0^2 + (\mathcal{D}^2)^2 + m^2]$$

Using de-Witt-Schwinger representation

$$S_{eff} = -N \int_0^\infty \frac{ds}{s} e^{-m^2 s} \text{tr} e^{-sH}$$

$$H = -D_0^2 + (a+b)(D^2)^2 + aB^2 - ia\epsilon^{ij}(\partial_i B)D_j$$

- Where $B = \epsilon^{ij} F_{ij}$
- This is evaluated by known techniques. The lowest terms in a power series expansion of the field strength yields the effective lagrangian

$$\mathcal{L} = \frac{a+b}{12m} [F_{0i}^2 + \frac{1}{10} (\partial_i B)^2] + \frac{a}{4} \log(\kappa/m) B^2 + \cdots$$

- The coupling is now asymptotically free for all $\,d=z\,$
- This may be seen in the large-N expansion as follows. First introduce a lagrange multiplier field as usual

$$\frac{\mathcal{L}}{2} = (D_0 \vec{\phi})^2 + \alpha (D_i \vec{\phi})^2 + (\mathcal{D}^z \vec{\phi})^2 + \chi (\vec{\phi}^\dagger \cdot \vec{\phi} - \frac{1}{f^2})$$

• Then integrate out the field $\vec{\phi}$ to get

$$S_{eff} = \text{Tr} \log \left[-D_0^2 - \alpha D_i^2 + (-1)^z (\mathcal{D}^z)^2 + \chi \right] + \frac{1}{2f^2} \int dt d^d x \ \chi$$

• To leading order in large-N, the functional integral over χ and A_{μ} is dominated by a saddle point with vanishing gauge field and a constant $\chi(t,x)=\chi_0$. The saddle point equation is

$$2N \int \frac{d\omega d^2k}{(2\pi)^3} \frac{1}{\omega^2 + \alpha \vec{k}^2 + \vec{k}^{2z} + \chi_0} = \frac{1}{f^2}$$

The Gauge Field Action

We need to evaluate a determinant,

$$\operatorname{tr} \log[-D_0^2 + (\mathcal{D}^2)^2 + m^2]$$

Using de-Witt-Schwinger representation

$$S_{eff} = -N \int_0^\infty \frac{ds}{s} e^{-m^2 s} \operatorname{tr} e^{-sH}$$

$$H = -D_0^2 + (a+b)(D^2)^2 + aB^2 - ia\epsilon^{ij}(\partial_i B)D_j$$

• Where $B = \epsilon^{ij} F_{ij}$

Pirsa: 09110062 Page 32/100

Heat Kernel Calculation

Basic technique: represent the trace as

$$\operatorname{Tr} e^{-s\mathcal{O}} = \int dt d^2x \int \frac{d\omega d^2k}{(2\pi)^3} e^{-i(\omega t + k \cdot x)} e^{-s\mathcal{O}} e^{i(\omega t + k \cdot x)}$$

Then use

$$e^{-i(\omega t + k \cdot x)} D_{\mu} e^{i(\omega t + k \cdot x)} = ik_{\mu} + D_{\mu}$$

repeatedly and expand in powers of the field strength.

The Gauge Field Action

We need to evaluate a determinant,

$$\operatorname{tr} \log[-D_0^2 + (\mathcal{D}^2)^2 + m^2]$$

Using de-Witt-Schwinger representation

$$S_{eff} = -N \int_0^\infty \frac{ds}{s} e^{-m^2 s} \text{tr} e^{-sH}$$

$$H = -D_0^2 + (a+b)(D^2)^2 + aB^2 - ia\epsilon^{ij}(\partial_i B)D_i$$

- Where $B = \epsilon^{ij} F_{ij}$
- This is evaluated by known techniques. The lowest terms in a power series expansion of the field strength yields the effective lagrangian

$$\mathcal{L} = \frac{a+b}{12m} [F_{0i}^2 + \frac{1}{10} (\partial_i B)^2] + \frac{a}{4} \log(\kappa/m) B^2 + \cdots$$

- The coupling is now asymptotically free for all d=z
- This may be seen in the large-N expansion as follows. First introduce a lagrange multiplier field as usual

$$\frac{\mathcal{L}}{2} = (D_0 \vec{\phi})^2 + \alpha (D_i \vec{\phi})^2 + (\mathcal{D}^z \vec{\phi})^2 + \chi (\vec{\phi}^\dagger \cdot \vec{\phi} - \frac{1}{f^2})$$

• Then integrate out the field $\vec{\phi}$ to get

$$S_{eff} = \text{Tr} \log \left[-D_0^2 - \alpha D_i^2 + (-1)^z (\mathcal{D}^z)^2 + \chi \right] + \frac{1}{2f^2} \int dt d^d x \ \chi$$

• To leading order in large-N, the functional integral over χ and A_μ is dominated by a saddle point with vanishing gauge field and a constant $\chi(t,x)=\chi_0$. The saddle point equation is

$$2N \int \frac{d\omega d^2k}{(2\pi)^3} \frac{1}{\omega^2 + \alpha \vec{k}^2 + \vec{k}^{2z} + \chi_0} = \frac{1}{f^2}$$

Lifshitz CP^{N-1} models

The general model is defined by

$$S_L = \frac{1}{2} \int dt \int d^dx \left[(D_0 \vec{\phi})^* (D^0 \vec{\phi}) + \alpha (D_i \vec{\phi})^* (D^i \vec{\phi}) + |\mathcal{D}^z \vec{\phi}|^2 \right]$$

• With the usual constraint $\phi^\dagger\phi=rac{1}{f^2}$ \mathcal{D}^z is O(d) invariant and contains z derivatives. For z=2

$$|\mathcal{D}^z \phi|^2 \equiv a \left(D_i D_j \vec{\phi} \right)^* \cdot \left(D_i D_j \vec{\phi} \right) + b \left(D^2 \vec{\phi} \right)^* \cdot \left(D^2 \vec{\phi} \right)$$

The point $\,\alpha=0$ has Lifshitz scaling with dynamical critical exponent z, under which $t\to \gamma^z t$ $x\to \gamma t$

$$[\vec{\phi}] \sim [L]^{\frac{z-d}{2}} \qquad [f] \sim [L]^{\frac{d-z}{2}}$$

- The coupling is now asymptotically free for all $\,d=z\,$
- This may be seen in the large-N expansion as follows. First introduce a lagrange multiplier field as usual

$$\frac{\mathcal{L}}{2} = (D_0 \vec{\phi})^2 + \alpha (D_i \vec{\phi})^2 + (\mathcal{D}^z \vec{\phi})^2 + \chi (\vec{\phi}^\dagger \cdot \vec{\phi} - \frac{1}{f^2})$$

• Then integrate out the field $\vec{\phi}$ to get

$$S_{eff} = \text{Tr} \log \left[-D_0^2 - \alpha D_i^2 + (-1)^z (\mathcal{D}^z)^2 + \chi \right] + \frac{1}{2f^2} \int dt d^d x \ \chi$$

• To leading order in large-N, the functional integral over χ and A_μ is dominated by a saddle point with vanishing gauge field and a constant $\chi(t,x)=\chi_0$. The saddle point equation is

$$2N \int \frac{d\omega d^2k}{(2\pi)^3} \frac{1}{\omega^2 + \alpha \vec{k}^2 + \vec{k}^{2z} + \chi_0} = \frac{1}{f^2}$$

Pirsa: 09110062 Page 37/100

Lifshitz CP^{N-1} models

The general model is defined by

$$S_L = \frac{1}{2} \int dt \int d^dx \left[(D_0 \vec{\phi})^* (D^0 \vec{\phi}) + \alpha (D_i \vec{\phi})^* (D^i \vec{\phi}) + |\mathcal{D}^z \vec{\phi}|^2 \right]$$

• With the usual constraint $\phi^\dagger\phi=rac{1}{f^2}$ \mathcal{D}^z is O(d) invariant and contains z derivatives. For z=2

$$|\mathcal{D}^z \phi|^2 \equiv a \left(D_i D_j \vec{\phi} \right)^* \cdot \left(D_i D_j \vec{\phi} \right) + b \left(D^2 \vec{\phi} \right)^* \cdot \left(D^2 \vec{\phi} \right)$$

The point $\,\alpha=0$ has Lifshitz scaling with dynamical critical exponent z, under which $t\to \gamma^z t$ $x\to \gamma t$

$$[\vec{\phi}] \sim [L]^{\frac{z-d}{2}} \qquad [f] \sim [L]^{\frac{d-z}{2}}$$

- The coupling is now asymptotically free for all $\,d=z\,$
- This may be seen in the large-N expansion as follows. First introduce a lagrange multiplier field as usual

$$\frac{\mathcal{L}}{2} = (D_0 \vec{\phi})^2 + \alpha (D_i \vec{\phi})^2 + (\mathcal{D}^z \vec{\phi})^2 + \chi (\vec{\phi}^\dagger \cdot \vec{\phi} - \frac{1}{f^2})$$

• Then integrate out the field $\vec{\phi}$ to get

$$S_{eff} = \text{Tr} \log \left[-D_0^2 - \alpha D_i^2 + (-1)^z (\mathcal{D}^z)^2 + \chi \right] + \frac{1}{2f^2} \int dt d^d x \ \chi$$

• To leading order in large-N, the functional integral over χ and A_μ is dominated by a saddle point with vanishing gauge field and a constant $\chi(t,x)=\chi_0$. The saddle point equation is

$$2N \int \frac{d\omega d^2k}{(2\pi)^3} \frac{1}{\omega^2 + \alpha \vec{k}^2 + \vec{k}^{2z} + \chi_0} = \frac{1}{f^2}$$

The Gauge Field Action

We need to evaluate a determinant,

$$\operatorname{tr} \log[-D_0^2 + (\mathcal{D}^2)^2 + m^2]$$

Using de-Witt-Schwinger representation

$$S_{eff} = -N \int_0^\infty \frac{ds}{s} e^{-m^2 s} \operatorname{tr} e^{-sH}$$

$$H = -D_0^2 + (a+b)(D^2)^2 + aB^2 - ia\epsilon^{ij}(\partial_i B)D_j$$

• Where $B = \epsilon^{ij} F_{ij}$

Pirsa: 09110062

Page 40/100

The Gauge Field Action

We need to evaluate a determinant,

$$\operatorname{tr} \log[-D_0^2 + (\mathcal{D}^2)^2 + m^2]$$

Using de-Witt-Schwinger representation

$$S_{eff} = -N \int_0^\infty \frac{ds}{s} e^{-m^2 s} \operatorname{tr} e^{-sH}$$

$$H = -D_0^2 + (a+b)(D^2)^2 + aB^2 - ia\epsilon^{ij}(\partial_i B)D_j$$

- Where $B = \epsilon^{ij} F_{ij}$
- This is evaluated by known techniques. The lowest terms in a power series expansion of the field strength yields the effective lagrangian

$$\mathcal{L} = \frac{a+b}{12m} [F_{0i}^2 + \frac{1}{10} (\partial_i B)^2] + \frac{a}{4} \log(\kappa/m) B^2 + \cdots$$

Heat Kernel Calculation

Basic technique: represent the trace as

$$\operatorname{Tr} e^{-s\mathcal{O}} = \int dt d^2x \int \frac{d\omega d^2k}{(2\pi)^3} e^{-i(\omega t + k \cdot x)} e^{-s\mathcal{O}} e^{i(\omega t + k \cdot x)}$$

Then use

$$e^{-i(\omega t + k \cdot x)} D_{\mu} e^{i(\omega t + k \cdot x)} = ik_{\mu} + D_{\mu}$$

repeatedly and expand in powers of the field strength.

Pirsa: 09110062 Page 42/100

$$\mathcal{L} = \frac{a+b}{12m} [F_{0i}^2 + \frac{1}{10} (\partial_i B)^2] + \frac{a}{4} \log(\kappa/m) B^2 + \cdots$$

• The quantity κ is a renormalization scale.

Pirsa: 09110062 Page 43/100

$$\mathcal{L} = \frac{a+b}{12m} [F_{0i}^2 + \frac{1}{10} (\partial_i B)^2] + \frac{a}{4} \log(\kappa/m) B^2 + \cdots$$

This is z=2 electrodynamics (Horava, 2008)

$$\mathcal{L} = \frac{a+b}{12m} [F_{0i}^2 + \frac{1}{10} (\partial_i B)^2] + \frac{a}{4} \log(\kappa/m) B^2 + \cdots$$

- The quantity κ is a renormalization scale.
- For generic a and b, the gauge dynamics becomes lorentz invariant at low energies – with a scale dependent speed of light.
- However for a = 0 something special happens.
- The lowest term in B is now $(\partial_i B)^2$
- In fact, in this case for constant B and for $F_{i0} = 0$, there are no terms at all which are purely power laws in B.
- · The leading term for small B turns out to be

$$\frac{S_{eff}(B) - S_{eff}(0)}{VT} \simeq \frac{B^{\frac{3}{2}} m^{\frac{1}{2}} b^{\frac{1}{4}}}{4\pi^2 \sqrt{2}} e^{-\frac{\pi m}{B\sqrt{b}}}$$

This is non-analytic in B – vanishes faster than any power.

Pirsa: 09110062 Page 45/100

$$\mathcal{L} = \frac{a+b}{12m} [F_{0i}^2 + \frac{1}{10} (\partial_i B)^2] + \frac{a}{4} \log(\kappa/m) B^2 + \cdots$$

• The quantity κ is a renormalization scale.

Pirsa: 09110062 Page 46/100

The Gauge Field Action

We need to evaluate a determinant,

$$\operatorname{tr} \log[-D_0^2 + (\mathcal{D}^2)^2 + m^2]$$

Using de-Witt-Schwinger representation

$$S_{eff} = -N \int_0^\infty \frac{ds}{s} e^{-m^2 s} \operatorname{tr} e^{-sH}$$

$$H = -D_0^2 + (a+b)(D^2)^2 + aB^2 - ia\epsilon^{ij}(\partial_i B)D_j$$

- Where $B = \epsilon^{ij} F_{ij}$
- This is evaluated by known techniques. The lowest terms in a power series expansion of the field strength yields the effective lagrangian

$$\mathcal{L} = \frac{a+b}{12m} [F_{0i}^2 + \frac{1}{10} (\partial_i B)^2] + \frac{a}{4} \log(\kappa/m) B^2 + \cdots$$

The Gauge Field Action

We need to evaluate a determinant,

$$\operatorname{tr} \log[-D_0^2 + (\mathcal{D}^2)^2 + m^2]$$

Using de-Witt-Schwinger representation

$$S_{eff} = -N \int_0^\infty \frac{ds}{s} e^{-m^2 s} \operatorname{tr} e^{-sH}$$

$$H = -D_0^2 + (a+b)(D^2)^2 + aB^2 - ia\epsilon^{ij}(\partial_i B)D_j$$

- Where $B = \epsilon^{ij} F_{ij}$
- This is evaluated by known techniques. The lowest terms in a power series expansion of the field strength yields the effective lagrangian

$$\mathcal{L} = \frac{a+b}{12m} [F_{0i}^2 + \frac{1}{10} (\partial_i B)^2] + \frac{a}{4} \log(\kappa/m) B^2 + \cdots$$

Heat Kernel Calculation

Basic technique: represent the trace as

$$\operatorname{Tr} e^{-s\mathcal{O}} = \int dt d^2x \int \frac{d\omega d^2k}{(2\pi)^3} e^{-i(\omega t + k \cdot x)} e^{-s\mathcal{O}} e^{i(\omega t + k \cdot x)}$$

Then use

$$e^{-i(\omega t + k \cdot x)} D_{\mu} e^{i(\omega t + k \cdot x)} = ik_{\mu} + D_{\mu}$$

repeatedly and expand in powers of the field strength.

Pirsa: 09110062 Page 49/100

$$\mathcal{L} = \frac{a+b}{12m} [F_{0i}^2 + \frac{1}{10} (\partial_i B)^2] + \frac{a}{4} \log(\kappa/m) B^2 + \cdots$$

- The quantity κ is a renormalization scale.
- For generic a and b, the gauge dynamics becomes lorentz invariant at low energies – with a scale dependent speed of light.
- However for a = 0 something special happens.
- The lowest term in B is now $(\partial_i B)^2$
- In fact, in this case for constant B and for $F_{i0} = 0$, there are no terms at all which are purely power laws in B.
- · The leading term for small B turns out to be

$$\frac{S_{eff}(B) - S_{eff}(0)}{VT} \simeq \frac{B^{\frac{3}{2}} m^{\frac{1}{2}} b^{\frac{1}{4}}}{4\pi^2 \sqrt{2}} e^{-\frac{\pi m}{B\sqrt{b}}}$$

This is non-analytic in B – vanishes faster than any power.

Pirsa: 09110062 Page 50/100

$$\mathcal{L} = \frac{a+b}{12m} [F_{0i}^2 + \frac{1}{10} (\partial_i B)^2] + \frac{a}{4} \log(\kappa/m) B^2 + \cdots$$

- The quantity κ is a renormalization scale.
- For generic a and b, the gauge dynamics becomes lorentz invariant at low energies – with a scale dependent speed of light.
- However for a = 0 something special happens.
- The lowest term in B is now $(\partial_i B)^2$
- In fact, in this case for constant B and for $F_{i0} = 0$, there are no terms at all which are purely power laws in B.
- · The leading term for small B turns out to be

$$\frac{S_{eff}(B) - S_{eff}(0)}{VT} \simeq \frac{B^{\frac{3}{2}} m^{\frac{1}{2}} b^{\frac{1}{4}}}{4\pi^2 \sqrt{2}} e^{-\frac{\pi m}{B\sqrt{b}}}$$

This is non-analytic in B – vanishes faster than any power.

Pirsa: 09110062 Page 51/100

Constant B calculation

• For constant B and $F_{i0} = 0$ the operator is

$$H(B) = -D_0^2 + (a+b)(-D_1^2 - D_2^2)^2 + aB^2$$

Choose a gauge

$$A_0 = A_1 = 0 \qquad A_2 = B \ x^1$$

 The non-trivial part is the square of the Landau hamiltonian of a charged particle in a constant magnetic field. The eigenvalues:

$$\kappa(p_0, n) = p_0^2 + (a+b)B^2(2n+1)^2 + aB^2$$

The degeneracies are

$$d(n) = \frac{BL_1L_2}{2\pi}$$

Pirsa: 09110062 Page 52/100

This gives

Tr
$$e^{-sH(B)}$$
 = $\frac{VT}{16\pi s \sqrt{a+b}}e^{-saB^2} \vartheta_4 \left[0 \mid i\pi/(4B^2s(a+b))\right]$
 = $\frac{VT}{16\pi s \sqrt{a+b}}e^{-saB^2} \sum_{k=-\infty}^{\infty} (-1)^k e^{-\frac{\pi^2k^2}{4sB^2(a+b)}}$

Integration over s yields an effective action

$$\frac{S_{eff}(B)}{VT} = -\sum_{k \neq 0} (-1)^k \frac{Bm}{4\pi^2 k} \sqrt{1 + \frac{aB^2}{m^2}} K_1 \left(\frac{\pi km}{B} \sqrt{\frac{1 + \frac{aB^2}{m^2}}{a + b}} \right)$$
$$-\frac{1}{16\pi\sqrt{a + b}} \int_0^\infty \frac{ds}{s^2} e^{-m^2 s} \left(e^{-saB^2} - 1 \right)$$

• For a=0 there are no terms which vanish as any power of B

Perturbative z=2 Electrodynamics

We now investigate the IR non-perturbative behavior of the model

$$S = \frac{1}{2g^2} \int dt \ d^2x \ \left[F_{0i} F^{0i} + \frac{1}{2} (\partial_k F_{ij}) (\partial^k F^{ij}) \right]$$

Define gauge invariant field strengths

$$H_{\mu}(t,\vec{x}) = \frac{1}{2} \epsilon_{\mu\nu\lambda} F^{\nu\lambda}(t,\vec{x}) = \int \frac{d\omega d^2\vec{k}}{(2\pi)^3} H_{\mu}(\omega,\vec{k}) e^{-i(\omega t + \vec{k} \cdot \vec{x})}$$

The perturbative propagators have poles at $\ \omega = \pm i \vec{k}^2$

$$< H_0(\omega, \vec{k}) H_0(-\omega, -\vec{k}) > = \frac{\vec{k}^2}{\omega^2 + \vec{k}^4}$$

 $< H_0(\omega, \vec{k}) H_i(-\omega, -\vec{k}) > = -\frac{\omega k_i}{\omega^2 + \vec{k}^4}$
 $< H_i(\omega, \vec{k}) H_j(-\omega, -\vec{k}) > = \delta_{ij} - \frac{k_i k_j \vec{k}^2}{\omega^2 + \vec{k}^4}$

Monopole Instantons

- Monopole instantons are solutions of the (Euclidean) equations of motion which violate Bianchi identity.
- The equations of motion are

$$\partial_i F^{0i} = 0 \qquad \Rightarrow \qquad F_{0i} = \epsilon_{ij} \partial^j \chi$$
$$\partial^0 F_{0i} + \nabla^2 \partial^j F_{ji} = 0 \qquad \Rightarrow \qquad H_0 = -\frac{\partial_0}{\nabla^2} \chi$$

- Where $\nabla^2 \equiv \partial_i \partial^i$ and we have used a freedom to shift χ by a function of time.
- The Bianchi identity is replaced by

$$\partial_{\mu}H^{\mu} = \rho(t, \vec{x})$$
 \Rightarrow $\partial_{0}H_{0} + \nabla^{2}\chi = \rho(t, \vec{x})$

- Where $\rho(t, \vec{x})$ is the monopole density.
- These are of course instantons.

Perturbative z=2 Electrodynamics

We now investigate the IR non-perturbative behavior of the

model
$$S = \frac{1}{2g^2} \int dt \ d^2x \ \left[F_{0i} F^{0i} + \frac{1}{2} (\partial_k F_{ij}) (\partial^k F^{ij}) \right]$$

Define gauge invariant field strengths

$$H_{\mu}(t,\vec{x}) = \frac{1}{2} \epsilon_{\mu\nu\lambda} F^{\nu\lambda}(t,\vec{x}) = \int \frac{d\omega d^2\vec{k}}{(2\pi)^3} H_{\mu}(\omega,\vec{k}) e^{-i(\omega t + \vec{k} \cdot \vec{x})}$$

The perturbative propagators have poles at $\ \omega = \pm i \vec{k}^2$

$$< H_0(\omega, \vec{k}) H_0(-\omega, -\vec{k}) > = \frac{\vec{k}^2}{\omega^2 + \vec{k}^4}$$

 $< H_0(\omega, \vec{k}) H_i(-\omega, -\vec{k}) > = -\frac{\omega k_i}{\omega^2 + \vec{k}^4}$
 $< H_i(\omega, \vec{k}) H_j(-\omega, -\vec{k}) > = \delta_{ij} - \frac{k_i k_j \vec{k}^2}{\omega^2 + \vec{k}^4}$

Monopole Instantons

- Monopole instantons are solutions of the (Euclidean) equations of motion which violate Bianchi identity.
- The equations of motion are

$$\partial_i F^{0i} = 0 \qquad \Rightarrow \qquad F_{0i} = \epsilon_{ij} \partial^j \chi$$
$$\partial^0 F_{0i} + \nabla^2 \partial^j F_{ji} = 0 \qquad \Rightarrow \qquad H_0 = -\frac{\partial_0}{\nabla^2} \chi$$

- Where $\nabla^2 \equiv \partial_i \partial^i$ and we have used a freedom to shift χ by a function of time.
- The Bianchi identity is replaced by

$$\partial_{\mu}H^{\mu} = \rho(t, \vec{x})$$
 \Rightarrow $\partial_{0}H_{0} + \nabla^{2}\chi = \rho(t, \vec{x})$

- Where $\rho(t, \vec{x})$ is the monopole density.
- These are of course instantons.

 The potential due to a monopole distribution can be now easily solved

$$\chi(t, \vec{x}) = \int dt' \ d^2x' \ G_0(t - t', \vec{x} - \vec{x}') \ \rho(t', \vec{x}')$$

• $G_0(t-t',\vec{x}-\vec{x}')$ is the Green's function which replaces Coulomb law

$$\left[-\frac{\partial_0^2}{\nabla^2} + \nabla^2 \right] G_0(t - t', \vec{x} - \vec{x}') = \delta(t - t') \,\, \delta^{(2)}(\vec{x} - \vec{x}')$$

$$G_0(t, \vec{x}) = 2\pi \int \frac{d\omega d^2 \vec{k}}{(2\pi)^3} e^{-i(\omega t + \vec{k} \cdot \vec{x})} \frac{\vec{k}^2}{\omega^2 + \vec{k}^4}$$

The action for a give monopole distribution is

$$S_{\rho} = \frac{1}{2g^2} \int \frac{d\omega d^2 \vec{k}}{(2\pi)^3} \frac{\vec{k}^2}{\omega^2 + \vec{k}^4} \rho(\omega, \vec{k}) \rho(-\omega, -\vec{k}) :$$

• Dirac quantization $\rho(t,\vec{x}) = q\delta(t)\delta^2(\vec{x}) \implies q = \frac{2\pi n}{q}$

For a single monopole at the origin

$$S_1 = \frac{1}{2g^2} \int \frac{d\omega d^2 \vec{k}}{(2\pi)^3} \frac{\vec{k}^2}{\omega^2 + \vec{k}^4}$$

This is UV divergent because of self energy, but IR finite. This
means that the entropy factor always dominates for large
volumes – these instantons proliferate the vacuum for all
values of the gauge coupling.

Pirsa: 09110062 Page 59/100

Sine-Gordon Representation

- A normal Coulomb gas has a dual representation in terms of a sine-Gordon theory – this is what happens for a monopole gas in standard 2+1 dimensional electrodynamics.
- In our case, the interaction is not Coulomb and we get a novel non-relativistic version of sine-Gordon theory.
- The partition function of a monopole gas may be written as

$$e^{-S_{\rho}} = \int D\phi_1 \ D\phi_2 \ e^{-S[\phi_1,\phi_2]}$$

$$S[\phi_1, \phi_2] = \int d^3x \left[i\phi_1 \partial_0 \phi_2 + \frac{1}{2} \{ (\nabla \phi_1)^2 + (\nabla \phi_2)^2 \} - \frac{i}{g} \rho \phi_1 \right]$$

• Note that ϕ_2 is canonically conjugate to ϕ_1 .

Pirsa: 09110062 Page 60/100

 The dominant contribution to the partition function is due to minimally charged monopoles and anti-monopoles

$$Z_g = \sum_{N_{\pm}} \frac{\zeta^{N_+ + N_-}}{N_+! N_-!} \int \prod_{a=1}^{N_+} d^3x_a \int \prod_{b=1}^{N_-} d^3x_b \ e^{-\frac{4\pi^2}{g^2} \sum_{ij} n_i n_j G_{ij}}$$

where $n_i=\pm 1$ and ζ is the fugacity of monopoles,

$$\zeta \sim g^4 \ e^{-\frac{1}{g^2 a}}$$

a being a UV cutoff. This may be now written as

$$Z_g = \int D\phi_1 D\phi_2 \ e^{-S_{SG}(\phi_1, \phi_2)}$$

$$\mathcal{L}_{SG}(\phi_1, \phi_2) = \frac{g^2}{4\pi^2} \left[i\phi_1 \partial_t \phi_2 + \frac{1}{2} (\nabla \phi_1)^2 + \frac{1}{2} (\nabla \phi_2)^2 - M^2 \cos \phi_1 \right]$$

where

$$M^2 = \frac{8\pi^2 \zeta}{g^2}$$

Upon continuation to Lorentzian signature, the hamiltonian density is

$$\mathcal{H} = \frac{4\pi^2}{g^2} (\nabla \Pi_1)^2 + \frac{g^2}{4\pi^2} (\nabla \phi_1)^2 - \frac{g^2 M^2}{2\pi^2} \cos \phi_1$$

The spectrum of small fluctuations

$$E(\vec{k}) = \pm |\vec{k}| \sqrt{\vec{k}^2 + M^2}$$

Recall that the perturbative spectrum is

$$E_{pert}(\vec{k}) = \pm \vec{k}^2$$

 The monopole gas has introduced a mass scale M, and has removed the original gapless mode. However, a new gapless

mode has taken its place.

The Full Propagator

- This new gapless mode is present in the full propagator of the gauge invariant field strength.
- The total field strength is a sum of the monopole contribution and fluctuations

$$H_{\mu} = H_{\mu}^M + h_{\mu}$$

· Since the theory is quadratic,

$$< H_{\mu}H_{\nu} >_{tot} = < H_{\mu}^{M}H_{\nu}^{M} > + < h_{\mu}h_{\nu} >$$

- And the correlator of fluctuations is the same as the perturabtive result.
- · So we need to calculate the monopole contribution.

Pirsa: 09110062 Page 63/100

The monopole contributions to the field strength are

$$H_i^M = -ik_i\chi = -\frac{k_i\vec{k}^2}{\omega^2 + \vec{k}^4}\rho(\omega, \vec{k})$$

$$H_0^M = i \frac{\omega}{\vec{k}^2} \chi(\omega, \vec{k}) = \frac{\omega}{\omega^2 + \vec{k}^4} \rho(\omega, \vec{k})$$

• We need to calculate the correlators of $\; \rho(\omega, \vec{k}) \;$ in the monopole gas.

· Recall the representation for the action for monopole gas

$$e^{-S_{\rho}} = \int D\phi_1 \ D\phi_2 \ e^{-S[\phi_1, \phi_2]}$$
$$S[\phi_1, \phi_2] = \int d^3x \ \left[i\phi_1 \partial_0 \phi_2 + \frac{1}{2} \{ (\nabla \phi_1)^2 + (\nabla \phi_2)^2 \} - \frac{i}{g} \rho \phi_1 \right]$$

• Thus the generating functional for correlators of $\, \rho(\omega, \vec{k}) \,$

$$Z[J] = \langle \exp[i \int d^3x \ J(x)\rho(x)] \rangle_{mgas}$$

may be obtained by following the same steps which led to the sine-Gordon representation - by shifting ϕ_1

$$Z[J] = \int D\phi_1 D\phi_2 \ e^{-S_{SG}(\phi_1 - \frac{2\pi J}{g}, \phi_2)}$$

$$<\rho(\omega,\vec{k})\rho(-\omega,-\vec{k})> = \frac{M^2(\omega^2 + \vec{k}^4)}{\omega^2 + \vec{k}^2(\vec{k}^2 + M^2)}$$

 This leads to the following monopole contributions to the field strength correlators

$$\langle H_{0}(\omega, \vec{k}) H_{0}(-\omega, -\vec{k}) \rangle_{monopole} = \frac{\omega^{2} M^{2}}{(\omega^{2} + \vec{k}^{4})(\omega^{2} + M^{2} \vec{k}^{2} + \vec{k}^{4})}$$

$$\langle H_{0}(\omega, \vec{k}) H_{i}(-\omega, -\vec{k}) \rangle_{monopole} = \frac{M^{2} \vec{k}^{2} \omega k_{i}}{(\omega^{2} + \vec{k}^{4})(\omega^{2} + M^{2} \vec{k}^{2} + \vec{k}^{4})}$$

$$\langle H_{i}(\omega, \vec{k}) H_{j}(-\omega, -\vec{k}) \rangle_{monopole} = \frac{M^{2}(k_{i}k_{j}\vec{k}^{4})}{(\omega^{2} + \vec{k}^{4})(\omega^{2} + M^{2} \vec{k}^{2} + \vec{k}^{4})}$$

Pirsa: 09110062 Page 66/100

The total correlator becomes

$$\langle H_{0}(\omega, \vec{k}) H_{0}(-\omega, -\vec{k}) \rangle_{total} = \frac{\vec{k}^{2} + M^{2}}{\omega^{2} + M^{2}\vec{k}^{2} + \vec{k}^{4}}$$

$$\langle H_{0}(\omega, \vec{k}) H_{i}(-\omega, -\vec{k}) \rangle_{total} = \frac{\omega k_{i}}{\omega^{2} + M^{2}\vec{k}^{2} + \vec{k}^{4}}$$

$$\langle H_{i}(\omega, \vec{k}) H_{j}(-\omega, -\vec{k}) \rangle_{total} = \delta_{ij} - \frac{k_{i}k_{j}\vec{k}^{2}}{\omega^{2} + M^{2}\vec{k}^{2} + \vec{k}^{4}}$$

- The original gapless pole has been removed but a new gapless pole has emerged – corresponding to the spectrum of the sine-Gordon theory.
- This is in contrast to the usual (z=1) theory where

$$< H_{\mu}H_{\nu} > = \delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{\vec{k}^2 + M^2}$$

 Even though the dispersion relation becomes relativistic for low momenta,

$$\omega \sim \pm M |\vec{k}|$$
 $|\vec{k}| \ll M$

• Lorentz invariance is not really recovered since the various correlators do not rotate into each other properly. However there is a non-local (in position space) redefinition of the fields \tilde{H}_{μ} and the momenta which lead to correlators which look Lorentz invariant

$$\tilde{H}_0(\omega, \vec{k}) = \frac{H_0(\omega, \vec{k})}{|\vec{k}|}, \tilde{H}_i = H_i$$
 $k_0 \equiv \frac{\omega}{|\vec{k}|}$

$$<\tilde{H}_{\mu}(\omega,\vec{k})\tilde{H}_{\nu}(-\omega,-\vec{k})>_{total} = \delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}k^{2}}{\omega^{2}+M^{2}\vec{k}^{2}+\vec{k}^{4}}$$

Pirsa: 09110062 Page 68/100

Wilson Loops

- The standard z=1 electrodynamics in 2+1 dimensions has a mass gap – the theory also confines.
- · The expectation value of a time-like Wilson loop

$$W_{\mathcal{C}} = \exp\left(ie \int_{\mathcal{C}} A_{\mu} dx^{\mu}\right)$$

obeys an area law – signifying that non-dynamical charges have a linear potential between them.

We now want to investigate what happens in our theory.

Pirsa: 09110062 Page 69/100

The Wilson loop may be written as

$$W_{\mathcal{C}} = \exp\left(ie \int_{\mathcal{C}} A_{\mu} dx^{\mu}\right) = \exp\left(ie \int_{\mathcal{S}} H_{\mu} d\sigma^{\mu}\right)$$

 Therefore this factorizes into a monopole contribution and a fluctuation contribution.

$$\langle W(C) \rangle = \langle W(C) \rangle_{mon} \langle W(C) \rangle_{quant}$$

The monopole contribution is

$$\int_{S} H_{\mu} d\sigma^{\mu} = \int d^{3}x \rho(x) \eta_{\mathcal{C}}(x)$$

- Where $\eta_{\mathcal{C}}$ is determined by the loop.
- The calculation is identical to that of Z[J]

$$[W_{\mathcal{C}}]_{classical} = Z[J = e\eta_{\mathcal{C}}]$$

 Even though the dispersion relation becomes relativistic for low momenta,

$$\omega \sim \pm M |\vec{k}|$$
 $|\vec{k}| \ll M$

• Lorentz invariance is not really recovered since the various correlators do not rotate into each other properly. However there is a non-local (in position space) redefinition of the fields \tilde{H}_{μ} and the momenta which lead to correlators which look Lorentz invariant

$$\tilde{H}_0(\omega, \vec{k}) = \frac{H_0(\omega, \vec{k})}{|\vec{k}|}, \tilde{H}_i = H_i$$
 $k_0 \equiv \frac{\omega}{|\vec{k}|}$

$$<\tilde{H}_{\mu}(\omega,\vec{k})\tilde{H}_{\nu}(-\omega,-\vec{k})>_{total} = \delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}\vec{k}^{2}}{\omega^{2}+M^{2}\vec{k}^{2}+\vec{k}^{4}}$$

Pirsa: 09110062 Page 71/100

· Recall the representation for the action for monopole gas

$$e^{-S_{\rho}} = \int D\phi_1 \ D\phi_2 \ e^{-S[\phi_1, \phi_2]}$$
$$S[\phi_1, \phi_2] = \int d^3x \ \left[i\phi_1 \partial_0 \phi_2 + \frac{1}{2} \{ (\nabla \phi_1)^2 + (\nabla \phi_2)^2 \} - \frac{i}{g} \rho \phi_1 \right]$$

• Thus the generating functional for correlators of $\; \rho(\omega, \vec{k}) \;$

$$Z[J] = \langle \exp[i \int d^3x \ J(x)\rho(x)] \rangle_{mgas}$$

may be obtained by following the same steps which led to the sine-Gordon representation - by shifting ϕ_1

$$Z[J] = \int D\phi_1 D\phi_2 \ e^{-S_{SG}(\phi_1 - \frac{2\pi J}{g}, \phi_2)}$$

$$<\rho(\omega,\vec{k})\rho(-\omega,-\vec{k})> = \frac{M^2(\omega^2 + \vec{k}^4)}{\omega^2 + \vec{k}^2(\vec{k}^2 + M^2)}$$

The Wilson loop may be written as

$$W_{\mathcal{C}} = \exp\left(ie \int_{\mathcal{C}} A_{\mu} dx^{\mu}\right) = \exp\left(ie \int_{\mathcal{S}} H_{\mu} d\sigma^{\mu}\right)$$

 Therefore this factorizes into a monopole contribution and a fluctuation contribution.

$$\langle W(C) \rangle = \langle W(C) \rangle_{mon} \langle W(C) \rangle_{quant}$$

The monopole contribution is

$$\int_{S} H_{\mu} d\sigma^{\mu} = \int d^{3}x \rho(x) \eta_{\mathcal{C}}(x)$$

- Where $\eta_{\mathcal{C}}$ is determined by the loop.
- The calculation is identical to that of Z[J]

$$[W_{\mathcal{C}}]_{classical} = Z[J = e\eta_{\mathcal{C}}]$$

Use the sine-Gordon representation for this

$$< W(C) >_{mon} = \int D\phi_1 D\phi_2 \ e^{-S_{SG}(\phi_1 - \frac{2\pi e \eta_c}{g}, \phi_2)}$$

$$\mathcal{L}_{SG}(\phi_1, \phi_2) = \frac{g^2}{4\pi^2} \left[i\phi_2 \partial_t \phi_1 + \frac{1}{2} (\nabla \phi_1)^2 + \frac{1}{2} (\nabla \phi_2)^2 - M^2 \cos \phi_1 \right]$$

• For a time-like Wilson loop at $x_2=0$ the quantity $\eta_{\mathcal{C}}$ is

$$\eta_{\mathcal{C}} = \frac{\partial}{\partial x_2} \int dt' d^2 x' G_0(t - t', \vec{x} - \vec{x}') \delta(x_2') \Theta_{\mathcal{S}}(t' x_1')$$

- The quantity $\Theta_{\mathcal{S}}$ is non-zero only inside the surface \mathcal{S} .
- The dimensionless coupling of the sine-Gordon theory is given by $\frac{M}{a}\sim \frac{\zeta}{a^4}\sim e^{-1/(g^2a^2)}$
- Thus when $g_0 = ga \ll 1$ the integral over ϕ_1 and ϕ_2 can be performed by saddle point.

• The quantity $\eta_{\mathcal{C}}$ is in fact the potential due to dipole layer

$$\eta_{\mathcal{C}} = \frac{\partial}{\partial x_2} \int dt' d^2 x' G_0(t - t', \vec{x} - \vec{x}') \delta(x_2') \Theta_{\mathcal{S}}(t' x_1')$$

• In standard z=1 elctrodynamics, G_0 is the Coulomb propagator and $\eta_{\mathcal{C}}$ is the solid angle subtended by the loop

Pirsa: 09110062 Page 75/100

Use the sine-Gordon representation for this

$$< W(C) >_{mon} = \int D\phi_1 D\phi_2 \ e^{-S_{SG}(\phi_1 - \frac{2\pi e \eta_c}{g}, \phi_2)}$$

$$\mathcal{L}_{SG}(\phi_1, \phi_2) = \frac{g^2}{4\pi^2} \left[i\phi_2 \partial_t \phi_1 + \frac{1}{2} (\nabla \phi_1)^2 + \frac{1}{2} (\nabla \phi_2)^2 - M^2 \cos \phi_1 \right]$$

• For a time-like Wilson loop at $x_2=0$ the quantity $\eta_{\mathcal{C}}$ is

$$\eta_{\mathcal{C}} = \frac{\partial}{\partial x_2} \int dt' d^2 x' G_0(t - t', \vec{x} - \vec{x}') \delta(x_2') \Theta_{\mathcal{S}}(t' x_1')$$

- The quantity $\Theta_{\mathcal{S}}$ is non-zero only inside the surface \mathcal{S} .
- The dimensionless coupling of the sine-Gordon theory is given by $\frac{M}{a}\sim \frac{\zeta}{a^4}\sim e^{-1/(g^2a^2)}$
- Thus when $g_0 = ga \ll 1$ the integral over ϕ_1 and ϕ_2 can be performed by saddle point.

• The quantity $\eta_{\mathcal{C}}$ is in fact the potential due to dipole layer

$$\eta_{\mathcal{C}} = \frac{\partial}{\partial x_2} \int dt' d^2 x' G_0(t - t', \vec{x} - \vec{x}') \delta(x_2') \Theta_{\mathcal{S}}(t' x_1')$$

• In standard z=1 elctrodynamics, G_0 is the Coulomb propagator and $\eta_{\mathcal{C}}$ is the solid angle subtended by the loop

Pirsa: 09110062 Page 77/100

• Integrate over the gaussian variable ϕ_2 first. The saddle point equation for ϕ_1 is then

$$\left(-\frac{\partial_0^2}{\nabla^2} + \nabla^2\right)\phi_1 = 2\pi \frac{e}{g}\delta'(x_2)\Theta_{\mathcal{S}} + M^2\sin\phi_1$$

- Where we have used the equation satisfied by the Green's function.
- The source term requires ϕ_1 to be discontinuous as one crosses the surface spanned by the loop at $x_2=0$
- If the time extent of the loop, T is very large and the space extent L is large as well, the term involving ∂₀²/∇² may be ignored – one gets a ODE, whose solution is

$$\phi_1(x_2) = 4sgn(x_2) \tan^{-1} \left(e^{-M|x_2|} \tan \left(\frac{\pi e}{4g} \right) \right)$$

Pirsa: 09110062 Page 78/100

• When the charge e = (2n + 1)g this solution is non-trivial

 Clearly the saddle point value of the action involved in the calculation of the Wilson loop is proportional to the area TL

$$< W(C) >_{mon} \sim e^{-\sigma TL}$$

- With the string tension $\sigma \sim Mg^2$
- When the charge $e=2n\ g$ the approximation of ignoring dependence on t and x_1 is not adequate the answer still evaluates to an area law.

Wilson Loops: II

- We have performed a direct calculation of the Wilson loop in the linearized approximation to the saddle point equation.
- For time-like Wilson loops we verify the behavior

$$< W(C) >_{mon} \sim e^{-\sigma TL}$$

For space-like Wilson loops we find

$$< W(C) >_{mon} \sim e^{-Mg^2L^3}$$

 Finally, the fluctuations contribute a subleading term proportional to the perimeter.

Pirsa: 09110062 Page 80/100

Summary of Results

- By considering special multicritical points of CP^{N-1} sigma models we were led to z=2 electrodynamics in d=3.
- Monopole Instantons proliferate the vacuum for any value of the gauge coupling. They generate a mass scale M which is exponentially small compared to the mass scale set by the coupling constant.
- However, unlike the standard z=1 theory, they are not able to disorder the vacuum – the spectrum of the theory is still gapless.
- Nevertheless, the spinons are confined.

CONFINED CRITICALITY

Pirsa: 09110062 Page 81/100

Wilson Loops: II

- We have performed a direct calculation of the Wilson loop in the linearized approximation to the saddle point equation.
- For time-like Wilson loops we verify the behavior

$$< W(C) >_{mon} \sim e^{-\sigma TL}$$

For space-like Wilson loops we find

$$< W(C) >_{mon} \sim e^{-Mg^2L^3}$$

 Finally, the fluctuations contribute a subleading term proportional to the perimeter.

Pirsa: 09110062 Page 82/100

Summary of Results

- By considering special multicritical points of CP^{N-1} sigma models we were led to z=2 electrodynamics in d=3.
- Monopole Instantons proliferate the vacuum for any value of the gauge coupling. They generate a mass scale M which is exponentially small compared to the mass scale set by the coupling constant.
- However, unlike the standard z=1 theory, they are not able to disorder the vacuum – the spectrum of the theory is still gapless.
- Nevertheless, the spinons are confined.

CONFINED CRITICALITY

Pirsa: 09110062 Page 83/100

Proviso

- In the context of the original spin models, there were terms which are non-analytic in B.
- These terms vanish faster than any power of B for small B hence may be thought to be infinitely irrelevant.
- They, however break the shift symmetry of B which is responsible for the presence of a gapless spectrum.
- It is important to investigate if these terms lead to a mass gap.

Pirsa: 09110062 Page 84/100

Outlook

- The most urgent task is to find microscopic models whose parameters can be tuned to this kind of multicritical point.
- The dream is to find real systems which are modelled by such a microscopic model.
- At a more modest theoretical level, it may be important to generalize our work to situations where monopole instantons have different phases on different plaquettes – e.g. models of deconfined criticality.
- Similar emergence of non-abelian gauge fields from gauged sigma models?

Pirsa: 09110062 Page 85/100

THANK YOU

Pirsa: 09110062 Page 86/100

• The quantity $\eta_{\mathcal{C}}$ is in fact the potential due to dipole layer

$$\eta_{\mathcal{C}} = \frac{\partial}{\partial x_2} \int dt' d^2 x' G_0(t - t', \vec{x} - \vec{x}') \delta(x_2') \Theta_{\mathcal{S}}(t' x_1')$$

• In standard z=1 elctrodynamics, G_0 is the Coulomb propagator and η_C is the solid angle subtended by the loop

Pirsa: 09110062 Page 87/100

The total correlator becomes

$$\langle H_{0}(\omega, \vec{k}) H_{0}(-\omega, -\vec{k}) \rangle_{total} = \frac{\vec{k}^{2} + M^{2}}{\omega^{2} + M^{2}\vec{k}^{2} + \vec{k}^{4}}$$

$$\langle H_{0}(\omega, \vec{k}) H_{i}(-\omega, -\vec{k}) \rangle_{total} = \frac{\omega k_{i}}{\omega^{2} + M^{2}\vec{k}^{2} + \vec{k}^{4}}$$

$$\langle H_{i}(\omega, \vec{k}) H_{j}(-\omega, -\vec{k}) \rangle_{total} = \delta_{ij} - \frac{k_{i}k_{j}\vec{k}^{2}}{\omega^{2} + M^{2}\vec{k}^{2} + \vec{k}^{4}}$$

- The original gapless pole has been removed but a new gapless pole has emerged – corresponding to the spectrum of the sine-Gordon theory.
- This is in contrast to the usual (z=1) theory where

$$< H_{\mu}H_{\nu} > = \delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{\vec{k}^2 + M^2}$$

The monopole contributions to the field strength are

$$H_i^M = -ik_i\chi = -\frac{k_i\vec{k}^2}{\omega^2 + \vec{k}^4}\rho(\omega, \vec{k})$$

$$H_0^M = i \frac{\omega}{\vec{k}^2} \chi(\omega, \vec{k}) = \frac{\omega}{\omega^2 + \vec{k}^4} \rho(\omega, \vec{k})$$

• We need to calculate the correlators of $\; \rho(\omega,\vec{k}) \;$ in the monopole gas.

Sine-Gordon Representation

- A normal Coulomb gas has a dual representation in terms of a sine-Gordon theory – this is what happens for a monopole gas in standard 2+1 dimensional electrodynamics.
- In our case, the interaction is not Coulomb and we get a novel non-relativistic version of sine-Gordon theory.
- The partition function of a monopole gas may be written as

$$e^{-S_{\rho}} = \int D\phi_1 \ D\phi_2 \ e^{-S[\phi_1,\phi_2]}$$

$$S[\phi_1, \phi_2] = \int d^3x \left[i\phi_1 \partial_0 \phi_2 + \frac{1}{2} \{ (\nabla \phi_1)^2 + (\nabla \phi_2)^2 \} - \frac{i}{g} \rho \phi_1 \right]$$

• Note that ϕ_2 is canonically conjugate to ϕ_1 .

The Full Propagator

- This new gapless mode is present in the full propagator of the gauge invariant field strength.
- The total field strength is a sum of the monopole contribution and fluctuations

$$H_{\mu} = H_{\mu}^M + h_{\mu}$$

· Since the theory is quadratic,

$$< H_{\mu}H_{\nu} >_{tot} = < H_{\mu}^{M}H_{\nu}^{M} > + < h_{\mu}h_{\nu} >$$

- And the correlator of fluctuations is the same as the perturabtive result.
- So we need to calculate the monopole contribution.

Pirsa: 09110062 Page 91/100

 This leads to the following monopole contributions to the field strength correlators

$$\langle H_{0}(\omega, \vec{k}) H_{0}(-\omega, -\vec{k}) \rangle_{monopole} = \frac{\omega^{2} M^{2}}{(\omega^{2} + \vec{k}^{4})(\omega^{2} + M^{2} \vec{k}^{2} + \vec{k}^{4})}$$

$$\langle H_{0}(\omega, \vec{k}) H_{i}(-\omega, -\vec{k}) \rangle_{monopole} = \frac{M^{2} \vec{k}^{2} \omega k_{i}}{(\omega^{2} + \vec{k}^{4})(\omega^{2} + M^{2} \vec{k}^{2} + \vec{k}^{4})}$$

$$\langle H_{i}(\omega, \vec{k}) H_{j}(-\omega, -\vec{k}) \rangle_{monopole} = \frac{M^{2}(k_{i}k_{j}\vec{k}^{4})}{(\omega^{2} + \vec{k}^{4})(\omega^{2} + M^{2} \vec{k}^{2} + \vec{k}^{4})}$$

• Integrate over the gaussian variable ϕ_2 first. The saddle point equation for ϕ_1 is then

$$\left(-\frac{\partial_0^2}{\nabla^2} + \nabla^2\right)\phi_1 = 2\pi \frac{e}{g}\delta'(x_2)\Theta_{\mathcal{S}} + M^2\sin\phi_1$$

- Where we have used the equation satisfied by the Green's function.
- The source term requires ϕ_1 to be discontinuous as one crosses the surface spanned by the loop at $x_2=0$
- If the time extent of the loop, T is very large and the space extent L is large as well, the term involving ∂₀²/∇² may be ignored – one gets a ODE, whose solution is

$$\phi_1(x_2) = 4sgn(x_2) \tan^{-1} \left(e^{-M|x_2|} \tan \left(\frac{\pi e}{4g} \right) \right)$$

• Integrate over the gaussian variable ϕ_2 first. The saddle point equation for ϕ_1 is then

$$\left(-\frac{\partial_0^2}{\nabla^2} + \nabla^2\right)\phi_1 = 2\pi \frac{e}{g}\delta'(x_2)\Theta_{\mathcal{S}} + M^2\sin\phi_1$$

- Where we have used the equation satisfied by the Green's function.
- The source term requires ϕ_1 to be discontinuous as one crosses the surface spanned by the loop at $x_2=0$
- If the time extent of the loop, T is very large and the space extent L is large as well, the term involving ∂₀²/∇² may be ignored – one gets a ODE, whose solution is

$$\phi_1(x_2) = 4sgn(x_2) \tan^{-1} \left(e^{-M|x_2|} \tan \left(\frac{\pi e}{4g} \right) \right)$$

Pirsa: 09110062 Page 94/100

 This leads to the following monopole contributions to the field strength correlators

$$\langle H_{0}(\omega, \vec{k}) H_{0}(-\omega, -\vec{k}) \rangle_{monopole} = \frac{\omega^{2} M^{2}}{(\omega^{2} + \vec{k}^{4})(\omega^{2} + M^{2}\vec{k}^{2} + \vec{k}^{4})}$$

$$\langle H_{0}(\omega, \vec{k}) H_{i}(-\omega, -\vec{k}) \rangle_{monopole} = \frac{M^{2}\vec{k}^{2}\omega k_{i}}{(\omega^{2} + \vec{k}^{4})(\omega^{2} + M^{2}\vec{k}^{2} + \vec{k}^{4})}$$

$$\langle H_{i}(\omega, \vec{k}) H_{j}(-\omega, -\vec{k}) \rangle_{monopole} = \frac{M^{2}(k_{i}k_{j}\vec{k}^{4})}{(\omega^{2} + \vec{k}^{4})(\omega^{2} + M^{2}\vec{k}^{2} + \vec{k}^{4})}$$

Pirsa: 09110062 Page 95/100

Recall the representation for the action for monopole gas

$$e^{-S_{\rho}} = \int D\phi_1 \ D\phi_2 \ e^{-S[\phi_1, \phi_2]}$$
$$S[\phi_1, \phi_2] = \int d^3x \ \left[i\phi_1 \partial_0 \phi_2 + \frac{1}{2} \{ (\nabla \phi_1)^2 + (\nabla \phi_2)^2 \} - \frac{i}{g} \rho \phi_1 \right]$$

• Thus the generating functional for correlators of $\; \rho(\omega,\vec{k}) \;$

$$Z[J] = \langle \exp[i \int d^3x \ J(x)\rho(x)] \rangle_{mgas}$$

may be obtained by following the same steps which led to the sine-Gordon representation - by shifting ϕ_1

$$Z[J] = \int D\phi_1 D\phi_2 \ e^{-S_{SG}(\phi_1 - \frac{2\pi J}{g}, \phi_2)}$$

$$<\rho(\omega,\vec{k})\rho(-\omega,-\vec{k})> = \frac{M^2(\omega^2 + \vec{k}^4)}{\omega^2 + \vec{k}^2(\vec{k}^2 + M^2)}$$

Upon continuation to Lorentzian signature, the hamiltonian density is

$$\mathcal{H} = \frac{4\pi^2}{g^2} (\nabla \Pi_1)^2 + \frac{g^2}{4\pi^2} (\nabla \phi_1)^2 - \frac{g^2 M^2}{2\pi^2} \cos \phi_1$$

The spectrum of small fluctuations

$$E(\vec{k}) = \pm |\vec{k}| \sqrt{\vec{k}^2 + M^2}$$

Recall that the perturbative spectrum is

$$E_{pert}(\vec{k}) = \pm \vec{k}^2$$

 The monopole gas has introduced a mass scale M, and has removed the original gapless mode. However, a new gapless

mode has taken its place.

 The dominant contribution to the partition function is due to minimally charged monopoles and anti-monopoles

$$Z_g = \sum_{N_{\pm}} \frac{\zeta^{N_+ + N_-}}{N_+! N_-!} \int \prod_{a=1}^{N_+} d^3x_a \int \prod_{b=1}^{N_-} d^3x_b \ e^{-\frac{4\pi^2}{g^2} \sum_{ij} n_i n_j G_{ij}}$$

where $n_i=\pm 1$ and ζ is the fugacity of monopoles,

$$\zeta \sim g^4 \ e^{-\frac{1}{g^2 a}}$$

a being a UV cutoff. This may be now written as

$$Z_g = \int D\phi_1 D\phi_2 \ e^{-S_{SG}(\phi_1, \phi_2)}$$

$$\mathcal{L}_{SG}(\phi_1, \phi_2) = \frac{g^2}{4\pi^2} \left[i\phi_1 \partial_t \phi_2 + \frac{1}{2} (\nabla \phi_1)^2 + \frac{1}{2} (\nabla \phi_2)^2 - M^2 \cos \phi_1 \right]$$

where

$$M^2 = \frac{8\pi^2 \zeta}{g^2}$$

