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Disclaimer

* This talk is not about Horava-Lifshitz gravity.
* |tis not even about gravity.

* |tis about an example of emergent gauge fields —and its
dynamics in situations where the UV theory is not Lorentz
Invariant.

« The motivation is to find possible applications in condensed
matter systems.

* However, there could be some lessons which may have

implications to low-energy behavior of other Lifshitz theories,
including gravity.
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Background: CP"~! models

* Thereis an interesting way to rewritethe (O(3) sigma model
fields n as

e jS‘é.*cb
* @ isa2-component complex vector - SPINON
« Theconstraint 71 - 7 — ] then becomes the constraint
d'dp=1

* However, this is a redundant description - so thereis a

compact U(1) gauge symmetry
o(z) ~ e ¢(x)

* Then the number of degrees of freedom work out right.
« This is the CP! model.
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* |f we have a N component complex vector ¢ with the conditions
so=1  olx)~ e o(z)
we have a CP" ! model.

For the original O(3) sigma model, the lagrangian becomes

R e —
5(07)” = 510,6'9"6 — 5,

- 1 : , -
T E[éTaﬁs@ — (0,0")9]
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* |f we have a N component complex vector ¢ with the conditions
o'o=1 o(z) ~ 7% ¢(x)
we have a CP" ! model.

For the original O(3) sigma model, the lagrangian becomes

| ol 1 R i
5(3”)' = 5[3;;@'3‘“@ — 3ud”]

_ 1 —
I = ﬁ[&@m — (0,.0")9]

This model of course has gauge symmetry — but as yet no gauge

field. We can introduce a gauge field and rewrite this

B %(quﬁf)(D“qb) = =

Integrating out Aﬂ leads to the above lagrangian.
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* The same lagrangiandefines the usual ¢' P! model when the
vector @ is N component.

* [tis useful to absorb the overall coupling constant f into the
field and impose the constraint
1
F &
by a Lagrange multiplier field X

1 . | — 1
= §(DH¢;')(DP¢>) + x(0'0 — F)
* We have introduced redundant degrees of freedom to describe
the system — and therefore a gauge field — which has no

dynamics.
« Whatis the use of all this ?

o' P =
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Emergent Gauge Dynamics

* |nthe 1980’s this model in euclidean d = 2 was popular
among particle theorists as a model of dynamical mass
generation.

* Like other nonlinear sigma models in d = 2 the coupling [ is
asymptotically free.

* As aresultit flows to strong coupling in the IR and the Lagrange
multiplierfield x acquires a nonzero expectation value. This
means that the spinon acquires a dynamically generated mass,

i) 2N
my—<x >=Ae R
* Here A is a UV cutoff. The beta function is therefore

Bf)~—F N
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* The same lagrangiandefines the usual ¢' P! model when the
vector @ is N component.

» |tis useful to absorb the overall coupling constant f into the
field and impose the constraint

QO = F
by a Lagrange multiplier field X
1 =" , + 1
L = 5(Du¢")(D"9) + x(¢'¢ — F)

* We have introduced redundant degrees of freedom to describe
the system — and therefore a gauge field — which has no
dynamics.

* Whatis the use of all this ?
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Emergent Gauge Dynamics

* |nthe 1980’s this model in euclidean d = 2 was popular
among particle theorists as a model of dynamical mass
generation.

* Like other nonlinear sigma models in d = 2 the coupling [ is
asymptotically free.

* As aresultit flows to strong coupling in the IR and the Lagrange
multiplierfield x acquires a nonzero expectation value. This
means that the spinon acquires a dynamically generated mass,

mg =< x >~ A e VIV

* Here A is a UV cutoff. The beta function is therefore

B(f) ~—f* N
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* This makes the gauge field dynamical. In fact the one loop
diagram

* |eads to the effective action for the gauge field
1 L
e BT

m,

* |nterms of the spin model, there was no gauge theory at all

* |ntroduction of redundant variables leads to a gauge invariance,
but the gauge field has no dynamics at the classical level

* Quantum effects induce this dynamics.

* Allthese results can be seen explicitly in the ‘t Hooft largeN
expansion

f—0 N — x f2N = )\ = finite
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* Howeverin { = 2 gauge fields are rather boring.
* There are no photons.
* The potential between charges is always confining.

* Inasense one does not gain very much by introducing this
redundancy.

Pirsa: 09110062 Page 16/100



* In d = 3 this model is of interest in condensed matter systems
and the situation becomes interesting.

* Now there is a phase transition between ordered and
disordered phases — there is a IR unstable non-trivial fixed point.

e

W

- -
AUC )q] = f_i?\" A

* The ordered phase )y < \g. IS gapless, while the disordered
phase )\, > \o. hasagap.

1 1
< ->~A( - )
2 g

M

o<

e Thus < x >#0 onlyfor Ao > Age

* The beta function reflects this
B(Xo) ~ —Ao(Ao — Aoe)
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* In d = 3 thereis a photon — with a single polarization.
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* However, as Polyakov showed 30 years ago, a compact U(1)
gauge theory confines due to proliferation of monopole
instantons and givesrise to a mass gap. Charged particles have a
linear confining potential between them.
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* In d = 3 thereis a photon — with a single polarization.

* However, as Polyakov showed 30 years ago, a compact U(1)
gauge theory confines due to proliferation of monopole
instantons and givesrise to a mass gap. Charged particles have a
linear confining potential between them.

* This means that normally there is no excitation corresponding to
a massless photon in the original spin model.

* There are, however, several situations where such monopoles
are suppressed. The gauge theory —which is effectively non-
compact —does not confine.

* |nthese situations, a gapless photon mode remains — something
which would have been rather difficult to discover in the original
spin language. Most dramatic— deconfined criticality (Balents,
Fisher, Sachdev, Senthil & Viswanath)with emergent photon.
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* Inthis talk— | will describe another situation where a gapless

photon remains..
 This is a multi-critical point of (P~ ! model tuned at a Lifshitz
fixed point.
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* Inthis talk— | will describe another situation where a gapless
photon remains..

 This is a multi-critical point of ('P"~! model tuned at a Lifshitz
fixed point.
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Lifshitz ¢ P !'models

* The general model is defined by

Sp = %fdtfddr [(Dog)*(D“é') + a(D;¢) (D) + |pz¢5]i’]

| 1
+ With the usual constraint @0 = =

D= is O(d) invariantand contains z derivatives.For z =2

D*¢]> = a (D;D;0)" - (D;D;0) + b (D?*6)* - (D?0)
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Lifshitz ¢ P !'models

* The general model is defined by

1 \* e N (DD 2ol
Si = 5/ dt f dz [(Doa) (D°¢) + a(D;o)"(D'¢) + |'D‘¢’F]
. 1
« With the usual constraint @T@ = 72

D= is O(d) invariantand contains > derivatives.For z =2
| D*¢|* =a (D;D;¢)" - (D;Djo) + b (D*¢)" - (D*9)

The point a = 0 has Lifshitz scaling with dynamical critical
exponent z, under which + Yt T — f}/t
d—z

0] ~ [ [fl~[L]3
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* The coupling is now asymptoticallyfreeforall d = =z

* This may be seen in the large-N expansion as follows. First
introduce a lagrange multiplier field as usual

£ .. 1

A0 (Dyo)* + a(D;0)* + (D°6)* + x(d' - 6 — F)
* Then integrate out the field o to get
Ses = Trlog [-D§ —aD} + (-1)(D°) + X + 553 /dtdd.r X

* Toleading order in large-N, the functional integralover yand A,
Is dominated by a saddle point with vanishing gauge field and a
constant x(f,z) = xo. The saddle point equation is

dwd?k 1 1
o [t =
272 2 +ak2+ k22 +x J?
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» Ata Lifshitz line, a = 0the solutionis

A
f?N]
* This immediately shows asymptotic freedom
df f°N
dh A
* The leading 1/N correctionis obtained by expanding around
this saddle point solution

1 1
x(t.x) = xo + —0 A,t.x) — At x
Y( ) X0 \/N X ,u( ) ﬁ #( )

m® = xo = A* exp|

* We now evaluate the effective action for the gauge field
explicitlyfor z = d = 2.

=

W
A
W
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The Gauge Field Action

* We need to evaluate a determinant,
tr log[—Dg + (D*)* + m?]

* Using de-Witt-Schwinger representation

eff — —N/ —m'*s —SH
H=—D%+ (a+b)(D?* + a32 = -aaE*j(a,.;B)Dj

« Where B = ¢€"F}
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The Gauge Field Action

* We need to evaluate a determinant,
tr log[—Dg + (D*)* + m”]

* Using de-Witt-Schwinger representation

Eff = —N/ —m 5 —SH
H— I (atifFf) 1«8 — -zae‘j(a,;B)Dj

« Where B =¢€"F}

* Thisis evaluated by known techniques. The lowest terms in a
power series expansion of the field strength yields the effective
lagrangian

a-+b
o=

Pirsa: 09110062 1 2 m
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* The coupling is now asymptoticallyfreeforall d = =z

* This may be seen in the large-N expansion as follows. First
introduce a lagrange multiplier field as usual

£ == (D05)2 + a(D;o ) ('D“@) + ‘(( - — i)

2 f2
* Then integrate out the field 5 to get
S.;s = Trlog [—D2 — aD? + (—1)(D°)? + x] + i fdtddr x

* Toleading orderin large-N, the functional integralover yand A,
Is dominated by a saddle point with vanishing gauge field and a
constant x(f,z) = xo. The saddle point equation is

o N dwd?k 1 ==
- / (27)3 2 22 .22 = F
T)” w*+ ak® + k% + X0
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The Gauge Field Action

* We need to evaluate a determinant,
tr log[—Dg + (D*)* + m”]

* Using de-Witt-Schwinger representation

eff = —N/ —m 3 —SH
H—IE (at D) taB"— -aaﬁ”j(@.fB)Dj

« Where B =¢€"F}
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Heat Kernel Calculation

* Basictechnique : represent the trace as

s
= /d d.. /dwd)k e—i(ut—l—k‘-.r} 6—50 ei(u,*t+k+£)

repeatedly and expand in powers of the field strength.
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The Gauge Field Action

* We need to evaluate a determinant,
tr log[—Dg + (D*)* + m?]

* Using de-Witt-Schwinger representation
eff —— N’/ —m 5 —SH

B——15 (atBF) reai— -aae*j(agB)Dj

« Where B =¢"F}
* Thisis evaluated by known techniques. The lowest terms in a
power series expansion of the field strength yields the effective
lagrangian
a-+b
=

a .
— (8 B)?*] + — log(x/m)B* +

4

e
| 10
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* The coupling is now asymptoticallyfreeforall d = =z

* This may be seen in the large-N expansion as follows. First
introduce a lagrange multiplier field as usual

L 1

5 = (Dd)? +a(Did) +(D°6)* +x(&' -6 — )
* Then integrate out the field 5 to get
S.;r = Trlog [-D2 — aD? + (=1)(D°)2 + ] + = /dtdd.r .

* Toleading orderin large-N, the functional integral over yand A,
Is dominated by a saddle point with vanishing gauge field and a
constant x(f,z) = xo. The saddle point equation is

dwd?k 1 1
_Vf ' =
27 2 +ak2+k2Z+xo J?
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Lifshitz ¢ P 'models

* The general model is defined by

S.=7 [ &t [ d'x [(Dwd)"(D°6) +a(Dd)(D'd) + [D°3F]

| 1
« With the usual constraint @T@ = 12

D= is O(d) invariantand contains z derivatives.For z = 2
D°¢|* = a (D;D;0)* - (D;D;0) + b (D?*0)" - (D*9)

The point a = 0 has Lifshitz scaling with dynamical critical
exponent z, under which + _ vt T — r}(t
d d—z

(6] ~ [L]= fl~ L]
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* The coupling is now asymptoticallyfreeforall d = =z

* This may be seen in the large-N expansion as follows. First
introduce a lagrange multiplier field as usual

£ = 1
5 (Dyo)* + a(D;d)* + (D*¢)* + x(d' - 6 — F)
* Then integrate out the field 5 to get
S.;s = Trlog [-D2 — aD? + (—1)3(D*) + x] + 2f2]dtdd.r X

* Toleading order in large-N, the functional integralover yand A
Is dominated by a saddle point with vanishing gauge field and a
constant x(f.z) = xo. The saddle point equation is

dwd?k 1 1
_Vf = = =
27 2+ ak2+ k2= +x J?
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Lifshitz ¢ P 'models

* The general model is defined by

Sy = [dt [d'z [(Dud) (D°8) + a(D.d) (D'6) + [D°6F]

1
« With the usual constraint ©'0 = 2

D= is O(d) invariantand contains z derivatives.For z = 2

—

' D*¢]> = a (D;D;¢)* - (D;D;0) + b (D?*6)* - (D?0)

The point a = 0 has Lifshitz scaling with dynamical critical
exponent z, under which + Yt T — f}(t
d d—z

(6] ~ [L]= fl~ L]
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* The coupling is now asymptoticallyfreeforall d = =z

* This may be seen in the large-N expansion as follows. First
introduce a lagrange multiplier field as usual

L e 51
5 = (Do9)* + a(Dig)* + (D°6)* + x(0' - & — 7)
* Then integrate out the field & to get
2 2 z
Sess = Trlog [~D§ — aD? + (—1) (D) + Xl + 575 [ dtd'z x

* Toleading order in large-N, the functional integralover yand A,
Is dominated by a saddle point with vanishing gauge field and a
constant x(f,z) = xo. The saddle point equation is

dwd?k 1 1
o [ e
27 2+ ak2+ k22 +x J?
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The Gauge Field Action

* We need to evaluate a determinant,
tr log[—Dg + (D*)* + m”]

* Using de-Witt-Schwinger representation

Eff = _N/ —m 5 —SH
H— 15 (et D) a8 — -.;a.@'f(aa!.,gB)DjF

« Where B = ¢€"F}

Pirsa: 09110062 Page 40/100



The Gauge Field Action

* We need to evaluate a determinant,
tr log[—Dg + (D*)* + m?]

* Using de-Witt-Schwinger representation

eff — _N/ —m"& —SH
H——I (et B(DF) tab"— -aaf*j(a;B)Dj

« Where B = ¢€7F}

* Thisis evaluated by known techniques. The lowest terms in a
power series expansion of the field strength yields the effective
lagrangian

a-+b
f
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Heat Kernel Calculation

* Basictechnique : represent the trace as

TI'E_SO — /dtdzl'[ : e—f(wf—l—k*.r} 6—5(9 ef(u;t—i—knr)

repeatedly and expand in powers of the field strength.
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=

a+b._. 1 = |
12m [Fuz—; .= E(aIB)QI — Elog(ﬁ/m)Bz = -

* The quantity g is arenormalization scale.
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a+b _,

1
F2 .1 —
12m[ 0i T

10

a

£ =
4

(9:B)] +

=

Thisis z=2 electrodynamics (Horava, 2008)

log(k/m)B* + - - -
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=

kb o | T >

* The quantity K is arenormalization scale.

* Forgeneric a and b, the gauge dynamics becomes lorentz
invariant at low energies —with a scale dependent speed of
light.

* Howeverfor a = 0 something special happens.
 The lowesttermin B is now (9;B)”

* |nfact, in this case for constant B and for F,, =0, there areno
terms at all which are purely power lawsin B.

* The leading term for small B turns out to be

Sers(B) — Sesf(0) B2 m2 b3 _=m
= €
VT 472+/2

* Thisis non-analytic in B —vanishes faster than any power.
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=

a—+b a o
— - Zlog(ﬁ/m)B -

* The quantity g isarenormalization scale.

[FZ + ~=(&:B)Y] +
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The Gauge Field Action

* We need to evaluate a determinant,
tr log[—Dg + (D?)* + m?]

* Using de-Witt-Schwinger representation

€ff - —N/ —m 3 —SH
H——I: (atBlF) aB -zaf"j(@.,;B)Dj

« Where B = ¢€"F;
* Thisis evaluated by known techniques. The lowest termsin a
power series expansion of the field strength yields the effective
lagrangian
a-+b

a ;
—C[F2 + <5(0,B)] + § log(/m) B +

4
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The Gauge Field Action

* We need to evaluate a determinant,
tr log[—Dg + (D?)* + m”]

* Using de-Witt-Schwinger representation

eff__N/ —ms —SH
1¥=—D@+m+wxpﬁ-Hﬁ%—uwﬂaBﬂ%

« Where B =¢"F}

* Thisis evaluated by known techniques. The lowest terms in a
power series expansion of the field strength yields the effective
lagrangian

a-+b
y
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Heat Kernel Calculation

* Basictechnigue : represent the trace as

2
— /d d_ /de)k e—i(u.:t—l—k-.r} e—s@ ei(u;t—i—kzr)

e—i(u,'t+kx D 8 wt+k-x) __ Ekﬂ—i—DH

repeatedly and expand in powers of the field strength.
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a+b_ _, 1 - @ -
(@ -1 B -
12m[ 0 + 10(8 )7l + y og(k/m)B* +

* The quantity K isarenormalization scale.

* Forgeneric a and b, the gauge dynamics becomes lorentz
invariant at low energies — with a scale dependent speed of
light.

* Howeverfor a =0 something special happens.
 The lowesttermin B is now (8;B)”

* |nfact, in this case for constant B and for F,, =0, there areno
terms at all which are purely power laws in B.

* The leading term for small B turns out to be

e

Seff(B) — Serf(0) > B3 m3 bi _am
= e
VE 4?1-2\/5

* Thisis non-analytic in B —vanishes faster than any power.
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a+b 1 - 0 =
o S g g B* 5 ---
12m[ 5 10(8 )7l + - og(k/m)B~ +

* The quantity K isarenormalization scale.

* Forgeneric a and b, the gauge dynamics becomes lorentz
invariant at low energies —with a scale dependent speed of
light.

* Howeverfor a =0 something special happens.
 Thelowesttermin B is now (9;B)°

* |Infact, in this case for constant B and for F,, =0, there are no
terms at all which are purely power laws in B.

* The leading term for small B turns out to be

-

Sﬁff(B)_Seff(O) = B% m% bi _:rr::}_
— €
vr 4?1‘2\/5

* Thisis non-analytic in B —vanishes faster than any power.
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Constant B calculation

* Forconstant B and F;g = 0 the operatoris
H(B) = —D? + (a + b)(—D? — D3)* + aB?
* Choose a gauge
Ag— i —14 A—B<x
* The non-trivial partis the square of the Landau hamiltonian of a
charged particle in a constant magnetic field. The eigenvalues :
k(po,n) = pg + (a + b)B*(2n + 1)* + aB?
* The degeneracies are
BL,L>
d(n) = ——
27

irsa: 09110062 Page 52/100



Theta Function

* This gives
T Bemali— Y ="y, 0 | -i?'rj(;LBz.S'(a +b))]
16mrs va—+b
VT - > . 72#2

— E_SEB* _1 k € 4532(a+b}
167s va-+ b k-__z_x( )

* |Integrationover s yields an effective action

Sess(B - v . Bm \/ = (:,B’ mkm |1+ mz_]
VT e B a+b

: 7.
—m?s (E—.aaB = 1)

167'\/rf

* For ¢ = () there are no terms which vanish as any power of B
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Perturbative z=2 Electrodynamics

* We now investigate the IR non-perturbative behavior of the

model 1 : A, ol
e — 2—g2/dt dzl' |:F[}§F0 + 5(0;:17;3)(6’“}7”)]

* Define gauge invariantfield strengths

= 1 vAfp = d*’-ddzg o\ —i(wt+k-T)
H,(t.Z) = §E#V-)'F (£, %) = [ (27)3 H,(w.k)e o
The perturbative propagators have poles at w = +ik2
= = E2
< Hy(w, k)Hﬂ(—uJ —k) e ==
w K
= = Lu'ki
< Hy(w,k)H;(—w,—k) > = _f_,ﬂ >
kik ;i
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Monopole Instantons

* Monopole instantons are solutions of the (Euclidean) equations
of motion which violate Bianchi identity.

* The equations of motion are

61F01:O — F{J’i:e;é?j)(
30F01+V281F},,:O — Hﬂz_ﬁx

* Where V2 = 9.9 and we have used a freedom to shift Xbya
function of time.

* The Bianchiidentity is replaced by
9, H" = p(t.T) =  GHo+ V’x = p(t,7)
« Where p(t,X) is the monopole density.

e These are of course instantons.
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Perturbative z=2 Electrodynamics

* We now investigate the IR non-perturbative behavior of the

model 1 . =1 . o
S = 29 fdt &z [FMF“‘ - 5(8::%)(3"1”)1

* Define gauge invariantfield strengths

= 1 Xy =2 (;;-_UJEE o\ —i(wtt+k-T)
Ho(t,3) = seunF (65 = / oy Hal, Fjet
The perturbative propagators have poles at w = :qjl_;;?
= = E2
< H[](t.&f:, k)Hﬂ(_dJ —k‘) = = : =
w? + k4
7 =, {.u’k'i
< Hy(w,k)H;(—w,—k) > = _f_,;"l —=
kik; k2
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Monopole Instantons

* Monopole instantons are solutions of the (Euclidean) equations
of motion which violate Bianchi identity.

* The equations of motion are

6ifﬂi:0 — Fﬂi:ﬁé?j)(
§OF01+V283F”:0 = Hﬂz_ﬁx

* Where V2 = 9.9 and we have used a freedom to shift X by a
function of time.

* The Bianchi identity is replaced by
9, H" = p(t,T) =  GoHo+V’x = p(t,7)
« Where p(t,X) is the monopole density.

e These are of course instantons.
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* The potential due to a monopole distribution can be now easily
solved

X(t?f): fdt! dzg';’ Gﬂ(t_t,:rf_f,) p(t’?f’)

Gyt —t',F— ) is the Green’s function which replaces
Coulomb law

2 .
[_%ﬁ; + vi] Golt — ¥, & — ) = 6(t — ¥') 6 (& — 7)

27. pesy [-2
Gg(t, .’f) = 2?1_/ dwdfe_g(erkm) k 5
(27) w? + k4

* The action for a give monopole distributionis

1 dod?k k2 = -
S = / : P = t, k =—f:F. —k =

2
e Dirac quantization p(t,f)=q5(t)52(f) = q:ﬁ
g
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* For asingle monopole at the origin
G — 1 /‘ dod?k k2
29> J (27) w2 + kA
 This is UV divergent because of self energy, but IR finite. This

means that the entropy factor always dominates for large
volumes —these instantons proliferate the vacuum for all

values of the gauge coupling.
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Sine-Gordon Representation

* A normal Coulomb gas has a dual representationin terms of a

sine-Gordon theory—this is what happens for a monopole gas
in standard 2+1 dimensional elctrodynamics.

In our case, the interactionis not Coulomb — and we get a novel
non-relativistic version of sine-Gordon theory.

* The partition function of a monopole gas may be written as

e o0 — /Dc:n Do e 5101:92]

E 1 2 2 =
Slér, &) = / d’x [5018002 3 3 5{(V@1)' +(Vge)} — éﬂﬁl

» Note that ©s is canonically conjugate to ©;.
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* The dominant contribution to the partition function is due to
minimally charged monopoles and anti-monopoles

C ~'1""r+ = " —l_—:l'r2

N N_
i 3 3 = nin;Gij;
Zg—ENlN'f”d:t:a/”dxbeg
[ ey e a=1 b=1

where n; = +1 and ( is the fugacity of monopoles,
1

(~g'e

a being a UV cutoff. This may be now written as

y fD@ID@Z e 956(901.02)

| e .
Lsc(o1,02) = 421_2 [3@131‘@2 3 §(V¢’1)2 + §(V€D‘z)2 — M? cos ff’l}

814

>

where M2 —
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Upon continuation to Lorentzian signature, the hamiltonian
density is -
47
g

92 IUE
272

CcOS 01

2
(VIL)? + é(w)z =

The spectrum of small fluctuations
E(F) = £F|VR2 + M2
Recall that the perturbative spectrum is
Epers (k) = £k
The monopole gas has introduced a mass scale M, and has
removed the original gapless mode. However, a new gapless

mode has taken its place.
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The Full Propagator

* This new gapless mode is present in the full propagator of the
gauge invariant field strength.

* The total field strength is a sum of the monopole contribution
and fluctuations

= M
H, = ﬁr‘u _ — "
* Since the theory is quadratic,
<H B Sp—<H I >t+<hh>

* And the correlator of fluctuations is the same as the
perturabtive result.

* So we need to calculate the monopole contribution.

irsa: 09110062 Page 63/100



* The monopole contributions to the field strength are

k; k2 -
M_ :
H" ——ikx = k'4 p(w, k)
M__ W - O
e — z}_g,é)((u..?T k) — k4p(w k)

e We need to calculate the correlators of p(w, k-) in the
monopole gas.
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» Recall the representation for the action for monopole gas

e %0 = / D¢y Dy e 5101:92]
. 1 = e ==
S[G_)l, @2] — /d'3I [iO’[a{]OQ = - 3{(?@1)' 5 = (V(Dg)'} — gml

e Thus the generating functional for correlatorsof p(w, k)

Z|J] =< expli /dgzr J(x)plE)] >rugns

may be obtained by following the same steps which led to the
sine-Gordon representation - by shifting ¢

Z[J] — [ Do, Do 8—55{:;(@1—%,@2)

- - - M?*(w? +
< plos, B)pl—ts, By > & +F)
W2 + R2(k2 + M?)
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* Thisleads to the following monopole contributions to the field

strength correlators
< Holir, EYHgl—ur, —E) > rmemopeic
< Holw, B)Hy(—tr,—K) >monopele

< B, ) H(—or,—K) > omopete
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w2 M?

(w2 + k) (w2 + M2K2 + k%)

(w? + k) (w? + M2E2 + k)
IVIE(kikjii;)

(w? + k*)(w? + M2k2 + k)
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* The total correlator becomes

z - k* + M
< H[]({-U: k)HO(_UJ* _k) total — u_,f?- 5 ﬂ/fg,i{;? ™ E“l
— — wk,g
< HU(QJr k)Hr,(_{-“- _k) Ztotal — — = o =5
w? + M?2k% + K4
Bk

< H,_(u.f. k)HJ(—uJ. —k) total — 55} w? = ﬂ/[?EQ 5 E—i

* The original gapless pole has been removed — but a new gapless
pole has emerged — corresponding to the spectrum of the sine-
Gordon theory.

* Thisis in contrast to the usual (z=1) theory where
k.,
k2 + M?
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irsa:

Even though the dispersion relation becomes relativistic forlow
momenta,

w ~ M|k k| <« M
Lorentz invariance is not really recovered since the various
correlators do not rotate into each other properly. However .
there is a non-local (in position space) redefinition of the fields H,
and the momenta which lead to correlators which look Lorentz
Invariant

Ho(w, k) = Hﬂf;’”, n— ko

73

k|

k. k, k2

< H,(w,E)H,(—w, —k) >totai= O —
e R et SR T
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Wilson Loops

* Thestandard z=1 electrodynamics in 2+1 dimensions has a
mass gap —the theory also confines.

* The expectation value of a time-like Wilson loop
We — exp (ie / Apdr'”‘)
C

obeys an area law — signifying that non-dynamical charges have
a linear potential between them.

* We now want to investigate what happens in our theory.
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* The Wilson loop may be writtenas

We = exp (ie/Aﬂd;r“) — exp ('iEfHﬂdU#)
C S

* Therefore this factorizes into a monopole contribution and a
fluctuation contribution.

< [LF(C) >=< WT(C) “mon< EVF(C) = quant

* The monopole contribution is

[ Hudo" = [ Ezp()ne(=)

* Where 7)¢ is determined by the loop. t
* The calculationis identical to that of Z[J] *

[Wel = Z[J = enc]

classical
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irsa:

Even though the dispersion relation becomes relativistic forlow
momenta,

w ~ +M|K] k< M
Lorentz invariance is not really recovered since the various
correlators do not rotate into each other properly. However .
there is a non-local (in position space) redefinition of the fields H,
and the momenta which lead to correlators which look Lorentz
Invariant

gﬁ(w?E) = H0|(5*..k)?gi = HI kﬂ

i L3
e
—_—

k|

k, kK, k2

< Hﬁ(w, k)Hy(—uj —k) Ztotal— 5;“” = 2 P MQEQ e E’-i
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* Recall the representation for the action for monopole gas

i — /D@1 Doy e Slor22]
. 1 : > g
S[(DI._ @‘2] = /d’s.r [f018002 5 3 E{(V@q)z 53 (v@g)'} — §p®1

* Thus the generating functional for correlatorsof p(w, E)

ZLI} —=< exp[—i[dgzr J(E)p )] >rnigns

may be obtained by following the same steps which led to the
sine-Gordon representation - by shifting ¢;

2wJ )

/D¢51DG§9 6—55{_’;(@1—— 02

. = = M?*(w? + K
< p(w, k)p(—w, —k) >= — _Ew _,_I_ )
w? + k2(k? + M?)
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* The Wilson loop may be written as

We — exp (ie / Aﬂdr“) — exp (z’e / Hﬂdg“)
C S

* Thereforethis factorizes into a monopole contribution and a
fluctuation contribution.

< IV(C) >=< I{?(C) Zmon<~ LVF((?P) = quant

* The monopole contribution is

[ Hudo" = [ Ezp()me(=)

* Where 7)¢ is determined by the loop. t
* The calculationis identical to that of Z[J] *

(Wel = Z[J = enc]

classical
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* Use the sine-Gordon representation for this

= WT(C) Zmon— [Dﬂle(Eﬁg 6—553(;31—2“—;’-’2%@2)

g-

L:SG((.bl? CD‘_’) 4 2

I:Z@Qat@1 - — (V@l)z th)g):z — JIE COSs CiJ)1J

2(
* For a time-like Wilson loop at z, = ( the quantity 7¢ is

—— / At P2’ Go(t — ', — 7)8(2)Os(t'r))
81:2

* The quantity 6; is non-zero only inside the surface S.

* The dimensionless coupling of the sine-Gordon theory is given
by M

T % ~ e~ 1/(9%a%)
g g
* Thuswhen gy = ga < 1 the integral over ¢’1 and q_‘)Q can be
performed by saddle point.
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* The quantity 7)c is in fact the potential due to dipole layer

"= /dt &r'Gy(t — ', T — )6(z5)Os(t'z))

* Instandard z=1 elctrodynamics, G, is the Coulomb propagator
and 7 is the solid angle subtended by the loop
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* Use the sine-Gordon representation for this

<W(C) >mon= [ D1 Dy €551~ 55542

2
g.-

1:5(;((351 (D')) I:Z@Qat@1 = =i (V(f)l)z (Vﬂ)g)z — N COS @1}

* For a time-like Wilson loop at z, = ( the quantity 7¢ is

Ne = = /dt d’z'Gy(t —t',T — 7)(z5)Os(t'z))

* The quantity ©6; is non-zero only inside the surface S.

* The dimensionless coupling of the sine-Gordon theory is given
by M

—_— % s g 0]
g g
* Thuswhen ¢y = ga < 1 the integral over qf)l and gf)Q can be
performed by saddle point.
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* The quantity 7)¢ is in fact the potential due to dipole layer

=

9,
a&?g

/ A P2’ Co(t — ¥, F — )6(2,)Os(f'z))

* Instandard z=1 elctrodynamics, G, is the Coulomb propagator
and 7 is the solid angle subtended by the loop

irsa: 09110062
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* |ntegrate over the gaussian variable ¢ first. The saddle point
equation for ¢, is then

( = 22?? + Vg)qbl = 27155’(:1:2)95 + M sin &,

* Where we have used the equation satisfied by the Green’s
function.

« The source term requires @1 to be discontinuous as one crosses
the surface spanned by the loopat z, =0

e |If the time extent of the loop, T is very large and the space
extent L islargeas well, the term involving &;/V® may be
ignored — one gets a ODE, whose solution is
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* When the charge e = (2n + 1)g this solution is non-trivial

3 \
o3}

e C(Clearlythe saddle point value of the action involved in the
calculation of the Wilson loop is proportional to the area TL

W) > "

* Withthe string tension o ~ Mg?

* When the charge e = 2n g the approximation of ignoring
dependence on { and z; is not adeguate — the answer still
evaluatesto an area law.
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Wilson Loops : I

* We have performed a direct calculation of the Wilson loop in the
linearized approximation to the saddle point equation.

* For time-like Wilson loops we verify the behavior

< WH(C) o=’ L
* For space-like Wilson loops we find
_ Ma2IL3
< W(C) >non~ € 9L
* Finally, the fluctuations contribute a subleading term
proportional to the perimeter.
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Summary of Results

« By considering special multicritical points of C' P ~!sigma
models we were led to z=2 electrodynamicsin d=3.

* Monopole Instantons proliferate the vacuum for any value of
the gauge coupling. They generate a mass scale M which is
exponentially small compared to the mass scale set by the
coupling constant.

* However, unlike the standard z=1 theory, they are not able to
disorder the vacuum — the spectrum of the theory is still gapless.

* Nevertheless, the spinons are confined.

CONFINED CRITICALITY
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Wilson Loops : I

* We have performed a direct calculation of the Wilson loop in the
linearized approximation to the saddle point equation.

* For time-like Wilson loops we verify the behavior

<W(C) >non~ €’ L
* For space-like Wilson loops we find
— Ma2IL3
<€) e %"
* Finally, the fluctuations contribute a subleading term
proportional to the perimeter.
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Summary of Results

« By considering special multicritical points of C' P ~!sigma
models we were led to z=2 electrodynamicsin d=3.

* Monopole Instantons proliferate the vacuum for any value of
the gauge coupling. They generate a mass scale M which is
exponentially small compared to the mass scale set by the
coupling constant.

* However, unlike the standard z=1 theory, they are not able to
disorder the vacuum — the spectrum of the theory is still gapless.

* Nevertheless, the spinons are confined.

CONFINED CRITICALITY

irsa: 09110062 Page 83/100



Proviso

* In the context of the original spin models, there were terms
which are non-analyticin B.

» These terms vanish faster than any power of B for small B —
hence may be thought to be infinitely irrelevant.

* They, however break the shift symmetry of B which is
responsible for the presence of a gapless spectrum.

* |tisimportantto investigate if these terms lead to a mass gap.
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Outlook

* The most urgent task is to find microscopic models whose
parameters can be tuned to this kind of multicritical point.

* The dream is to find real systems which are modelled by such a
microscopic model.

* At a more modest theoretical level, it may be important to
generalize our work to situations where monopole instantons
have different phases on different plaguettes —e.g. models of
deconfined criticality.

* Similaremergence of non-abelian gauge fields from gauged
sigma models ?
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THANK YOU
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* The quantity 7)c is in fact the potential due to dipole layer

e [dt &2'Gy(t — ', T — T)6(z)Os(t'z))

* Instandard z=1 elctrodynamics, G, is the Coulomb propagator
and 7 is the solid angle subtended by the loop
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* The total correlator becomes

E = B2+ M?
< H[](u.f, k)HO(_UJ* _k) Ztotal — b IQEQ 4 E‘l
= - wk;
< HU(‘-’J k)H,_(—{.J. _k) Zidal — — = o —
GE= f\d?kﬂ i s K
= k:k k2

< Hz(u.f. )Hj(—w. —k) Ztotal = 5ij =¢ w? = ﬂ/[?}_;? 5 E—'L

* The original gapless pole has been removed — but a new gapless
pole has emerged — corresponding to the spectrum of the sine-
Gordon theory.

* Thisis in contrast to the usual (z=1) theory where

o =
<HH >0, = :’_ —
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* The monopole contributions to the field strength are

k; kz ~
T :
H™ = —ik;x k4 plw, k)
M == W = —= w
e 3—}—6-2)((“-’? k) — k4p(w k)

e« We need to calculate the correlators of p( k-) in the
monopole gas.
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Sine-Gordon Representation

* A normal Coulomb gas has a dual representationin terms of a

sine-Gordon theory—this is what happens for a monopole gas
in standard 2+1 dimensional elctrodynamics.

In our case, the interactionis not Coulomb — and we get a novel
non-relativistic version of sine-Gordon theory.

* The partition function of a monopole gas may be written as

(:’._5'” — fDO[ DOQ 6_5[01'02]

| : | 1 = 5 1
S[C)h Og} — /‘d'i;r [5018002 s 3 ;{(VOI)' - (vﬁ}g)'} = épﬂh

« Note that @ is canonically conjugate to 0;.
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The Full Propagator

* This new gapless mode is present in the full propagator of the
gauge invariant field strength.

* The total field strength is a sum of the monopole contribution
and fluctuations

M
H, — Hﬂ -+
* Since the theory is quadratic,
<H B, Sp—< HYE >+ <hb.>
* And the correlator of fluctuations is the same as the
perturabtive result.

* So we need to calculate the monopole contribution.
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* This leads to the following monopole contributions to the field

strength correlators
< Hy(w, k) Ho(—w, —k) >monopote
< HE}(‘?@'?E)H-%(_W~ —E) = monopole

< Hi(w, k) Hj(—w, —k) >monopoe
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w? M?

(w2 + k%) (w2 + M2k2 + k%)

(w2 + EJE)(JQ 3 M2k2 + E*)
ﬂ/I?(kikjE4)

(w2 + k) (w? + M2K2 + k%)
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* |ntegrate over the gaussian variable ¢ first. The saddle point
equation for ¢, is then

d5 | E -
( - VD? = VE)QI = 271'30’(:::2)95 + M sin &,

* Where we have used the equation satisfied by the Green’s
function.

« The source term requires @1 to be discontinuous as one crosses
the surface spanned by the loopat z, =0

e |If the time extent of the loop, T is verylarge and the space
extent L islargeas well, the term involving &;/V® may be
ignored — one gets a ODE, whose solution is

&1(x2) = 4sgn(zz) tan™' ("3_1{"&' taﬂ(i—e )
19
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* |ntegrate over the gaussian variable ©- first. The saddle point
equation for ¢, is then

d3 | & -
( —a vz)ﬁfh — 27—§(22)Os + M sin ¢,
N2 g
* Where we have used the equation satisfied by the Green’s
function.

« The source term requires @1 to be discontinuous as one crosses
the surface spanned by the loopat z, =0

* |If the time extent of the loop, T is verylarge and the space
extent L islargeas well, the term involving &;/V® may be
ignored — one gets a ODE, whose solution is

¢1(z2) = 4sgn(z,) tan™ (e_”'“l tan(j—e )
1q
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* Thisleads to the following monopole contributions to the field

strength correlators
< Ho(w, k) Ho(—w, —k) >monopote
< H{}(Df? E)Hi(_idr _E) >m,cmopde

< Hi(w, B)H;(—w, —k) >monopote
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w?M?

(w2 + k*)(w? + M2k2 + k%)
J[zPﬁkI

(w? + k*)(w? + M2k2 + k%)
ﬂ/[z(kikjiin)

(w2 + K4) (w2 + M2E2 + k)
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* Recall the representation for the action for monopole gas

e %0 = /D@I Do, e 5S101:62]
. 1 5 - S
S[(DI., @2] = /d3I [301(")002 = ;{(V(Ih)“ - - (V(D*_})’} = épﬂh

e Thus the generating functional for correlatorsof p(w, k)

Z|J] =< expli /d3;1: JHE)pE)] >signs

may be obtained by following the same steps which led to the
sine-Gordon representation - by shifting &

Z|J] = [ Do, Do o—Ssc(0r1—2=.62)

. - - M?*(w? + Kk
< pbaiie o Bype = SN
W2+ R2(k2 + M?)
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Upon continuation to Lorentzian signature, the hamiltonian
density is

H

_471'2
_?

g~ M*
272

CcOS O

2
(VIL,)? + %(wl)? =

The spectrum of small fluctuations
E(F) = +|F|VR2 + M2
Recall that the perturbative spectrum is
Epers (k) = £k
The monopole gas has introduced a mass scale M, and has
removed the original gapless mode. However, a new gapless

mode has taken its place. —

0.25- /
: E(F) = =|klV k2 + M2

a2+
1 /

0157 S
] f,x'

a 1-:' /.—ff ) :
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* The dominant contribution to the partition function is due to
minimally charged monopoles and anti-monopoles

C *\'r_|_ o N_

JN'_{_ P\‘r_ 42
3 3 3 —5- > . nin;Gyj
Zy=Y 2t [ I &z [ [ Pz e 2
e e a—1 h=1

where n; = +1 and ( is the fugacity of monopoles,
1

(~g'e P

a being a UV cutoff. This may be now written as

e fD@1D®2 e 956(01.92)

92

Ar2

- - .
161002+ 5(V61) + 5(V6s) — M? cos |

ﬁSG(ﬁDh @2) =

8%

h 2
wnere M gg
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* Thedominant contribution to the partition function isdueto
minimally charged monopoles and anti-monopoles

NG +N_

= Z,= _‘L\-.W-,]Hd‘*x{,jndﬁzbe*;Zm; :

where n;, = £l and ( is the fugacity of monopoles,
1
(~g'e T
a being a UV cutoff. This may be now written as

Zg = / Déy Dé» e Osclor1-02)

ta_..

[mlﬁtm-:—l— —(Vér)® + = (v@,)l — Meoséy
» S

Lsclor, 02) = 12

where
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