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« Generation of scale-invariant
cosmological perturbations

 “Dark matter’” without dark matter
« Comments on scalar graviton
» Black holes and stars




Scale-invariant cosmological
perturbations from Horava-
Lifshitz gravity without inflation

arXiv:0904.2190 [hep-th]

c.f. Basic mechanism is common for “Primordial magnetic field from non-

Inflationary cosmic expansion in Horava-Lifshitz gravity”, arXiv:0909.2149
tastro-th.COJ with S.Maeda and T.Shiromizu.
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« Renormalizability

» Gravity is highly non-
1+3-2+25s =0 linear and thus non-
renormalizable
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» Gravity becomes
renormalizable!?
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Caustic avoidance in Horava-Lifshitz gravity
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* \We can solve dynamical equations, provided
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Foliation-preserving diffeomorphism

= 3D spatial diffeomorphism
+

3 local constraints + 1 global constraint

=3 momentum @ each time @ each point
+

Constraints are preserved by dynamical
equations.

We can solve dynamical equations, provided
that constraints are satisfied at initial time.
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Brandenberger 2009]) If asymptotically free, would-
be caustics does not gravitate too much.

* Group of microscopic lumps with collisions and
bounces =2 When coarse-grained, can it mimic a
cluster of particles with velocity dispersion?

» Dispersion relation of matter fields defined in the
rest frame of “dark matter”
-~ Any astrophysical implications?
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* The lack of local Hamiltonian constraint may
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Contents of the rest of this talk
« Comments on scalar graviton
» Black holes and stars



Minkowski + perturbation
Residual guage freedom =
time-independent spatial diffeo.

Momentum constraint
0,0,H, =0 H, =h —Aho,

Fix the residual guage freedom by setting
a;Hg =0 at some fixed time surface.

Decompose H; into trace and traceless parts
TTpart :2d.o.f. (usual tensor graviton)
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« However, its kinetic term will vanish
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and H gets

* This is not a problem in renormalizable
theories If there is “Vainshtein effect’, i.e.
decoupling of the strongly-coupled sector from
the rest of the world. c.f. QCD+QED
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Sign of (time) kinetic term (A-1)/(3A-1) > 0.
The dispersion relation in flat background
®? = k? x [c.2 + O(k?/M?)] with c_? =-(1-1)/(31-1)<0
-2 IR instablllty in linear level
(Wang&Maartens; Blas,et.al.; Koyama&Arroja 2009)

Slower than Jeans instability of “DM as integration const” if
t~(Gnp) e <t ~Uc] .
Tamed by Hubble friction or/and O(k?/M?) terms if
H-1 <t or/fand L < 1/(|cM).
Thus, the linear instability
(@~-GypL?)
L>0.01'mm (Shorter scales - similar to spacetime foam)

Phenomenological constraint on properties of RG flow.
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« Sign of (time) kinetic term (A-1)/(34-1) > 0.
« The dispersion relation in flat background
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-2 IR instablllty in linear level
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« Slower than Jeans instability of “DM as integration const” if
t~(Gnp) 2 <t ~Uc] .
« Tamed by Hubble friction or/and O(k2/M?) terms if
H-1 <t or/fand L < 1/(|cM).
* Thus, the linear instability
(@~-GypL?)
L>0.01mm (Shorter scales = similar to spacetime foam)

 Phenomenological constraint on properties of RG flow.
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Schwarzschild geometry in PG coordinate (N=1) is
locally an exact solution with ». = 1.

Kerr geometry in Doran coordinate (N=1,N'=0) is
locally an approximate solution with A = 1.

Those solutions are “black™ for low-E probes but not
“black” for high-E probes. Visible singularity?

Extrinsic curvature diverges at the center of those
solutions =2 UV effects such as deviation of .. from 1

%

To answer this question, we probably need to evolve
a regular initial data towards BH formation.

As a first step, let us consider stellar solutions.



Stellar center is dynamical in
Horava-Lifshitz gravity

arXiv:0911 .xxxx [hep-th]
with K.lzumi




Painlevé-Gullstrand coordinate
N =1 N*9; = B(x)0;
gi;dr'dr’ = dx* + r*(z)dQs

Matter sector
T = p@)uuu, + P(x)|gl) + uuu,|
<a ”

Vi3 (g)“

*The energy density p Is a piecewise-continuous
non-negative function of the pressure P.
=The central pressure P_ is positive.

T —




Momentum conservation equation
P-4+ (p+P)1—-—p5) =0
Global-staticity = 1-p? > 0 everywhere.
Regularity of KX = B’ is finite = P’ is also
finite = B(x) and P(x) are continuous -2
p(X)+P(Xx) Is piecewise-continuous.

P.>0 & P continuous & p non-negative -
p+P>0 in a neighborhood of the center.

Define X, as the minimal value for which at
least one of (p+ P)|.—.,, lim;_..,—o(p+ P)

and lim,_.,,+0(p + P) is non-positive.



Painlevé-Gullstrand coordinate
N =1 N*9; = (3 ()0
gi;dr'dr’ = dx* + r*(z)dQs

Matter sector
1. = plz)un, + P(z) [gﬁ) - uﬁ_uy}

Cp o\ H
w = > = J
V1—[3 ot

*The energy density p Is a piecewise-continuous
non-negative function of the pressure P.
~The central pressure P_ is positive.




Momentum conservation equation
P-4+ (p+P)1—p5) =0
Global-staticity = 1-p? > 0 everywhere.
Regularity of KX = B’ is finite = P’ is also
finite = B(x) and P(x) are continuous -2
p(X)+P(x) Is piecewise-continuous.

P.>0 & P continuous & p non-negative =
p+P>0 in a neighborhood of the center.

Define X, as the minimal value for which at
least one of (p+ P)|.—.,, lim,_..,—o(p+ P)

and lim,_.,,+0(p + P) is non-positive.




Painlevé-Gullstrand coordinate
N =1 N9; = 3 ()0
gi;dr'dr’ = dx* + r*(z)dQs5
Matter sector
ﬂw — p(r)a,uu _l_P( )[gp,) T U, U ]

ClL - 7
" = > = i
V1 — 3 ot

*The energy density p Is a piecewise-continuous
non-negative function of the pressure P.
~The central pressure P_ is positive.



Momentum conservation equation
P-4+ (p+P)1—5) =0
Global-staticity = 1-p? > 0 everywhere.
Regularity of KX = B’ is finite = P’ is also
finite = B(x) and P(x) are continuous -2
p(X)+P(Xx) Is piecewise-continuous.

P.>0 & P continuous & p non-negative =
p+P>0 in a neighborhood of the center.

Define X, as the minimal value for which at
least one of (p+ P)|.—.,, lim,_..,—o(p+ P)

and lim,_.,,+0(p + P) is non-positive.



P dP

1mpd@—myﬁﬁz—ﬁ)mm+P

L.h.s. iIs non-positive €< B_=0 & r./=1 &
regularity of R & K%,

R.h.s. Is positive € P, is non-positive € p IS
non-negative & at least one of (p + P)|s—z;-
lim,_..,_o(p + P) and lim,_,,,.o(p + P)

IS non-positive & P(X) is continuous

Contradiction! =
— stellar center is

dynamical

The proof is insensitive to the structure of
hiaher-derivative terms — valid for anv z



IVIomentum conservation eqqation
P-4+ (p+P)1—p5)Y =0
Global-staticity = 1-p? > 0 everywhere.
Regularity of KX = B’ is finite = P’ is also
finite = B(x) and P(x) are continuous -2
p(X)+P(Xx) Is piecewise-continuous.

P.>0 & P continuous & p non-negative =
p+P>0 in a neighborhood of the center.

Define X, as the minimal value for which at
least one of (p+ P)|.—.,, lim,_..,—o(p+ P)

and lim,_.,,+0(p + P) is non-positive.



Po  dP

In(1 — 63) —In(1 — %) = —fp >(P)+ P

L.h.s. Is non-positive €< B_=0 &r.=1 &
regularity of R & K%,

R.h.s. Is positive € P, is non-positive € p IS
non-negative & at least one of (p + P)|z—z,-
lim,_..,—o(p + P) and lim,_..,.o(p + P)

IS non-positive & P(X) Is continuous

Contradiction! =
— stellar center is

dynamical

The proof is insensitive to the structure of
hiaher-derivative terms — valid for anv z



Momentum conservation equation
PA-B8)+(p+P)(1 -5 =0
Global-staticity = 1-p? > 0 everywhere.
Regularity of KX, = B’ is finite = P’ is also
finite - B(x) and P(x) are continuous -2
p(X)+P(Xx) Is piecewise-continuous.

P.>0 & P continuous & p non-negative -
p+P>0 in a neighborhood of the center.

Define X, as the minimal value for which at
least one of (p+ P)|.—.,, lim,_..,—o(p+ P)

and lim,_.,,+0(p + P) is non-positive.



Po  dP

In(1 —5) (1l — 35) —— /P o(P)+ P

L.h.s. iIs non-positive €< B_=0 &r. =1 &
regularity of R & K%,

R.h.s. Is positive € P, is non-positive € p IS
non-negative & at least one of (p + P)|s—z;-
lim,_..,_o(p + P) and lim,_,,,.o(p + P)

IS non-positive & P(X) Is continuous

Contradiction! =
— stellar center is

dynamical

The proof is insensitive to the structure of
hiaher-derivative terms — valid for anv z



IVIomentum conservation eqqation

P e o P i e
Global-staticity = 1-p? > 0 everywhere.
Regularity of KX = B’ is finite = P’ is also
finite = B(x) and P(x) are continuous -2
p(X)+P(Xx) Is piecewise-continuous.

P.>0 & P continuous & p non-negative =
p+P>0 in a neighborhood of the center.

Define X, as the minimal value for which at
least one of (p+ P)|.—.,, lim,_..,—o(p+ P)

and lim,_.,,+0(p + P) is non-positive.




Po  dP

In(1—5) (1l — 3°) —— /P >(P)+ P

L.h.s. iIs non-positive €< B_=0 &r.=1 &
regularity of R & K%,

R.h.s. Is positive € P, is non-positive €< p IS
non-negative & at least one of (p + P)|z—z,-
lim,_,.,—o(p + P) and lim,_,.,.o(p + P)

IS non-positive & P(X) Is continuous

Contradiction! =
— stellar center is

dynamical

The proof is insensitive to the structure of
hiaher-derivative terms — valid for anv z



The z=3 scaling and
leads to scale-invariant cosmological
perturbations for a~tP with p>1/3.

The lack of local Hamiltonian constraint may
explain

Strong self-coupling of scalar graviton is not a
problem If it decouples from the rest of the

world. Linear instability does not show up If
RG flow satisfies a certain condition.

Central region of a star should be dynamical.
Possible observational signature of the
theory!
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The z=3 scaling and
leads to scale-invariant cosmological

The lack of local Hamiltonian constraint may
explain

Strong self-coupling of scalar graviton is not a
problem if it decouples from the rest of the
world. Linear instability does not show up if
RG flow satisfies a certain condition.

Bacen slides

Central region of a star should be dynamical.
Possible observational signature of the

theory! -
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