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© Conclusions and open issues

o Shadows on a wall
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@ Brief review of Horava—Lifshitz gravity with detailed
balance.

@ Introduction of a minimally coupled scalar field and related
problems.

@ Cosmology.
@ Nonmimimally coupled case: more problems.
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ritical systems
ofava, arXiv:0812.4287. arXiv:0901.3775

Example: Lifshitz scalar (1941) o

l i I %7
Sk — =~ [drdD.r {o‘ = 4(;\0)']

It defines an =rnsoropic scaling between time and space:

F—it. ) s
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ritical systems
ofava, arXiv:0812.4287. arXiv:0901.3775

Example: Lifshitz scalar (1941) -

1 = -
SLifShi[Z — ; /dIdD.Y |:O_ = 4(AL’)]_]

It defines an znisofropic scaling between time and space:

_ ‘ D—z
(bt x—bx.  fl=—z Fl=-1 [d="1

—

@ The critical exponent z determines the dim. D at which the
propagator becomes logarithmic, critical behaviour of
correlation functions near a phase transition.
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V completion
ofava. arXiv:0812.4287. arXiv:0901.3775

@ The meeting point of phase boundaries in multicritical
phenomena is called Lifshitz point.
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Horava model (; = 3

oliation symmetry

General action:

S / did’x /g N(Lx — Ly)
4 M
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Horava model (; = 3

oliation symmetry

General action:

§ = / drdf!_‘[‘ N?:’V[ EK — EL)
J M

@ Invariant under “foliated diffeomorphisms”, I.e.,
diffeomorphisms preserving the codimension-one foliation
of the manifold.
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Horava model (; = 3

Foliation symmetry

General action:

- / drd'?!-l‘ \r.’?;‘V(‘CK = EL]
M

@ Invariant under “foliated diffeomorphisms”, i.e.,
diffeomorphisms preserving the codimension-one foliation
of the manifold.

@ Time-dependent time reparametrizations and
spacetime-dependent spatial diffeomorphisms:

£ D), 2"t Clenm).
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Horava model (; = 3

Foliation symmetry

General action:

S — / deBI \,?IV(‘CK — f,{,)
M

@ Invariant under “foliated diffeomaorphisms”, L.e.,
diffeomorphisms preserving the codimension-one foliation
of the manifold.

@ Time-dependent time reparametrizations and
spacetime-dependent spatial diffeomorphisms:

t—t+£(1). 2 2.

@ 3 d.o.f.: extra scalar A, trace of the graviton. '
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Horava model (z = 3

rojectability and scalar mode

@ Projected N = N(r): 9 variables N’ and Kj;, 6 first-class
local constraints.
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rojectability and scalar mode

@ Projected N = N(r): 9 variables N' and Kj;, 6 first-class

local constraints. i unstable [Biasetal 200925 ... curable?

@ Non-projected N = N(r.x): h unstable but curable
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Horava model (; = 3

rojectability and scalar mode

@ Projected N = N(z): 9 variables N' and Kj;, 6 first-class
local constraints. i unstable [Bizsetal 200020 ... curable?
@ Non-projected N = N(r.x): h unstable but curable
' al. 2009: Blas et al. 2009a.b] [?]but non-closure of
constraint algebra [Li and Pang 2009: Kluson 2009¢]
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Horava model (; =

rojectability and scalar mode

@ Projected N = N(z): 9 variables N’ and Kj;, 6 first-class

local constraints. h unstable [Biasetal 2000a 0] ... curable?

@ Non-projected N = N(z.x): k unstable but curable
Charmousis et al. 2009; Blas et al. 2009a.b] [?]but non-closure of
constrannt algebra Li and Pang 2009; Klusof 2009¢]

@ For simplicity we consider the projectable version but all
arguments below hold also in the non-projectable case.
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Horava model (; = 3

Inetic term

1 $2

2 N=

(K;K? — \K*)
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Horava model (; = 3)

Inetic term

K= 2! E
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ompact notation

g{;t’m = ﬂm'gm}_; £ ;\gyg!m m
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Horava model (; = 3

ompact notation

gfﬂm = gf{' fgmjlj - f\grjg:’m m

| G ¢
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ompact notation
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Horava model (; = 3

ompact notation
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rinciple of detailed balance

Definition

1 /6W _6W
L:Vrr(", c )
oq ogq
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Horava model (z = 3

rinciple of detailed balance

Definition

1 W _ W e e 1 /6W
B— &l —— ey :
gi— ( o4 M) e ( 0”)
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Horava model (z = 3

rinciple of detailed balance

Definition

1 [O6W oW e 1 (oW
Ly= & ((, G— ) — h—njgfﬂmTfm = 5 ( )
g og 0gq 3

Hamiltonian constraint now global [vukohyama 20096

/H%Hxﬁ.
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Horava model (z = 3

rinciple of detailed balance

Definition

1 /W _6W K2 1 £5W\
L — il — T gep g
: g 3 ( 0g 0g ) 8 g4 e 2g ( OO )

=
(@
O

Hamiltonian constraint now global Mukohyama 20
/d3.r7-{ ~ 0.

oW oW
tr (HGH = )
o0qg 0g

With detailed balance

>

ianluca Calcagni Max Planck Institute for Gravitational Physics (AE]) e




Horava model (; = 3
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Horava madel (z = 3

rinciple of detailed balance

Definition

1 [6W _6W K- 2 1 [6W
——F—— —_ TG, -
: g ( 0g dq ) 3 i = 22 ( 00 )

Hamiltonian constraint now global [vukohyama 200961

/H%Hxﬂ.
With detailed balance

1 oW __ oW
- (HGH — —G— )
0q 0g
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Horava model (; = 3

rinciple of detailed balance

lassical solutions

Hamilton—Jacobi formalism is naturally implemented:;
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Horava model (; = 3

rinciple of detailed balance

lassical solutions

Hamilton—Jacobi formalism is naturally implemented;

o
constraints admit a large class of simple solutions:
YW
m=""
0q
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Horava model (; = 3

rinciple of detailed balance

lassical solutions

Hamilton—Jacobi formalism is naturally implemented;

constraints admit a large class of simple solutions: s
W
~ oq
This is the nonminimal case
oW W
ij = g = = -
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Horava model (; = 3

rinciple of detailed balance

lassical solutions

Hamilton—Jacobi formalism is naturally implemented:; -
constraints admit a large class of simple solutions:
oW
H —
0g
This is the nonminimal case
6w W
HU —— fjgij - gy — {j‘(j -
Alternative: Minimal coupling prescription, scalar and gravity
sectors factorize:
rjﬁ"g oW,
T S I 7
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Horava model (z = 3

Principle of detailed balance
hy?
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@ Simple definition of §, e.g., noterms suchas R - R - R.
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Horava model (z =

Principle of detailed balance
hy?

@ Simple definition of 5, e.g., noterms suchas R - R - R.
@ Simple class of solutions.

© = Quantum inheritance: Simple quantum solutions, if W is
renormalizable then also S is [Orlando and Reffert 2009].
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Horava model (z =

Principle of detailed balance
hy?

@ Simple definition of S, e.g., no terms suchas R - R - R.
@ Simple class of solutions.

© = Quantum inheritance: Simple quantum solutions, if W is
renormalizable then also S is  [Orlando and Reffert 20091.
Topological massive gravity is renormallzable Oda 2009].
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L recipe

@ Anisotropic scaling and power-counting renormalizability:
z >3
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L recipe

@ Anisotropic scaling and power-counting renormalizability:
P

@ Foliation-preserving diffeomorphisms.
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Hofava model (; = 3

L recipe

@ Anisotropic scaling and power-counting renormalizability:
>3

@ Foliation-preserving diffeomorphisms.
© Principle of detailed balance.
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Horava model (; = 3

L recipe

@ Anisotropic scaling and power-counting renormalizability:
=5

@ Foliation-preserving diffeomorphisms.

© Principle of detailed balance. This is the most restrictive
ingredient but it is by no means necessary.
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Horava model (; = 3

L recipe

© Anisotropic scaling and power-counting renormalizability: N
B
@ Foliation-preserving diffeomorphisms.

© Principle of detailed balance. This is the most restrictive
ingredient but it is by no means necessary.

Problems with detailed balance:
@ IR limit reached above cosmological scales [Nastase 2009].
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Horava model (z = 3

L recipe

@ Anisotropic scaling and power-counting renormalizability:
> %

@ Foliation-preserving diffeomorphisms.

© Principle of detailed balance. This is the most restrictive
ingredient but it is by no means necessary.

Problems with detailed balance:
@ R limit reached above cosmological scales [Nastase 2009].
@ Scalar sector difficult to implement, many issues.

)
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Horava model (; = 3

L recipe

@ Anisotropic scaling and power-counting renormalizability:
z> %

@ Foliation-preserving diffeomorphisms.

© Principle of detailed balance. This is the most restrictive
ingredient but it is by no means necessary.

Problems with detailed balance:
@ IR limit reached above cosmological scales [Nastase 20c
@ Scalar sector difficult to implement, many issues.

= |t may be desirable to abandon it.
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Minimaily coupled theory

inimally coupled theory — Gravity sector

Lve = aeCiC? —ase’ RmVR™ + as [RHRU ~ 4(3A l)R_]

—f“{l:(R = 3;‘11{; )
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Minimally coupled theory

inimally coupled theory — Gravity sector

1 >
W= [ +n [ Exye®R-2am
: : e T2
N ~ i i r pml i 2
LV,,gr — Llﬁ(,;;C’r == LlﬁE!fR;mv;‘R + Qg4 |:R,'J,‘RJ = 4(3)& = UR }

+{1:(R = 3;‘11{; )

QQ

: : B =
€MV, (R{n — ,,,R) . CiiC? ~RAR + ...
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Minimally coupled theory

inimally coupled theory — Gravity sector

Relevant deformations push the system towards the IR f.p.:

.2. 2 . = i 9 :
SQ o i~ /drd"’x V“g N [Kng” — MK~ + ("(R G 3:’\1;;-']]
N '
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Minimally coupled theory

inimally coupled theory — Gravity sector

- i 7] . 1 i _I'/\ i ]- 2
EV.;_{ — le)(,_;j'c"f BE ﬂjfj !Rng;R ; + Oy |:R”Rj i _I.( 3)\ = 1)[\)_]

—f‘{lj(R = 3;’&1,1; )

C?

€™V (R{n = ;‘,,,.R) .,  GCiC'~RAR+ ...

|
4 ¥
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Minimally coupled theory

inimally coupled theory — Gravity sector

Relevant deformations push the system towards the IR f.p.:

- —/drd"t V2N [KiK7 — AK? + (R — 3Aw)]
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Minimally coupled theory

inimally coupled theory — Gravity sector

Relevant deformations push the system towards the IR f.p.:
2 . L : =
59 ~ ;/dfd'j.l‘ wf?fv [KE‘K” —AE” + ("{R — 31’\1,;-*)]
2 _

where

5

k°u | Aw K-
=V e

1l
Q
Il

C
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Minimally coupled theory

inimally coupled theory — Scalar sector

ianluca Calcagni Max Planck Institute for Gravitational Physics (AEI)



Minimally coupled theory

inimally coupled theory — Scalar sector

3D action:

1 e 5
W, = = [d"x\/g [—J;rJA3 e — > OO + mr_‘r} .
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Minimally coupled theory

inimally coupled theory — Scalar sector

3D action:

1 2 == 2 /7 9
W= | dx/g [—G’; OO — 020A0 + mO‘] :

A term such as «‘9; Ao would generate a nonminimal, nontrivial
scalar-vector-tensor theory.
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Minimally coupled theory

inimally coupled theory — Scalar sector

3D action:

]. 2 = 2 /7 .
W,=5 | dx\/g [—O’; OA "0 — 020A0 + mo‘] .

A term such as u'9; Ao would generate a nonminimal, nontrivial
scalar-vector-tensor theory.

Pseudo-differential operators A“ = [g;i(r. x)V'V7*, a € C,
studied since the late 60’s [Seceley 1967 Harmander 1968]

I

(0
(

C)
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Minimally coupled theory

ractional calculus

@ Fractional calculus as old as ordinary calculus (Riemann,
Liouville) but subtler.
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@ Fractional calculus as old as ordinary calculus (Riemann,
Liouville) but subtler.

@ Applications: statistics and long-memory processes such
as weather and stochastic financial models,
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@ Applications: statistics and long-memory processes such
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Minimally coupled theory

ractional calculus

@ Fractional calculus as old as ordinary calculus (Riemann,
Liouville) but subtler.

@ Applications: statistics and long-memory processes such
as weather and stochastic financial models, system

modeling and control in engineering.

@ Difficult to represent fractional operators and define
functional calculus.
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Minimally coupled theory

ractional calculus

@ Fractional calculus as old as ordinary calculus (Riemann,
Liouville) but subtler.

@ Applications: statistics and long-memory processes such
as weather and stochastic financial models, system
modeling and control in engineering.

@ Difficult to represent fractional operators and define
functional calculus. Initialized calculus [Lorenzo and Hartley
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Minimally coupled theory
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Minimally coupled theory

@ Liouville derivative:

d” K k! —n
A (k— n)!"k
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Minimally coupled theory

@ Liouville derivative:

a, M : & Eg+1)
d\:”JrL = (E—m)t dre” T(B—at+ 1)
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Minimally coupled theory

@ Liouville derivative:

& k! :
- o oo
d\:”l (k — n)! dx‘-’t1l f(.j—t1+1}r

@ 9%const = 0; A*T7 £ A®AP unless a or 3 natural;
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Minimally coupled theory

@ Liouville derivative:

ar . k! : d“ C(3+1 :
,{.R E= rk—n i 1._-3 = { §-E) I"j

dx? (k —n)! dxe I'(B —a+1)

—N

@ 9%const £ 0; A7 £ A®AP unless « or 3 natural; solutions
of the fractional wave equation do not solve ordinary wave
equation, continuum spectrum of massive modes [Barci e

aTals
- L
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Minimally coupled theary

ractional functional calculus
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Minimally coupled theory

Fractional functional calculus

@ Integration by parts < self-adjoint definition of A“:

/ & x \/GAA*B = / Fx /2 (A%A)B + ...
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Minimally coupled theory

Fractional functional calculus

@ Integration by parts < self-adjoint definition of A“:

/ dx \/GAA*B = / x /2(AA)B + ...

@ Functional variation with respect to the metric g;;:

SA°

14 =
0gij

B
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Minimally coupled theory

Fractional functional calculus

@ Integration by parts < self-adjoint definition of A“:

/ d’x /gAA®B = / &x/z(A“A)B + ...

@ Functional variation with respect to the metric g;;:

OA\°

A—
08ij

B

@ Trick: A* =e*n2

ianiuca Calcagni Max Planck Institute for Gravitational Physics (AEI)



Minimally coupled theory

Fractional functional calculus

@ Integration by parts < self-adjoint definition of A“:

/ d&’x /gAA*B = / d’x /g (A“A)B +

@ Functional variation with respect to the metric g;;:
r:r::*
- f)Q”

B

e ik A" —e~™~ cnihal
A(GA®)B = [ ds (ASA)(5In A)A*B
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Minimally coupled theory

Fractional functional calculus

@ Integration by parts < self-adjoint definition of A“:

/ dx \/GAA®B = / &’x /2 (A“A)B +

@ Functional variation with respect to the metric g;;:
A

A~

08ij

B

e Tick A= —e~™A cnithal
A(0A*)B = [, ds(A°A)(6In A)A*—*B and then use Borel
functsonal calculus.
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Minimally coupled theory

Fractional functional calculus

@ Integration by parts < self-adjoint definition of A~

/ & x \/GAA*B = / x /2(A“A)B + ...

@ Functional variation with respect to the metric g;;:

VA S

A
0gij

B

e ik A" —e™" snilal
A(0A*)B = [, ds(A°A)(61n A)A“—*B and then use Borel
functional calculus.

@ “Fortunately”, we do not have to enter into these details. E

D1/181
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Minimally coupled theary

inimally coupled theory — Scalar sector
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Minimally coupled theory

Fractional functional calculus

@ Integration by parts < self-adjoint definition of A“:

/ dx \/GAA*B = / *x /2 (A%A)B +

@ Functional variation with respect to the metric g;;:
0:*
= gii

B

@ lick- A= —ea~™2 cnihal
A(0A*)B = [, ds(A°A)(61n A)A“*B and then use Borel
functfonal calculus.

@ “Fortunately”, we do not have to enter into these details.
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Minimally coupled theory

inimally coupled theory — Scalar sector

4D scalar action: &
2

F_

:
By A% — m? o

6
y =

/ drd’x,/gN
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Minimally coupled theory

inimally coupled theory — Scalar sector

4D scalar action: W

6
Z j_lf}A:l jr_) — j 1:[

_1_"!

sfﬂ:%'/drd%\/ aN

IR limit:

1 . a2 == =
56~ > / drd”x,/gN [N3 — |3:2|0;0d 0 — m-oz]
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Minimally coupled theory

inimally coupled theory — Cosmology
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Minimally coupled theory

inimally coupled theory — Scalar sector

4D scalar action: W

6
——Z By A jnmm}

...

/ drd’x /2N

IR limit:

b= : =
S¢ ~ = /drd x\/gN [V — | 32|0;00" 0 — H’I_O_]
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Minimally coupled theory

inimally coupled theory — Cosmology
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Minimally coupled theory

inimally coupled theory — Cosmology

Nontrivial effects only in the presence of curvature.
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Minimally coupled theory

inimally coupled theory — Cosmology

Nontrivial effects only in the presence of curvature.

. . o
Friedmann equation:
,  8wGc B2 2K AA
e = . -
= cl & 3
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Minimally coupled theory

inimally coupled theory — Cosmology

Nontrivial effects only in the presence of curvature.
Friedmann equation:

- 87Ge B~ K A2A
B ="""p — -

3 a a- 3
= 2X 2K
= e

3 —1 3

D
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Minimally coupled theory

inimally coupled theory — Cosmology

Nontrivial effects only in the presence of curvature.
Friedmann equation:

- STGe B- K A
g — —
3 P at a’ 3
- 2X K~ K
Ix—1 3

Possibility of a bounce at

c|A 3cK B’
}Oﬂc == —E'* 1 + 1R

87G 87wGa?

¥

D
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Minimally coupled theory

inimally coupled theory — Cosmology

ensor linear perturbations
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Minimally coupled theory

inimally coupled theory — Cosmology

ensor linear perturbations

e 1 2 2 - Hz 9. .
o\Is, = — — /drd"-ta‘ h hy; — (,’ j) a h; A°hY

2K
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Minimally coupled theory

inimally coupled theory — Cosmology

ensor linear perturbations

[
I

I = s g
s — /d?‘d"-t{r h hy; — (,} 1) a h; A°hY

22 22

In momentum space, v, — ah;. IR A term included,

, K- zkf’ a’
1';;—1'— k__.iu(‘jyl) F—? 1',{—:0.
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Minimally coupled theory

inimally coupled theory — Cosmology

ensor linear perturbations

- P o
i 1 s = - o, . =
iy drd’xa- | K" — ah-A\>hY
g V2 1 212 -

In momentum space, v, — ah;. IR A term included,

= 2 :kﬁ "
1‘;;4- R’—{-( ) — — — v = 0.

vt )] a* a
Corley—Jacobson dispersion relation as in trans-Planckian
Cosmology Brandenberger and Martin 2000—2003].
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Minimally coupled theory

inimally coupled theory — Cosmology

ensor linear perturbations

P 2 &

3 2 | ijpn K- 27 A3
xa” (W h; — (,} ?) a hi; A h

§9s, = —

22 212

In momentum space, v, — ah. IR A term included,

- K2 :kf’ a”’
Ve + k‘+<,} q,) —— | %=0.

2] & a
Corley—Jacobson dispersion relation as in trans-Planckian
cosmology [Brandenberger and Martin 2000—2003].

Scale-invariant tensor spectrum (p < —1):
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Minimally coupled theory

inimally coupled theory — Cosmology

Scalar linear perturbations

D
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Minimally coupled theory

inimally coupled theory — Cosmology

Scalar linear perturbations

Perturbed KG equation for a test scalar field w, = adoy: o

6 174
Ntk o — — ming O
> at a
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Minimally coupled theory

inimally coupled theory — Cosmology

Scalar linear perturbations

Perturbed KG equation for a test scalar field u, = adoy: o

kl‘j 1
1 ) . a .
m -t Ik —o; _—— o —0

> at a

Strongly scale-dependent scalar spectrum!
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Minimally coupled theory

inimally coupled theory — Cosmology

Scalar linear perturbations

Perturbed KG equation for a test scalar field 1y = ado,: o
v !\6 {IH
U, + [k'aﬁ4+m]uk_0.
(l )

Strongly scale-dependent scalar spectrum!

,—

- ( g l
1 Ps = K1) cos? [27|p| — - creTk |

where A > | for wavenumbers k& ~ 2.
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Minimally coupled theory

inimally coupled theory — Cosmology

Scalar linear perturbations

Perturbed KG equation for a test scalar field y = ado,: o

.’xﬁ 1

I/ 9 CI ¥

u + | — o5———+m |y =0.
(l a

Strongly scale-dependent scalar spectrum!

- f A A LT l
k‘Jszk:‘Ier}erJ“‘“ cos” [ _I — Oz “AHP] .

where A > 1 for wavenumbers k& ~ 2.

= Abandonmg detalled balance the sugn gets flxed
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Nonminimal coupling

onminimal coupling — 3D action (generalizable)
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Nonminimal coupling

onminimal coupling — 3D action (generalizable)

W = — ,»_;3[1“}4—/(1 x\/g [ﬂRTS{}Q oA ‘R,;;—EL(O]}@
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Nonminimal coupling

onminimal coupling — 3D action (generalizable)

1 | -— = |
| — 2 / w3(I') + / d"x\/g [)LE-R + s0g” OA " “Rij — ZL[;_':}} &
| 3 -
Lio) = pAw+ 1 (53 O\ %d + S»OAO — me‘)

4D action defined with £y — — Ly
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Nonminimal coupling

onminimal coupling — 3D action (generalizable)

1 e ; > |
W = — [ws(l)+ / Fx /g (iR + 50" oA Ry — 2L(0)| ®
s - '
Lio) = pAw+ 1 (530&‘”'0 + 5500 — pmo—)
4D action defined with Ly — — Ly, very complicated but its

properties can be inferred by looking only at a few terms.
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Nonminimal coupling

onminimal coupling — 3D action (generalizable)

1 =ik = ; \
W = — [ws()+ / Pxy/g (iR + 50870 2Ry — 2L(0) | ?
| g 3 |
1 — :
L(¢0) = puAw+ > (53 OA "0 + 52000 — mno—)
4D action defined with Ly — — Ly, very complicated but its

properties can be inferred by looking only at a few terms.
UV marginal kinetic terms:

2 ,
5 f 5.5 4 53 5 5 = =
— (550- — _L) T {j — Sk (22X — l)] doA7do

1%

— o
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Nonminimal coupling

onminimal coupling — 3D action (generalizable)

I = = .
2 .

|
Lio) = pAw+ 1 (5;@_\ O+ 5500 — umo- )

4D action defined with Ly — — Ly, very complicated but its
properties can be inferred by looking only at a few terms.
UV marginal kinetic terms:

2 e _E. e A) v ~ 3 c
% (550‘ — H_L) AR {; — Sgk~ o — l)] 00N’
UV stability if
=
o> = > Zex (ZX—1)
@ v2|so) ;
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Nonminimal coupling

onminimal coupling — Stability
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Nonminimal coupling

onminimal coupling — Stability

Scalar field effective potential

y, 2 7 o
V(r::')xo*—B[ “+-2 ]0'—{—( W)

m IR I
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Nonminimal coupling

onminimal coupling — Stability

Scalar field effective potential

| Aw 2 _— = %
V(O) X O-L = 8 = 7 -~ i~ o + =
m 36-(3X — 1) m

Double-well potential, positive cosmological constant.
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Nonminimal coupiing

onminimal coupling — Stability

Scalar field effective potential

‘ Aw 2 - 77, o, &
V(O) XO-!._S = +,.., 7 o + “
m 36=(3A — 1) m
Double-well potential, positive cosmological constant.
Problems:

@ V(0pmim) < 0, AdS vacuum not lifted.
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Nonminimal coupling

onminimal coupling — Stability

Scalar field effective potential

| Aw 2 ,  [(4Aw)° @
V(o) x ¢* —8 “{—i-,_. e O + =
m 36=(3A — 1) m
Double-well potential, positive cosmological constant.
Problems:

@ V(opmin) < 0, AdS vacuum not lifted.
@ Effective speed of light ¢*(#) > 0 only near local maximum.
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Nonminimal coupling

onminimal coupling — Stability

Scalar field effective potential

| Aw 2 - AN @
V(6) x 6* —8 | = + ——~ o+ —
m 36=(3A — 1) m
Double-well potential, positive cosmological constant.
Problems:

@ V(omin) < 0, AdS vacuum not lifted.
e Effective speed of light ¢*(») > 0 only near local maximum.
@ Total action defines a peculiar scalar-tensor theory. Under

conformal rescaling g; = Q%(x) g,

S = /drd‘:x VeN {.Q}_“_f,;; + ()N OF FEDIR . .. }
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Nonminimal coupling

onminimal coupling — Stability

Scalar field effective potential

| Aw 2 > 4hn% @
V(o) x¢ -8 > ¢ 5 o + e
m 36-(3A — 1) m
Double-well potential, positive cosmological constant.
Problems:

@ V(onmin) < 0, AdS vacuum not lifted.

@ Effective speed of light ¢*(¢) > 0 only near local maximum.

@ Total action defines a peculiar scalar-tensor theory. Under
conformal rescaling g;; = 0% (x) 2

S = /drd‘:x VeN {.Q‘?'_“_f,g + [ () =+ F (IR + . .. }

At IR point one may define £(Q)Q > + ¢*(¢) = const but
only on inhomogeneous backgrounds.
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Conclusions

onclusions

@ All the above arguments (generalizable) stress the
possibility of severe fine tunings in the model. o
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Nonminimal coupling

onminimal coupling — 3D action (generalizable)

1 o . = |
W = — [ws(D)+ / Pxy/g 1R + s0g"6oA" "Ry — 2L() ] ®
i : '
| |
Lio) = pAw+ 1 (53,0._\ O+ 5500 — umo- )
4D action defined with Ly — — Ly, very complicated but its

properties can be inferred by looking only at a few terms.
UV marginal kinetic terms:

= 4 ===3 S - ==
% (550' — H_L) [ Va st {; — N 02— l)] oo
UV stability if
a
pl > ———, s > (25—
2] vZ|sg| = o | ] ‘
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Nonminimal coupling

onminimal coupling — Stability

Scalar field effective potential

Nwr ) = \w e &
V(o) x ¢* —8 [ . — ] o + (4 XW)

m 35%Z(3)\—1) m
Double-well potential, positive cosmological constant.
Problems:
@ V(omin) < 0, AdS vacuum not lifted.
e Effective speed of light ¢*(#) > 0 only near local maximum.
@ Total action defines a peculiar scalar-tensor theory. Under

conformal rescaling g;; = Q%(x) g,

S — /drd‘:x VeN {Q:’_‘_’E_K + [Cz[ra']ﬁl+: + O lf(ﬁ_)]l_i’ S }

At IR point one may define £(Q)Q > + ¢*(¢) = const but _
only on inhomogeneous backgrounds. E
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Conclusions

onclusions

@ All the above arguments (generalizable) stress the
possibility of severe fine tunings in the model. o
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Conclusions

onclusions

@ All the above arguments (generalizable) stress the
possibility of severe fine tunings in the model. o

@ Also from other IR arguments In the non-projectable
Version [Nastase 2009: Charmousis et al. 2009] detailed balance
should be abandoned
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Conclusions

onclusions

@ All the above arguments (generalizable) stress the

possibility of severe fine tunings in the model. P

@ Also from other IR arguments In the non-projectable
Version [Nastase 2009: Charmousis et al. 2009] detailed balance
should be abandoned. Th|s IS clear especially in the theory
with matter.
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Conclusions

onclusions

@ All the above arguments (generalizable) stress the

possibility of severe fine tunings in the model. o
@ Also from other IR arguments in the non-projectable
Version [Nastase 2009: Charmousis et al. 2009] detailed balance
should be abandoned This IS clear espemally In the theory
with matter.
@ Summary: (i) Projectability, (it) /2, (iif) detailed balance
problems.
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Conclusions

onclusions

@ All the above arguments (generalizable) stress the

possibility of severe fine tunings in the model. o

@ Also from other IR arguments in the non-projectable
Version [Nastase 2009: Charmousis et al. 2009] detailed balance
should be abandoned. This is clear especially in the theory
with matter.

@ Summary: (i) Projectability, (i1) /2, (iil) detailed balance
problems. One can solve (i-ii) separately but in order to
solve all of them the hardest to accomodate seems (ii).
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Conclusions

onclusions

@ All the above arguments (generalizable) stress the

possibility of severe fine tunings in the model. o

@ Also from other IR arguments in the non-projectable
version [Nastase 2009: Charmousis et al. 2009] detailed balance
should be abandoned. This is clear especially in the theory
with matter.

@ Summary: (i) Projectability, (ii) /2, (iif) detailed balance
problems. One can solve (i-ii) separately but in order to
solve all of them the hardest to accomodate seems (ii).
Anyway, difficult quantum theory without detailed balance...
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Conclusions

onclusions

@ All the above arguments (generalizable) stress the

possibility of severe fine tunings in the model. o

@ Also from other IR arguments in the non-projectable
version [Nastase 2009; Charmousis et al 2] detailed balance
should be abandoned Th|3 IS clear espemally In the theory
with matter.

@ Summary: (i) Projectability, (i1) /2, (i) detailed balance
problems. One can solve (i-ii) separately but in order to
solve all of them the hardest to accomodate seems (ii).

Anyway, difficult quantum theory without detailed balance...
@ Provocation:
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Conclusions

onclusions

@ All the above arguments (generalizable) stress the

possibility of severe fine tunings in the model. o

@ Also from other IR argurnents In the non-projectable
version [Nastase 2009: Charmousis et al. 2009] detailed balance
should be abandoned Th|s IS clear especially in the theory
with matter.

@ Summary: (i) Projectability, (ii) /2, (iil) detailed balance
problems. One can solve (i-ii) separately but in order to
solve all of them the hardest to accomodate seems (ii).
Anyway, difficult quantum theory without detailed balance...

@ Provocation: Projectability (closure of algebra, no IR
ISsues)
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Conclusions

onclusions

@ All the above arguments (generalizable) stress the

possibility of severe fine tunings in the model. o

@ Also from other IR arguments in the non-projectable
version [Nastase 2009: Charmousis et al. 2009] detailed balance
should be abandoned This is clear espemally In the theory
with matter.

@ Summary: (i) Projectability, (it) /2, (iil) detailed balance
problems. One can solve (i-ii) separately but in order to
solve all of them the hardest to accomodate seems (ii).
Anyway, difficult quantum theory without detailed balance...

@ Provocation: Projectability (closure of algebra, no IR
Issues) and detailed balance with no fundamental scalars
(simple quantum theory)?
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Conclusions

onclusions

@ All the above arguments (generalizable) stress the

possibility of severe fine tunings in the model. o

@ Also from other IR argurnents in the non-projectable
version [Nastase 2009: Charmousis et al. 2009] detailed balance
should be abandoned Th|s IS clear e-spemally In the theory
with matter.

@ Summary: (i) Projectability, (it) /2, (iil) detailed balance
problems. One can solve (i-ii) separately but in order to
solve all of them the hardest to accomodate seems (ii).
Anyway, difficult quantum theory without detailed balance...

@ Provocation: Projectability (closure of algebra, no IR
Issues) and detailed balance with no fundamental scalars
(simple quantum theory)? i problem remains
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Conclusions

onclusions

@ All the above arguments (generalizable) stress the

possibility of severe fine tunings in the model. o

@ Also from other IR arguments In the non-projectable
version [Nastase 2009: Charmousis et al. 2009] detailed balance
should be abandoned ThIS IS clear especnally In the theory
with matter.

@ Summary: (i) Projectability, (it) /2, (i) detailed balance
problems. One can solve (i-iil) separately, but in order to
solve all of them the hardest to accomodate seems (ii).
Anyway, difficult quantum theory without detailed balance...

@ Provocation: Projectability (closure of algebra, no IR
Issues) and detailed balance with no fundamental scalars

(simple quantum theory)? i problem remains... still, what's —
the matter?

ianluca Calcagni Max Planck Institute for Gravitational Physics (AE]) =




Conclusions

wo future directions

orentz violation
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Conclusions

wo future directions

orentz violation

7

@ Dispersion relation w” ~ |k|* + a|k|*, Lorentz-violating
effect O[(E/Ep)°].
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Conclusions

wo future directions

orentz violation

2

@ Dispersion relation w”? ~ |k|* + a|k|*, Lorentz-violating
effect O[(E/Ep)°].
@ TIree-level argument, when the propagator gets loop

corrections these might produce 0(10—) effects (or fine
tuning of counterterms)! [Collins et al. 2004, 2008].
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Conclusions

wo future directions

oreniz violation

@ Dispersion relation w” ~ |k|* + a|k|=, Lorentz-violating
effect O[(E/Ep)°].

@ Iree-level argument, when the propagator gets loop
corrections these might produce O(10—> effects (or fine
tuning of counterterms)! [Collins et al. 2004, 20¢

@ Issue recently confirmed by lengo et al. 2009 for Lifshitz
scalar theories.
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Conclusions

wo future directions

ractal structure
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Conclusions

wo future directions

ractal structure

@ Spectral dimension flows from 1 + D in the infrared to =
1 + D/z = 2 in the ultraviolet, like CDT, QEG and
spinfoams.
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Conclusions

wo future directions

ractal structure

@ Spectral dimension flows from 1 + D in the infrared to —
1 + D/z = 2 in the ultraviolet, like CDT, QEG and
spinfoams.

@ Newton potential G(/x|) ~ |x| ' at large scales,

G(|x|) ~ x|~ in general
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Conclusions

wo future directions

ractal structure

@ Spectral dimension flows from 1 + D in the infrared to s
1 + D/z = 2 in the ultraviolet, like CDT, QEG and
spinfoams.

@ Newton potential G( x|) ~ |x| ' at large scales,

G(|x]) ~ |x|*~P in general, typical of fractal manifolds.
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Conclusions

wo future directions

ractal structure

@ Spectral dimension flows from 1 + D in the infrared to =
Il + D/z = 2 in the ultraviolet, like CDT, QEG and
spinfoams.

@ Newton potential G(x|) ~ |x| ' at large scales,
G(|x]) ~ |x|**~P in general, typical of fractal manifolds.

@ Integrals on net fractals (e.g., self-similar or cookie-cutter
sets) can be approximated by fractional integrals [Renct=
>003], natural to consider fractional integrals over a space

with fractional dimension.
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Conclusions

wo future directions

ractal structure

@ Spectral dimension flows from 1 + D in the infrared to =
1 + D/z = 2 in the ultraviolet, like CDT, QEG and
spinfoams.

@ Newton potential G(/x|) ~ |x| ! at large scales,

G(|x|) ~ |x|*~P in general, typical of fractal manifolds.

@ Integrals on net fractals (e.g., self-similar or cookie-cutter
sets) can be approximated by fractional integrals [Reneta
>003], natural to consider fractional integrals over a space
with fractional dimension.

@ Stieltjes actions admit a neat geometncal and maybe
physical interpretation [Bullock 19388, Podlubny 2001].
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eft-sided Riemann—Liouville fractional integral
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Shadows on a wall

eft-sided Riemann—Liouville fractional integral
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Shadows on a wall

eft-sided Riemann—Liouville fractional integral

L
= = I {-_- . T
oD f(1) = m)‘/ofmr e
= f(7)dg:(7)
40
=" '
SCY — Wil
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Shadows on a wall

eft-sided Riemann—Liouville fractional integral

L
S = I ! = N S, o T
o), "fl1) = I‘-('a)_/gj(’m 3
— f(7) dg’r(r)
4 0
G — e )
BNY) = i)

Scaling property:
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Shadows on a wall

eft-sided Riemann—Liouville fractional integral

: @
= l .
oD; “f(1) = F) -

= / f(7)dg(r)

i) = 7

ge\ = = U
Scaling property:

gei(bT) = b"gi(T)

Anisotropic scaling natural in (Lebesgue—)Stieltjes integrals!
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Shadows on a wall

Fence shadows (from Podlubny arXiv:math/0110241)
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Shadows on a wall

ence shadows: (7.f) plane

il
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Shadows on a wall

ence shadows: (7.f) plane

al

@ Usual integral as “area under the curve f(7)™

oD, 'f(1) :ff(?') dr.
0
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Shadows on a wall

ence shadows: (7.f) plane

il

@ Usual integral as “area under the curve f(7)™

oD f (1) = f f(r)dr.
0

@ Clocks measure time .
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Shadows on a wall

Fence shadows: (7.f) plane

@ Usual integral as “area under the curve f(7):

oD; (1) = [f(?')d‘?'-
Jo

@ Clocks measure time .

@ Point particle: usual operational definition of distance as
integrated speed f(7) = v(7) in an interval AT = 1.
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Shadows on a wall

ence shadows: (g;.f)

B
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ence shadows: (g;.f)

@
@ The shadow is the fractional integral with o = 1 for fixed r.
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Shadows on a wall

ence shadows: (g;.f) plane

&

@ The shadow is the fractional integral with o = 1 for fixed r.
@ When o = 1 the two shadows are identical.
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Shadows on a wall

Fence shadows: (g;.f)

o
@ The shadow is the fractional integral with o == 1 for fixed +.
@ When o = | the two shadows are identical.

@ ¢, inhomogeneous time but clocks still measure T.
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Shadows on a wall

Fence shadows: (g;.f) plane

@
@ The shadow is the fractional integral with o == 1 for fixed r.
@ When o = | the two shadows are identical.

@ ¢, inhomogeneous time but clocks still measure T.

@ Stieltjes integral is the actual distance covered by the
particle during a measured interval AT = 1.
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Shadows on a wall

Fence shadows: (g;.f) plane

o
@ The shadow is the fractional integral with « = 1 for fixed r.
@ When o = | the two shadows are identical.

@ ¢, inhomogeneous time but clocks still measure T.

@ Stieltjes integral is the actual distance covered by the
particle during a measured interval AT = 1.

@ Changing 7, also the relation between measured and
“cosmic” time changes!
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Shadows on a wall

ifshitz fractal universe

ianluca Calcagni Max Planck Institute for Gravitational Physics (AEI)



Shadows on a wall

ifshitz fractal universe

@ UV action and microphysics different because of the
“effective fractal structure” of spacetime at small scales.
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@ UV action and microphysics different because of the
“effective fractal structure” of spacetime at small scales.
Usual physics at large scales.
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@ UV action and microphysics different because of the
“effective fractal structure” of spacetime at small scales.
Usual physics at large scales.

@ [rade evidence for “exotic” ds with a model with “exotic™ dy.
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@ UV action and microphysics different because of the
“effective fractal structure” of spacetime at small scales.
Usual physics at large scales.

@ [rade evidence for “exotic” ds with a model with “exotic” dy.
With or without detailed balance.
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@ UV action and microphysics different because of the
“effective fractal structure” of spacetime at small scales.
Usual physics at large scales.

@ [rade evidence for “exotic” ds with a model with “exotic” dy.
With or without detailed balance. Redundancies: fractional
calculus, action on a boundary [Nishioka 2009].
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@ UV action and microphysics different because of the
“effective fractal structure” of spacetime at small scales.
Usual physics at large scales.

@ Irade evidence for “exotic” ds with a model with “exotic™ dy.
With or without detailed balance. Redundancies: fractional
calculus, action on a boundary [Nishioka 2009].

@ Study quantum mechanics (action principle, path integrals,
particle propagation, etc.) on a fractal.
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@ UV action and microphysics different because of the
“effective fractal structure” of spacetime at small scales.
Usual physics at large scales.

@ [rade evidence for “exotic” ds with a model with “exotic™ dy.
With or without detailed balance. Redundancies: fractional
calculus, action on a boundary [Nishioka 2009].

@ Study quantum mechanics (action principle, path integrals,
particle propagation, etc.) on a fractal.

@ Concrete definition of a universe with UV fractal structure.
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S ~ /dﬁﬂ dDhm (x)[odo] o
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S ~ / dg,. (£)d%h,, (x)[6016] =

Nontrivial measure but isotropic r and x:

f=pl=—1, [¢]=—S+H0+2

—
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% / dg,. (£)d%h, (x)[6016] .

Nontrivial measure but isotropic r and x:
8] + [A]D +2

=kl=-1. [g=—2"01

—

(i) [g] = —z(a=2), [h] = —1, [drd®x — [dg,(r)d®x.
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S ~ /dﬁﬂ dDhm (x)[odo] o

Nontrivial measure but isotropic r and x:

=K]=—1. [d]= B+ [ﬁ]D 42

(i) [¢] = —z(e¢=2), [A] = —1, fdrde — fdgfg(r)df’.r. At the
UV and IR fixed points, Cauchy formula for repeated
iIntegration (z € N).
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S ~ /defﬂ dDhm[ v)[olC]o] o

Nontrivial measure but isotropic r and x:

f=pl=—1, [¢]=—S+0D+2

(i) [¢] = —z(e=2), [A] = —1, JdrdD’i—r | dg;, (1) 1)dPx. At the
uv and IR fixed points, Cauchy formula for repeated
integration (z € N). Scalar with same dimensionality as
Lifshitz scalar, (0] = (D — z)/2.
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S ~ /dﬁﬂ 1)d°h,, (x)[¢00] o

Nontrivial measure but isotropic r and x:

== BN

—

(i) [¢] = =z (a=2), [h] = —1, fdrde—r fdgm(r)dD.r. At the
uv and IR fixed points, Cauchy formula for repeated
integration (z € N). Scalar with same dimensionality as
Lifshitz scalar, (0] = (D — z)/2.

(i) [e] = —1, [h] = —1/z (@ =1/2), [ did®x — [ drdDg_rg(-rf ).
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S ~ [d% 1)d°h,, (x)[¢000] o

Nontrivial measure but isotropic r and x:

f=l=—1, [¢=—S+00+7

(i) [¢] = —z(ex=2), [A] = —1, fdrd”x—fderﬂ )dPx. At the
uv and IR fixed points, Cauchy formula for repeated
integration (z € ) Scalar Wlth same dimensionality as
Lifshitz scalar, (o] = (D —

(i) [g] =—1, [A] = —1/z Z (= l-- j drd”x — [ drd”g
the UV fixed point, genuine fracttonal integration.

(). At
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