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Combine gravity with the concept of anisotropic scalin

i 1=]

In a2 spacetime with coordinates (£, x) = (t,z2*),i=1,... D,
consider

x — bx,

t — b7t.
Here z is the dynamical critical exponent.
In , many values of z are possible; not just
integers (1, 2, . . . ) but also fractions (z = 3/2 for KPZ surface

growth in 1 + 1 dimensions, . . . ).

Lifts of static critical systems (Euclidean QFTs) to
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Search for a UV fixed point:

asymptotic safety: relativistic, nontrivial fixed point.
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Anisotropy characterized by the dynamical expone

Flow between UV and IR:
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Also: Emergent Abelian Lifshitz gravity with 2

4

2 and z = 3:



String theory is a beautiful theory of quantum gravity, but it
appears both “too large” and “too small.”
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String theory is a beautiful theory of quantum gravity, but it
appears both “too large” and “too small.”

b= +rin
S =1

h]

voll @ |
LIl

£S5

un
(V]
(1 ¥]

| Onc orvy

!
h1=]

Quantum mechanics is absolute, but

Emergent.
Motivation for string theorv:
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Strings and gravity out of equilibrium
far from static/stationary?
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String theory is a beautiful theory of quantum gravity, but it
appears both “too large” and “too small.”
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Quantum mechanics is absolute, but

, if space is
emergent.

"".

1'_.--_--:-----'_".;-'\ TimFr
VI LI VarLiui R

o b o e
rin al=Te]

ey

e

Jg

Strings and gravity out of equilibrium. Reaching configurations
far from static/stationary?

Other motivations: Problem of time in quantum gravity, . ..
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Gravity in our Universe of 3 + 1 dimensions

(ii) Gravity on worldvolumes of brane
(iii) Gravity duals of field theories in AdS/CFT
v) Mathematical applications

(v) Conventional gravity, in spacetimes which are asymptotically
anisotropic!




Consider branes fluctuating in ambient space.
Four “coincidences” pick out 1 + 1 dimensions.

(1) (lower) critical dimension of scalar fields,

_ 9
W = E /:'fDx (80)2, (0] = L

9

(2) critical dimension of gravity, [Gn]| = 0.

Coincidence (1) implies an infinite number of classically

marginal couplings in the theory. (Such systems are rare; cf.

Fermi liquids.)
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In the quantum theory, marginality im
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A condensed-matter trick to promote the static universality class
given by W to a dynamical one: Promote ¢(x) to &(%, x), write

Wolo(x)] = exp{—W/2} is a groundstate wavefunction,

because ]
L0
_— — 1) L —
do 2 % -

Critical dimension has shifted:

F D2




The Lifshitz scalar can be deformed by relevant terms:
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— the flow leads naturally to z =1 in IR,

ntal Lorentz invariance emerges in IR,
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— the relevant coupling p is the emergent speed of light (indeed,
define z° = ut).



The Lifshitz scalar describes a tricritical point, connecting the
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The Lifshitz scalar can be deformed by relevant terms:
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— the flow leads naturally to z =1 in IR,

cidental Lorentz invariance emerges in IR,
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The Lifshitz scalar can be deformed by relevant terms:
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— the flow leads naturally to z =1 in IR,

accidental Lorentz invariance emerges in IR,

— the relevant coupling i is the emergent speed of light (indeed,
define z° = ut).



A condensed-matter trick to promote the static universality class
given by W to a dynamical one: Promote ¢(x) to &(t, x), write
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The Lifshitz scaiar describes a tricritical point, connecting the
» — 0 and ¢ — const phases with the spatially modulated pha

¥y
M

. ,,
( =
b

—




1Zzations exists:

A natural sequence of gener

(18]

Split z* into groups,
e e N ]

with iy (io,...1%,) taking D (D2, ... D,) values, and
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Each k-th group has its own value of z, equ
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A good starting point, but: only invariant under z* = Z*
fields are only spatial metric components.

(1) Introduce ADM-like variables N (lapse) and N; (shift);

(2) Replace g;; — K;ij = — I ViV VNG,

Replace /g — N /g.

Sym metry Diffe(M).
t =1t(t), * = z*(t, 29).

N and N; are gauge fields of Diffz(M).

AT

In the minimal realization, /V is a function of only 7
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A good starting point, but: only invariant under z* = 7
fields are only spatial metric components.

(1) Introduce ADM-like variables N (lapse) and N; (shift);

| . 7T R T . — g \‘_

(2) Replace g:; — Kij = 5 (gij — VilN; — VN
Replace /g — N /3.

Symmetry: | . Diff=(M).

N and N; are gauge fields of Diffz(M).
In the minimal realization, V is a function of only 7.



Taking the Einstein-Hilbert action

] | I _
W = — / dPx vaR.
i .
we get
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Shift in the critical dimension, as in the Lifshitz scalar:

-

The simplest model with N (%) has the usual number of graviton
polarizations plus an extra scalar DoF and dispersion relation
2~ kL

i



The role of the condition of detailed balance is twofold:

(1) A technical one: Reduces the number of independent
couplings in the action.

In condensed matter, nongravitational examples of theories with
detailed balance exhibit a simpler renormalization structure.

(2) Perhaps a more conceptual one: The condition of detailed
balance arises in systems out of equilibrium, relating S to the
equilibrium theory described by W'.

Detailed balance can be softly broken, or eliminated altogether,
in favor of the most general action of the effective field theory
approach.
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Taking the Einstein-Hilbert action

1 [ _
W = / dPx vaR.

2
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Shift in the critical dimension, as in the Lifshitz scalar:
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Using detailed balance, the theory is related (in imaginary time)
to the covariantized Ricci flow equation,

In particular, the topological version of this theory represents a
natural quantum field theory associated with the Ricci flow.

Ricci flow has been instrumental in Perelman’s proof of the
Poincaré conjecture.

Observables and their correlation functions?



Using detailed balance, the theory is related (in imaginary time)

to the covariantized Ricca flow equation.

In particular, the topological version of this theory represents a
natural quantum field theory associated with the Ricci flow.

Ricci flow has been instrumental in Perelman’s proof of the
Poincaré conjecture.

Observables and their correlation functions?



The critical dimension of z = 2 gravity has shifted, from 1 +1
of the relativistic theory to 2 + 1. This makes it a candidate
theory on the worldvolume of a nonrelativistic membrane.

This theory is closely related to the bosonic string:
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The second-quantized membrane ground state which reproduces
the perturbative string partition function takes the form of a
Bose-Einstein condensate of the ground states of membranes of
genus h, correlated across all genera.



The z = 2 gravity theory with detailed balance simplifies in
2+1 dimensmns,

the potential term for pure gravity,
= : i 1 iiy\2 =
Sy ~ e — Eﬁﬁ - —g.
vanishes identically. When coupled to Lifshitz scalars, Sy takes
the form )
Sy ~ /;Ifi .

In order to match the Polyakov path integral of critical string
theory, we need to match the symmetries, including conformal

R e
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Perhaps surprisingly, a local version of anisotropic scaling
symmetries can be defined, in 2 way compatible with Dlﬂf_" 178}

For general values of z, we define
gi; — exp(20(t, x))gij, Ni — exp(20(L, x))N;,

N — exp(zQ2E,x))N.

1

Such anisotropic Weyl transformations represent a classical
symmetry of 2z = 2 gravity in 2 + 1 dimensions if A = 1/2.

[(¥]

More generally, anisotropic Weyl transformations:

—fix A=1/D;
— make N(%,x) a function of spacetime;
— are compatible with foliation-preserving diffeomorphisms!



Changing z shifts the critical dimension where [s%] = 0.

3 + 1 dimensions require z = 3.

A theory with detailed balance can be written down, starting
with ] _ .
H':/_.;g[f q) E/f \dl' + - T'ATAT.
. 3

EoM yield C* = 0, where

= s R e Naul
is the ADM-Cotton-Yo

C* exhibits many interesting math and physics properties. For
example, it is a conformal tensor.



Theory with =z > 1 represents a candidate UV description;
barring exact conformal invariance, relevant deformations will
be generated by quantum corrections.

Deform W, to

F — .f;l W3+ /:_fDK\v.E_';:R — 2Aw ).

This will vield relevant terms in S,



Or, one can _and add relevant
terms directly to S.

Either way, superficially, the leading IR terms in the action

match the structure of GR, with an emergent speed of i
G and A, all determined in terms of u, &, .. ..

.i,.,-.-
e,

(=]

pancl

)

However, there are clearly several discre

(D

¥

N(t) is only a function of time, leading to one extra
propagating scalar DoF;

A =1 in GR, but here it is a (running) coupling constant;

gauge symmetries Diffz(M ) are smaller than in

(conventional) GR. While this does not necessarily represent a
problem, it would be convenient to start with a theory that has

the same number of local gauge redundancies as GR.



Causal dynamical triangulations approach
to 3 + 1 lattice gravity:

Naive sum over triangulations does not work (branched
polymers, crumpled phases).

Modify the rules, include a preferred causal structure:
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More precisely, the

Spectird

dimension IS
d.(IR) =4.02+0.1

at long distances, and

d,(UV)=1.80+0.25

in the UV (before lattice artifacts are encountered).
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The spectral dimension can be defined in the continuum
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> = 4 would be formally power-counting renormalizable in 4 + 1
dimensions. There might be, however, several reasons to
consider z — 4 even when interested in 3 + 1 gravity:

.
the conformal factor does not get spatial dvnamics
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> = 4 would be formally power-counting renormalizable in 4 + 1
dimensions. There might be, however, several reasons to
consider z — 4 even when interested in 3 + 1 gravity:

— the contormal tactor ¢

he coni or does not get spatial dynamics in D = 3
— yith detailed balance:
_ _ R N
— in the minimal realization with the extra scalar DoF. the IR
physics suggests that the scalar will be in the
spatially-modulated phase.



Anisotropic gravity systems, if consistent, could provide a new
class of gravity duals for CFTs, in particular those relevant for
condensed matter.

Example: Start with W which has a Euclidean AdSp solution.
Then the theory with detailed balance, described by S in D + 1
dimensions, has a static solution given by

N =1, N;=0, g¢g;; =FEuclidean AdSp metric.

This geometry has an S”~' x R boundary.

Bulk isometries = conformal symmetries of S” ! plus time
translations.

These are the symmetries of a quantum critical system on the
boundary, already critical in the static limit.
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In retrospect, one example of a theory of gravity with
anisotropic scaling has appeared in the literature already in the

1970’s: the ultralocal theory of gravity [Isham;Teitelboim;Henn

It results simply from eliminating all derivative terms from the
potential, and setting

Sv—2A.
This case can be viewed from two perspectives, either as z = 0
or z — 00.
Remarkably, this theory is “generally covariant” — it has the

same number of gauge symmetries per spacetime point as GR.
The symmetry algebra is not that of GR, instead it is deformed
into spatial diffeomorphisms and a local U(1) symmetry.



Simplest attempt: Declare NV to be a function of everything, see
what happens. The Hamiltonian

H = fr_fDx (NH, + N*H,).

This approach has worked in the ultralocal theory, leading to
general covariance and the closure of the constraints.

At 1 < z < oo, the constraint algebra appears in trouble; it is
indeed the [H, (x),H 1 (y)] commutator that is problematic.

One apparently consistent way of quantizing this system: With
detailed balance, H, are quadratic in “a;; variables.” Declaring
a;;'s to be the first-class constraints closes the algebra. This
means quantizing the theory as a topological theory.



Why do we want N to be the function of £ and z*? N is related
to goo, and that is where the Newton potential is.
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Requiring the invariance of the action under this U(1)-extended
Diff( M) symmetry:

(1) fixes A =1,

(2) requires an additional coupling

/ \ E_\_.__L]R.

R . 1 s
X /\f gN | R — HR{_;U Jorsies

whose variation is

hence,

(3) the full nonlinear theory works only in 2 + 1 dimensions.
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Usefulness of the concept of anisotropic scaling in gravity is not
limited to “exotic” models of gravity with Lifshitz-type
behavior, but extends to solutions of conventional general
relativity (and string theory) with matter.

xample:

"

Holographic renormalization in spacetimes with “unusual”
asymptotic isometries. [he behavior of such geometries is often
confusing near the (naively defined) boundary. In particular,
Penrose’s definition of conformal boundary is often limited, and
often clashes with the picture expected from holography.




Our motivation originated from the study of the global structure
of Schrodinger and Lifshitz spaces.

Other useful applications: Warped AdS, near-horizon extreme
Kerr geometry, etc.
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In spacetime geometries whose asymptotic isometries are
compatible with Diffz(M ), one can use anisotropic conformal
transformations to define an anisotropic conformal

infinity /boundary of spacetime.



also:

Schrodinger space in Poincaré-like coordinates:

,  di?  2dtdO + dx2 + du?

(set z = 2 for simplicity). The Penrose conformal boundary is
one-dimensional.

Define scaling: x has z = 2, # has z = oo. This means

t — bt x — bx, 60— 6.
ine nested anisotropic Weyl transformations.
Define d _
The anisotropic conformal boundary is as expected from

holography: parametrized by ¢, x, 6 at u = 0.



also:

Schrodinger space in Poincaré-like coordinates:

.2 dt? - 2dt df + dx? + du?
=t =

(set z = 2 for simplicity). The Penrose conformal boundary is

one-dimensional.

Define scaling: x has z = 2, # has z = oo. This means

: 2 i : .
t — b°t. x — bx. g — 6.

= S e R e AT i e D ]
Define nested anisotropic Weyl transformations.

The anisotropic conformal boundary is as expected from
holography: parametrized by £, x,60 at u = 0.
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Near-horizon limits of black holes z—d black branes have *
very produ__ive tool, first in SUSY extremal cases (AdS/CFT),
the in xtremal non-SUSY cases (Kerr/CFT); Schwarzschild?
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“his is Rmdl-.—.-. < S*, and (of course) violates Einstein's

equations!



Near-horizon limits of black holes and black branes have been a
very productive tool, first in SUSY extremal cases (AdS/CFT),
then in extremal non-SUSY cases (Kerr/CFT); Schwarzschild?
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This is Rindlera x S*, and (of course) violates Einstein's
equations!



Near-horizon limits of black holes and black branes have been a
very productive tool, first in SUSY extremal cases (AdS/CFT),
then in extremal non-SUSY cases (Kerr/CFT); Schwarzschild?

2 2GN M\ . 1 , e
e — (1 — ;) dt? + - dr? + r2dQ32.
ro, (1 _ M) =

expand in smallness of p — r — rg; naively,

. i - T
ds” ~ —'f—s_'f'fz il

r H ,IU
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This is Rindlera x S“, and (of course) violates Einstein's
equations!



Usually, the near-horizon limit is taken as a scaling limit of the

AT £

solution, with M — oc. We instead keep M ed, and take the
scaling limit of the ¢ |
Split z#* into (t,z) = z%, a=0.1, and (8, p) = y%, with
a = 1,2. Introduce ¢, the speed of light along the horizon,
and take the ¢; — 0 limit. This leads to anisotropic scaling

r® — bx<,

y* — y".

This is a new type of Lifshitz scaling in gravity, with a
2 + (d — 2) split of spacetime, and a spatial anisotropy. Now

> = 1 along z, and z = o¢ along y~.



Sy — /rﬁff dPx (ﬁ'\lf’;‘if + UTAY + 0T + ) .

\A /]

- | & - N o 1 | A
[ Imrn FearnAarrm aliTatian - l{antity the ormnin ==t~
Wilsonian renormalization: ldentify the ground state! Scaling

towards the Fermi surface:

write k = kg + K, define scaling K — K /b, kr — kp;

dimensions @ along the Fermi surface # — 6. System effectively
behaves as a collection of 1 + 1 relativistic fermions
parametrized by “internal index” 6




First guess:

5 / d*z/—g (**'R _ 'EJR) |

This indeed has R? x ¥, as a solution.
This theory shares many good features of the ultralocal theory:

— the action does not contain higher derivatives;

— algebra of Hamiltonian constraints simplifies (perhaps as
many gauge symmetries as GR7?);

— N (and, indeed, all of g,3) is a spacetime-dependent field.

In addition, the model is power-counting renormalizable, as a
result of the spatial anisotropy. Quantum corrections are
calculable; model can be extended to higher dimensions.
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Thic indeed has R? x ¥, as a solution

This thee's shar** niany good features of S ie ultralocal theory:
dL | )
— the action does not contain higher derivatives;

— algebra c*HQar‘ltonian constraints” mplifies (perhaps as
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Fesult of the’L-patiaI anisotropy. Quantum corrections are
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First guess:
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This indeed has R? x ¥, as a solution.
This theory shares many good features of the ultralocal theory:

— the action does not contain higher derivatives;

— algebra of Hamiltonian constraints simplifies (perhaps as
many gauge symmetries as GR7?);

— N (and, indeed, all of g,3) is a spacetime-dependent field.

In addition, the model is power-counting renormalizable, as a
result of the spatial anisotropy. Quantum corrections are
calculable; model can be extended to higher dimensions.



Can gravity with anisotropic scaling be engineered from string
theory?
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What is the ground state of the mysterious “spatially
modulated phase” of gravity?
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What is the role of detailed balance condition: Is it just a
technical tool, or is it related (as in condensed matter) to

gravity out of equilibrium?
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