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“Gravitational collapse is the greatest
crisis of physics of all time.”

J.A.Wheeler
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Gravitational collapse
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Gravitational collapse

The final state of a star that undergoes gravitational

collapse into a BH is described by the uniqueness
theorems of General Relativity
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Gravitational collapse

The final state of a star that undergoes gravitational

collapse into a BH is described by the uniqueness
theorems of General Relativity

At late times the external geometry is described by the
stationary Kerr-Newman solution

The unproven, yet plausible strong Cosmic Censorship
principle suggests that the singularity in a physical black
hole ought to be spacelike, and described by a general
mixmaster type solution

But the Kerr-Newman (and also RN) singularity at r=0 is
timelike!

What is happening?
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Schwarzschild static BH
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electric charge!

Singularity

A ndugy
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A Cauchy Horizon appears




Consider a geodesic of an observer which is
crossing the CH

2=F2_f(r), v=I[E—(BE%2-fr)IY?2/f(r)

r~—|E|, v~ -2|E|/f(r), dr/dv~~ %f(r)
Thus
v~ |E|e™
Measured energy due to infalling radiation
2 _ |EI?

42

L(U)ezvcv

p = T 31&&21.3 — Tw'v
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Internal evolution
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Internal evolution

Initial data at EH at late time is known because of no-hair
theorems
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We should now integrate EFE with the known boundary
conditions to obtain the internal structure of the BH
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Internal evolution

Initial data at EH at late time is known because of no-hair
theorems

Near EH with have KN perturbed by a dying tail of GW
The fallout of this tail produces an inward energy flux

decaying as an inverse power vA(-2p) of advanced time
v, where p=2I+3, for a multipole of order |

We should now integrate EFE with the known boundary
conditions to obtain the internal structure of the BH

Very difficult problem due to its non-linear nature!
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A journey into a BH
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Old and new work
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Old and new work

Poisson-Israel, PRD 1990

Ori, PRL, Balbinot, Brady and Poisson, ...
A.B., Droz, Israel, Morsink, 1994, PRD

A.B. PRD 1995 (non-zero angular momentum)
Ori, Burko,..., 2001-2008 (Haifa group)
Hamilton, Avelino, 2008

Hamilton, Avelino, 2008

Hansen, Khokhlov, Novikov, 2005

Avelino, Hamilton, Herdeiro, 2009

... Renewed interest in this problem
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In the original mass inflation analysis by Poisson-
Israel, a null crossflow stress tensor was used to
model the gravitational radiation. The stress
tensor for null crossflowing radiation can be
written as

L. (V E ¥
n( 2)aava3v == t(g )
nr nr

which satisfies the conservation equations and
has P = T = 0. The conservation equations
force L;, (Lout) to be a function only of V (U).

Tohg=

daUdgU (1)

In the Kruskal coordinate V', the Price power-

law tail has the form
dmiﬂ dt! . 3
(=)= o
dv dV (—s_V)
As the Cauchy horizon is approached, in the
limit V. — 0_, L;,, diverges and the source term

in the wave equation for m diverges as well.

Lin(V) =

—In(—x_V))"P.
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The integral solution for the mass function is

UV ,
m(DP) = fL .. /; " P le N Lin(V") Low (&)U dV"
"1 1
+min(v) + m(mt(U) —mj

The gravitational wave tail influx is turned on
at advanced time V; and the outflux is as-
sumed to be switched on at the advanced time
U1, which is behind the event horizon The di-
vergence of L;,(V")dV’ leads to mass inflation
with the mass function behaving as

1
T (—W)in(=V)P’
thus R,3,6R"° ~ m? — oo
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A strong (curvature) singularity
develops at Cauchy Horizon!
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A strong (curvature) singularity
develops at Cauchy Horizon!

Spacetime just “ends” there!
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The integral solution for the mass function is

U 4V :
m(U,V) = /L .. A LN Lo (V") Lowe (U AU' AV
2 1
+min(V) + mout(U) — my

The gravitational wave tail influx is turned on
at advanced time V; and the outflux is as-
sumed to be switched on at the advanced time
U1, which is behind the event horizon The di-
vergence of L;,(V")dV’ leads to mass inflation
with the mass function behaving as

1
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A strong (curvature) singularity
develops at Cauchy Horizon!

Spacetime just “ends” there!

Pirsa: 09110050



A strong (curvature) singularity
develops at Cauchy Horizon!

Spacetime just “ends” there!
QG effects “cure” the singularity

Pirsa: 09110050



A strong (curvature) singularity
develops at Cauchy Horizon!

Spacetime just “ends” there!
QG effects “cure” the singularity

Spacetime can still be classically
extended as we do in fluid
mechanics when shock develops
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Quantum Effect and recent works
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PRL 1993)
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Quantum Effect and recent works

First attempt: semiclassical approach (Anderson, et al
PRL 1993)

Quantum Einstein Gravity at perturbative level AB. &
M.R.

Dilaton-Gravity models
See Hamilton and Novikov recent works

Can the Asymptotic safety scenario halt the Mass
-Inflation?

Encode the running of G into the Einstein Equations
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RG improvement of dynamical eqgs:

Le Chatelier-Braun Principle (1884, 1888): “Every
physical system in stable equilibrium under the
influence of an external force (a change in an
environmental property A) which tends to alter an
intensive characteristic B of the system (temperature,
pressure, concentration, number density of molecules,
etc.) every where or just in some parts. Can only
experience interior changes--the secondary effect-—in
some other parameter of state C of the system,
usually extensive (entropy, volume, number of
particles of a specific kind, etc. ) producing a current
(or flow) that causes a feedback effect B of opposite
sign to that resulting from the exterior force.
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We need a RG trajectory near the
NGFP
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We need a RG trajectory near the
NGFP

Insert this trajectory into the FE
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We need a RG trajectory near the
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Insert this trajectory into the FE
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We need a RG trajectory near the
NGFP

Insert this trajectory into the FE

Only valid near the CH below the inner
potential barrier

Compute the new mass function
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Proper-time flow equation for gravity
A.B. & M Reuter, JHEP, 2005

=== 1_ [oods 3
Srlg. 9] = _ETr/O ?Satfk '(s)[exp(—sSE))—Q exp(—sSéﬁ))]

F(m+ 1, Zsk?) — M(m + 1, ZsA?)

fir(s) = 1)

This is not “exact” at the level of the general
functional equation, but local truncations work VERY
well!
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n

m |

n

OO NOO A WN S

0.0653
0.0507
0.0452
0.0423
0.0405
0.0393
0.0385
0.0378
0.0373
0.0369

11

12 |

13

14
15
16 |

17

20
30
40 |

0.0365
0.0362
0.0360
0.0358
0.0356
0.0354

1 0.0353

0.0350
0.0343
0.0340

The anomalous dimension n at the Wilson-
Fisher fixed point. Note: R. Guida and J. Zinn-
Justin, (1998) find n = 0.0335 from seven loop
ptin D=3
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A.B. & D.Zappala’, (2001), Phys.Lett.B.
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g = Bg(g.A) =[d—2+nylg (13)
HA = Bx(g,A) (1b)

The anomalous dimension ny = —&InZy is
given by

(1_2f =2 9+ 6} r(m+2-9)
24 6 r(m+1)

and the beta-function of A reads

[d(d + 1) rm+1-3%)
a

— 1-9
By = —(2—ny)A+4(47)" 2 Fom+ 1)

d
(1—2,\)2""'1-d]g
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Beta-functions

g = Bg(g.A) =[d—2+nylg (1a)

I = Br(g. ) (1b)
The anomalous dimension ny = —&InZyy IS
given by
_d[d(7 — 5d) d - d+6] Fm+2-9)
= 8(4 12[ g ] 2
nn = 8(4m) —— ) 6 1 rm+1)

and the beta-function of A\ reads

[d(d +1) r(m+1-19)
4

1_.
= —(2—nn)A+4(4x) Fom+ 1)

d
(1—2A)2"“*1—d]g
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Critical exponents

m gx X XeGo 6’ e”
3/2 0.763 0.192 0.147 2.000 1.658
2 1.663 0.118 0.138 1.834 1.230
3 1.890 0.066 0.125 1.769 1.081
4 2.589 0.046 0.119 1.750 1.001
- 3.281 0.035 0.115 1.742 0.959
6 3.970 0.028 0.113 1.737 0.934
10 6.718 0.016 0.108 1.729 0.886
40 27.271 0.0038 0.103 1.722 0.840
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Critical exponents

Pirsa: 09110050



Explicit solution for g-running

4 d
n = —52—%1'7(—3d + 5d? + 24)

d— 2
n— (d —2) Cg e~ (d=2)t

g(t) =

Assume cutoff-id:

k2 = |Woy

0000000000000



oved FE

Use coordinates z% (a.b = 0,1) on the radial
two-spaces (0,¢) = const and the function
r(z%) that measures the area of those two-
spheres whose line element is r2dQ2. The met-
ric element is then

ds® = g pdzdz’ + r2d?

By defining the scalar fields f(z%), m(z%) and

=7 2M €2
2@ =21, f=1-224+5
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RG improved FE

Use coordinates z% (a.b = 0,1) on the radial
two-spaces (#,¢) = const and the function
r(z®) that measures the area of those two-
spheres whose line element is r2dQ2. The met-
ric element is then

ds® = g, pdz?dz” + r2d2>

By defining the scalar fields f(z%), m(z*) and

=3 2M €2
—2ﬁ($)=3—i, =1
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he RG improved FE become

r-ab + KGap = —47TGk:T(Tab == gabT)
R —20rk = 8nGp(T — 2P)

vhere the static electro-magnetic field is gen-
rated by a charge of strength e and 7, is the
tress-energy tensor of the matter field whose
wo-dimensional trace is T' and tangential pres-
ure is P.

Pirsa: 09110050



Dynamical equation for M

Vave-equation for the mass function

M = —167%r3GeT T + 8nGrf(P — T)
+4nr°GreT — 4nr°Grr.oT"°

/here

= Gy

- 14 eM(U,V)

G
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Asymptotic solution valid near CH

QG correction

1
T (=V)1BIn(-V)P

M

Classical behavior
1

M~ T invyp

AS a consequence :

Ro3-5R*P7° ~ M? (1)
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Strength of the CH singularity

Pigee @RAesy — o e e e e e PR EHAD)



Strength of the CH singularity

The tidal acceleration diverges at CH
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Strength of the CH singularity

The tidal acceleration diverges at CH

But the tidal acceleration integrated along
the infalling geodesic does not diverge at
CH
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Strength of the CH singularity

The tidal acceleration diverges at CH

But the tidal acceleration integrated along
the infalling geodesic does not diverge at
CH

This is in sharp contrast with the original Pl
model where only the physical distortion of
the infalling body would be finite at CH
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Strength of the CH singularity

The tidal acceleration diverges at CH

But the tidal acceleration integrated along
the infalling geodesic does not diverge at

CH

This is in sharp contrast with the original Pl
model where only the physical distortion of
the infalling body would be finite at CH

Do we predict a C1 (unique) continuation
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In terms of lightlike coordinates U. V the minimally-
coupled wave equation is

reyv +ruey +ryvey =0

for a spherisymmetric massless field o(U, V).

The Einstein equations now appear as

myy = —4#?26_2099%?'}’,
rgu — 20Ty = —411'7‘(,9%,
gy = —* (1 = 62/?'2) :

|

2 2
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Minimally coupled field

In terms of lightlike coordinates U, V the minimally-
coupled wave equation is

reyv +ruey +rvey =0

for a spherisymmetric massless field o(U, V).

The Einstein equations now appear as

U — 20'Lr'r'L?' == —47TT{,DEF¢
v = —e*(1-€%/r?),

(820-/?"'3) (m — 62/’?‘) — 47r L’?b’ \p‘[' Page 89/100

irsa: 09110050 a UV



Define functions a(U), b(V') by setting their deriva-
tives a. b equal respectively to ¢ |, @y |, the
values on the underside of the inner potential
barrier. Define further functions A(U), B(V)
by A = 4rr3a?, B = 4nrgb?, with the boundary
conditions A(—o) = B(0) = 0. Then

¢ = a(U)+b(V)

+ rg2 {A(U)B(V) + a(U)B(V)},
- r2(U, V) — 2A(U) — 2B(V),
os(U, V) + rg *A(U)B(V),
mq + (k§/r0) A(U)B(V)

I-i
|

Q
|

3
|



Subscript s refers to the static RN solution
(mass mg, inner-horizon radius rg) which forms
the final exterior state. The general conditions
for the validity of the approximation,

el BFFach
are satisfied in the situation of interest to us:

A~ [In(-0)]~(P-1),

E-j-ngvypen® oa V6

T hese expressions confirm that the metric com-
ponents €27, r2 (though not their derivatives)

are regular and approach the RN values toward
the past end of CH.
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values on the underside of the inner potential
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by A = 4rrga?, B = 4nrgb?, with the boundary
conditions A( oo) = B(0) = 0. Then
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os(U, V) + rg *A(U)B(V).
mq + (k§/r0) A(U)B(V)

.‘i
|

Q
|

3
|



Subscript s refers to the static RN solution
(mass mg, inner-horizon radius rg) which forms
the final exterior state. The general conditions
for the validity of the approximation,

A°< A, B’°« B
are satisfied in the situation of interest to us:

A~ [In(=0)]"(P—1) r
B ~| —in(—v) |-~ U = o0 V= —0).

T hese expressions confirm that the metric com-
ponents €29, r2 (though not their derivatives)
are regular and approach the RN values toward
the past end of CH.
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Conclusions

The MI singularity survives also in the
framework of AS (within the EH

truncation)
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Conclusions

The MI singularity survives also in the
framework of AS (within the EH

truncation)

The strength of the singularity is even
weaker then in the original Ml model

Integrated tidal forces are finite

Possible CO extension (Amos Ori
conjecture) is reinforced
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Conclusions

The MI singularity survives also in the
framework of AS (within the EH
truncation)

The strength of the singularity is even
weaker then in the original Ml model

Integrated tidal forces are finite

Possible CO extension (Amos Ori
conjecture) is reinforced

What happens beyond EH truncation?
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