Title: The mass-inflation phenomenon in the asymptotic safety scenario

Date: Nov 07, 2009 02:00 PM

URL: http://pirsa.org/09110050

Abstract:

The mass-inflation phenomenon in the AS scenario

Alfio Bonanno - INAF, Catania

Pirsa: 09110050 Page 2/100

Outline of the talk

- Motivation
- CH instability
- Mass-inflation singularity
- Flow equations around WF and AS FP
- An explicit QG modified solution

Pirsa: 09110050 Page 3/100

Outline of the talk

000

- Motivation
- CH instability
- Mass-inflation singularity
- Flow equations around WF and AS FP
- An explicit QG modified solution
- Extension of the ST beyond the CH

Pirsa: 09110050 Page 4/100

Outline of the talk

- the talk
- Motivation
- CH instability
- Mass-inflation singularity
- Flow equations around WF and AS FP
- An explicit QG modified solution
- Extension of the ST beyond the CH
- Conclusions

Pirsa: 09110050 Page 5/100

"Gravitational collapse is the greatest crisis of physics of all time."

J.A.Wheeler

Pirsa: 09110050 Page 8/100

 The final state of a star that undergoes gravitational collapse into a BH is described by the uniqueness theorems of General Relativity

Pirsa: 09110050 Page 9/100

- The final state of a star that undergoes gravitational collapse into a BH is described by the uniqueness theorems of General Relativity
- At late times the external geometry is described by the stationary Kerr-Newman solution

Pirsa: 09110050 Page 10/100

- The final state of a star that undergoes gravitational collapse into a BH is described by the uniqueness theorems of General Relativity
- At late times the external geometry is described by the stationary Kerr-Newman solution
- The unproven, yet plausible strong Cosmic Censorship principle suggests that the singularity in a physical black hole ought to be spacelike, and described by a general mixmaster type solution

Pirsa: 09110050 Page 11/100

- The final state of a star that undergoes gravitational collapse into a BH is described by the uniqueness theorems of General Relativity
- At late times the external geometry is described by the stationary Kerr-Newman solution
- The unproven, yet plausible strong Cosmic Censorship principle suggests that the singularity in a physical black hole ought to be spacelike, and described by a general mixmaster type solution
- But the Kerr-Newman (and also RN) singularity at r=0 is timelike!

Pirsa: 09110050 Page 12/100

- The final state of a star that undergoes gravitational collapse into a BH is described by the uniqueness theorems of General Relativity
- At late times the external geometry is described by the stationary Kerr-Newman solution
- The unproven, yet plausible strong Cosmic Censorship principle suggests that the singularity in a physical black hole ought to be spacelike, and described by a general mixmaster type solution
- But the Kerr-Newman (and also RN) singularity at r=0 is timelike!

What is happening?

Schwarzschild static BH

Pirsa: 09110050 Page 15/100

A Cauchy Horizon appears

Consider a geodesic of an observer which is crossing the CH

$$\dot{r}^2 = E^2 - f(r), \quad \dot{v} = [E - (E^2 - f(r))]^{1/2} / f(r)$$

$$\dot{r} \simeq -|E|, \quad \dot{v} \simeq -2|E|/f(r), \quad dr/dv \simeq \frac{1}{2}f(r)$$

Thus

$$\dot{v} \simeq |E|e^{\kappa v}$$

Measured energy due to infalling radiation

$$\rho = T_{\alpha\beta}u^{\alpha}u^{\beta} = T_{vv}\dot{v}^2 = \frac{|E|^2}{4\pi r^2}L(v)e^{2\kappa v}$$

as
$$v \to \infty$$

Pirsa: 09110050 Page 20/100

 Initial data at EH at late time is known because of no-hair theorems

Pirsa: 09110050 Page 21/100

- Initial data at EH at late time is known because of no-hair theorems
- Near EH with have KN perturbed by a dying tail of GW

Pirsa: 09110050 Page 22/100

- Initial data at EH at late time is known because of no-hair theorems
- Near EH with have KN perturbed by a dying tail of GW
- The fallout of this tail produces an inward energy flux decaying as an inverse power v^(-2p) of advanced time v, where p=2l+3, for a multipole of order l

Pirsa: 09110050 Page 23/100

- Initial data at EH at late time is known because of no-hair theorems
- Near EH with have KN perturbed by a dying tail of GW
- The fallout of this tail produces an inward energy flux decaying as an inverse power v^(-2p) of advanced time v, where p=2l+3, for a multipole of order l
- We should now integrate EFE with the known boundary conditions to obtain the internal structure of the BH

Pirsa: 09110050 Page 24/100

- Initial data at EH at late time is known because of no-hair theorems
- Near EH with have KN perturbed by a dying tail of GW
- The fallout of this tail produces an inward energy flux decaying as an inverse power v^(-2p) of advanced time v, where p=2l+3, for a multipole of order l
- We should now integrate EFE with the known boundary conditions to obtain the internal structure of the BH
- Very difficult problem due to its non-linear nature!

Pirsa: 09110050 Page 25/100

A journey into a BH Pirsa: 09110050 Page 26/100

Pirsa: 09110050 Page 29/100

Pirsa: 09110050 Page 31/100

Pirsa: 09110050 Page 34/100

Poisson-Israel, PRD 1990

Pirsa: 09110050 Page 35/100

- Poisson-Israel, PRD 1990
- Ori, PRL, Balbinot, Brady and Poisson, ...

Pirsa: 09110050 Page 36/100

- Poisson-Israel, PRD 1990
- Ori, PRL, Balbinot, Brady and Poisson, ...
- A.B., Droz, Israel, Morsink, 1994, PRD

Pirsa: 09110050 Page 37/100

- Poisson-Israel, PRD 1990
- Ori, PRL, Balbinot, Brady and Poisson, ...
- A.B., Droz, Israel, Morsink, 1994, PRD
- A.B. PRD 1995 (non-zero angular momentum)

Pirsa: 09110050 Page 38/100

- Poisson-Israel, PRD 1990
- Ori, PRL, Balbinot, Brady and Poisson, ...
- A.B., Droz, Israel, Morsink, 1994, PRD
- A.B. PRD 1995 (non-zero angular momentum)
- Ori, Burko,..., 2001-2008 (Haifa group)

Pirsa: 09110050 Page 39/100

- Poisson-Israel, PRD 1990
- Ori, PRL, Balbinot, Brady and Poisson, ...
- A.B., Droz, Israel, Morsink, 1994, PRD
- A.B. PRD 1995 (non-zero angular momentum)
- Ori, Burko,..., 2001-2008 (Haifa group)
- Hamilton, Avelino, 2008

Pirsa: 09110050 Page 40/100

- Poisson-Israel, PRD 1990
- Ori, PRL, Balbinot, Brady and Poisson, ...
- A.B., Droz, Israel, Morsink, 1994, PRD
- A.B. PRD 1995 (non-zero angular momentum)
- Ori, Burko,..., 2001-2008 (Haifa group)
- Hamilton, Avelino, 2008
- Hamilton, Avelino, 2008
- Hansen, Khokhlov, Novikov, 2005

Pirsa: 09110050 Page 41/100

- Poisson-Israel, PRD 1990
- Ori, PRL, Balbinot, Brady and Poisson, ...
- A.B., Droz, Israel, Morsink, 1994, PRD
- A.B. PRD 1995 (non-zero angular momentum)
- Ori, Burko,..., 2001-2008 (Haifa group)
- Hamilton, Avelino, 2008
- Hamilton, Avelino, 2008
- Hansen, Khokhlov, Novikov, 2005
- Avelino, Hamilton, Herdeiro, 2009

Pirsa: 09110050 Page 42/100

- Poisson-Israel, PRD 1990
- Ori, PRL, Balbinot, Brady and Poisson, ...
- A.B., Droz, Israel, Morsink, 1994, PRD
- A.B. PRD 1995 (non-zero angular momentum)
- Ori, Burko,..., 2001-2008 (Haifa group)
- Hamilton, Avelino, 2008
- Hamilton, Avelino, 2008
- Hansen, Khokhlov, Novikov, 2005
- Avelino, Hamilton, Herdeiro, 2009
- Renewed interest in this problem

Pirsa: 09110050 Page 43/100

Poisson-Israel model Ш II Page 45/100 Pirsa: 09110050

In the original mass inflation analysis by Poisson-Israel, a null crossflow stress tensor was used to model the gravitational radiation. The stress tensor for null crossflowing radiation can be written as

$$T_{\alpha\beta} = \frac{L_{in}(V)}{4\pi r^2} \partial_{\alpha} V \partial_{\beta} V + \frac{L_{out}(U)}{4\pi r^2} \partial_{\alpha} U \partial_{\beta} U \quad (1)$$

which satisfies the conservation equations and has P = T = 0. The conservation equations force L_{in} (L_{out}) to be a function only of V (U).

In the Kruskal coordinate V, the Price powerlaw tail has the form

$$L_{in}(V) = \frac{dm_{in}}{dv} (\frac{dv}{dV})^2 = \frac{\beta}{(-\kappa_- V)^2} (-\ln(-\kappa_- V))^{-p}$$
.

As the Cauchy horizon is approached, in the limit $V \to 0_-$, L_{in} diverges and the source term in the wave equation for m diverges as well.

The integral solution for the mass function is

$$m(U,V) = \int_{U_1}^{U} \int_{V_1}^{V} r'^{-1} e^{-\lambda'} L_{in}(V') L_{out}(U') dU' dV' + m_{in}(V) + m_{out}(U) - m_1$$

The gravitational wave tail influx is turned on at advanced time V_1 and the outflux is assumed to be switched on at the advanced time U_1 , which is behind the event horizon The divergence of $L_{in}(V')dV'$ leads to mass inflation with the mass function behaving as

$$m \sim \frac{1}{(-V)ln(-V)^p}, V \to 0_-$$

thus $R_{lphaeta\gamma\delta}R^{lphaeta\gamma\delta}\sim m^2 o\infty$

Pirsa: 09110050 Page 48/100

Spacetime just "ends" there!

Pirsa: 09110050 Page 49/100

Pirsa: 09110050

The integral solution for the mass function is

$$m(U,V) = \int_{U_1}^{U} \int_{V_1}^{V} r'^{-1} e^{-\lambda'} L_{in}(V') L_{out}(U') dU' dV' + m_{in}(V) + m_{out}(U) - m_1$$

The gravitational wave tail influx is turned on at advanced time V_1 and the outflux is assumed to be switched on at the advanced time U_1 , which is behind the event horizon The divergence of $L_{in}(V')dV'$ leads to mass inflation with the mass function behaving as

$$m \sim \frac{1}{(-V)ln(-V)^p}, V \to 0_-$$

thus
$$R_{lphaeta\gamma\delta}R^{lphaeta\gamma\delta}\sim m^2 o\infty$$

Page 51/100

Spacetime just "ends" there!

Pirsa: 09110050 Page 52/100

- Spacetime just "ends" there!
- QG effects "cure" the singularity

Pirsa: 09110050 Page 53/100

- Spacetime just "ends" there!
- QG effects "cure" the singularity
- Spacetime can still be classically extended as we do in fluid mechanics when shock develops

Pirsa: 09110050 Page 54/100

Pirsa: 09110050 Page 55/100

 First attempt: semiclassical approach (Anderson, et al PRL 1993)

Pirsa: 09110050 Page 56/100

- First attempt: semiclassical approach (Anderson, et al PRL 1993)
- Quantum Einstein Gravity at perturbative level A.B. & M.R.

Pirsa: 09110050 Page 57/100

- First attempt: semiclassical approach (Anderson, et al. PRL 1993)
- Quantum Einstein Gravity at perturbative level A.B. & M.R.
- Dilaton-Gravity models

Pirsa: 09110050 Page 58/100

- First attempt: semiclassical approach (Anderson, et al. PRL 1993)
- Quantum Einstein Gravity at perturbative level A.B. & M.R.
- Dilaton-Gravity models
- See Hamilton and Novikov recent works

Pirsa: 09110050 Page 59/100

- First attempt: semiclassical approach (Anderson, et al PRL 1993)
- Quantum Einstein Gravity at perturbative level A.B. & M.R.
- Dilaton-Gravity models
- See Hamilton and Novikov recent works
- Can the Asymptotic safety scenario halt the Mass -Inflation?

Pirsa: 09110050 Page 60/100

- First attempt: semiclassical approach (Anderson, et al. PRL 1993)
- Quantum Einstein Gravity at perturbative level A.B. & M.R.
- Dilaton-Gravity models
- See Hamilton and Novikov recent works
- Can the Asymptotic safety scenario halt the Mass -Inflation?
- Encode the running of G into the Einstein Equations

Pirsa: 09110050 Page 61/100

RG improvement of dynamical eqs:

Le Chatelier-Braun Principle (1884, 1888): "Every physical system in stable equilibrium under the influence of an external force (a change in an environmental property A) which tends to alter an intensive characteristic B of the system (temperature, pressure, concentration, number density of molecules, etc.) every where or just in some parts. Can only experience interior changes--the secondary effect---in some other parameter of state C of the system, usually extensive (entropy, volume, number of particles of a specific kind, etc.) producing a current (or flow) that causes a feedback effect B of opposite sign to that resulting from the exterior force.

Pirsa: 09110050 Page 62/100

Pirsa: 09110050 Page 63/100

Insert this trajectory into the FE

Pirsa: 09110050 Page 64/100

- Insert this trajectory into the FE
- Only valid near the CH below the inner potential barrier

Pirsa: 09110050 Page 65/100

- Insert this trajectory into the FE
- Only valid near the CH below the inner potential barrier
- Compute the new mass function

Pirsa: 09110050 Page 66/100

Proper-time flow equation for gravity

A.B. & M.Reuter, JHEP, 2005

$$\partial_t \hat{S}_k[g, \bar{g}] = -\frac{1}{2} \text{Tr} \int_0^\infty \frac{ds}{s} \, \partial_t f_k^m(s) [\exp(-s \hat{S}_k^{(2)}) - 2 \exp(-s S_{\text{gh}}^{(2)})]$$

$$f_k^m(s) = \frac{\Gamma(m+1, \mathcal{Z}sk^2) - \Gamma(m+1, \mathcal{Z}s\Lambda^2)}{\Gamma(m+1)}$$

This is not "exact" at the level of the general functional equation, but local truncations work VERY well!

Pirsa: 09110050

m	η	m	η		
1	0.0653	11	0.0365		
2	0.0507	12	0.0362		
3	0.0452	13	0.0360		
4	0.0423	14	0.0358		
5	0.0405	15	0.0356		
6	0.0393	16	0.0354		
7	0.0385	17	0.0353		
8	0.0378	20	0.0350		
9	0.0373	30	0.0343		
10	0.0369	40	0.0340		

The anomalous dimension η at the Wilson-Fisher fixed point. Note: R. Guida and J. Zinn-Justin, (1998) find $\eta=0.0335$ from seven loop pt in D=3

Pirsa: 09110050

A.B. & D.Zappala', (2001), Phys.Lett.B.

m	η	m	η		
1	0.0653	11	0.0365		
2	0.0507	12	0.0362		
3	0.0452	13	0.0360		
4	0.0423	14	0.0358		
5	0.0405	15	0.0356		
6	0.0393	16	0.0354		
7	0.0385	17	0.0353		
8	0.0378	20	0.0350		
9	0.0373	30	0.0343		
10	0.0369	40	0.0340		

The anomalous dimension η at the Wilson-Fisher fixed point. Note: R. Guida and J. Zinn-Justin, (1998) find $\eta=0.0335$ from seven loop

$$\partial_t g = \beta_g(g, \lambda) \equiv [d - 2 + \eta_N]g$$
 (1a)

$$\partial_t \lambda = \beta_{\lambda}(g, \lambda) \tag{1b}$$

The anomalous dimension $\eta_N \equiv -\partial_t {\rm ln} Z_{Nk}$ is given by

$$\eta_N = 8(4\pi)^{1-\frac{d}{2}} \left[\frac{d(7-5d)}{24} (1-2\lambda)^{\frac{d}{2}-m-2} - \frac{d+6}{6} \right] g \frac{\Gamma(m+2-\frac{d}{2})}{\Gamma(m+1)}$$

and the beta-function of λ reads

$$\beta_{\lambda} = -(2-\eta_N)\lambda + 4(4\pi)^{1-\frac{d}{2}} \left[\frac{d(d+1)}{4} (1-2\lambda)^{\frac{d}{2}-m-1} - d \right] g \frac{\Gamma(m+1-\frac{d}{2})}{\Gamma(m+1)}$$

Pirsa: 09110050

Beta-functions

$$\partial_t g = \beta_g(g, \lambda) \equiv [d - 2 + \eta_N]g$$
 (1a)

$$\partial_t \lambda = \beta_{\lambda}(g, \lambda) \tag{1b}$$

The anomalous dimension $\eta_N \equiv -\partial_t {\rm ln} Z_{Nk}$ is given by

$$\eta_N = 8(4\pi)^{1-\frac{d}{2}} \left[\frac{d(7-5d)}{24} (1-2\lambda)^{\frac{d}{2}-m-2} - \frac{d+6}{6} \right] g \frac{\Gamma(m+2-\frac{d}{2})}{\Gamma(m+1)}$$

and the beta-function of λ reads

$$\beta_{\lambda} = -(2-\eta_N)\lambda + 4(4\pi)^{1-\frac{d}{2}} \left[\frac{d(d+1)}{4} (1-2\lambda)^{\frac{d}{2}-m-1} - d \right] g \frac{\Gamma(m+1-\frac{d}{2})}{\Gamma(m+1)}$$

Pirsa: 09110050

Critical exponents

m	g_*	λ_*	λ_*g_*	θ'	θ''
3/2	0.763	0.192	0.147	2.000	1.658
2	1.663	0.118	0.138	1.834	1.230
3	1.890	0.066	0.125	1.769	1.081
4	2.589	0.046	0.119	1.750	1.001
5	3.281	0.035	0.115	1.742	0.959
6	3.970	0.028	0.113	1.737	0.934
10	6.718	0.016	0.108	1.729	0.886
40	27.271	0.0038	0.103	1.722	0.840

Pirsa: 09110050 Page 72/100

Page 74/100

Explicit solution for g-running

$$\eta = -\frac{4}{3}2^{-d}\pi^{1-\frac{d}{2}}(-3d+5d^2+24)$$

$$g(t) = -\frac{d-2}{\eta - (d-2) C_0 e^{-(d-2)t}}$$

Assume cutoff-id:

$$k^2 = |\Psi_2|$$

Coulombian component of the Weyl curvature!

oved FE

Use coordinates x^a (a,b=0,1) on the radial two-spaces $(\theta,\phi)=const$ and the function $r(x^a)$ that measures the area of those two-spheres whose line element is $r^2d\Omega^2$. The metric element is then

$$ds^2 = g_{ab}dx^a dx^b + r^2 d\Omega^2$$

By defining the scalar fields $f(x^a), m(x^a)$ and

$$-2\kappa(x^a) = \frac{\partial f}{\partial r}, \quad f = 1 - \frac{2M}{r} + \frac{e^2}{r^2}$$

RG improved FE

Use coordinates x^a (a,b=0,1) on the radial two-spaces $(\theta,\phi)=const$ and the function $r(x^a)$ that measures the area of those two-spheres whose line element is $r^2d\Omega^2$. The metric element is then

$$ds^2 = g_{ab}dx^a dx^b + r^2 d\Omega^2$$

By defining the scalar fields $f(x^a), m(x^a)$ and

$$-2\kappa(x^a) = \frac{\partial f}{\partial r}, \quad f = 1 - \frac{2M}{r} + \frac{e^2}{r^2}$$

The RG improved FE become

$$r_{;ab} + \kappa g_{ab} = -4\pi G_k r (T_{ab} - g_{ab}T)$$
$$R - 2\partial_r \kappa = 8\pi G_k (T - 2P)$$

where the static electro-magnetic field is generated by a charge of strength e and T_{ab} is the tress-energy tensor of the matter field whose wo-dimensional trace is T and tangential presure is P.

Dynamical equation for M

Vave-equation for the mass function

$$\Box M = -16\pi^2 r^3 G_k^2 T_{ab} T^{ab} + 8\pi G_k f(P - T)$$
$$+4\pi r^2 G_k \kappa T - 4\pi r^2 G_k r_{,a} T^{,a}$$

here

$$G_k = \frac{G_N}{1 + cM(U, V)}$$

Asymptotic solution valid near CH

QG correction

$$M \sim \frac{1}{(-V)^{1/3} \ln(-V)^p}$$

Classical behavior

$$M \sim \frac{1}{(-V)\ln(-V)^p}$$

As a consequence:

$$R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta} \sim M^2 \tag{1}$$

Pirsa: 09110050 Page 80/100

Pirsa: 09110050 Page 81/100

The tidal acceleration diverges at CH

Pirsa: 09110050 Page 82/100

- The tidal acceleration diverges at CH
- But the tidal acceleration integrated along the infalling geodesic does not diverge at CH

Pirsa: 09110050 Page 83/100

- The tidal acceleration diverges at CH
- But the tidal acceleration integrated along the infalling geodesic does not diverge at CH
- This is in sharp contrast with the original PI model where only the physical distortion of the infalling body would be finite at CH

Pirsa: 09110050 Page 84/100

- The tidal acceleration diverges at CH
- But the tidal acceleration integrated along the infalling geodesic does not diverge at CH
- This is in sharp contrast with the original PI model where only the physical distortion of the infalling body would be finite at CH
- Do we predict a C1 (unique) continuation of the classical spacetime along the CH?

In terms of lightlike coordinates U,V the minimally-coupled wave equation is

$$r\varphi_{UV} + r_U\varphi_V + r_V\varphi_U = 0$$

for a spherisymmetric massless field $\varphi(U, V)$.

The Einstein equations now appear as

$$m_{U} = -4\pi r^{2} e^{-2\sigma} \varphi_{U}^{2} r_{V},$$

$$r_{UU} - 2\sigma_{U} r_{U} = -4\pi r \varphi_{U}^{2},$$

$$(r^{2})_{UV} = -e^{2\sigma} \left(1 - e^{2}/r^{2}\right),$$

$$\sigma_{UV} = (e^{2\sigma}/r^{3})(m - e^{2}/r) - 4\pi \varphi_{U} \varphi_{V}$$

Minimally coupled field

In terms of lightlike coordinates U,V the minimallycoupled wave equation is

$$r\varphi_{UV} + r_U\varphi_V + r_V\varphi_U = 0$$

for a spherisymmetric massless field $\varphi(U, V)$.

The Einstein equations now appear as

$$m_{U} = -4\pi r^{2} e^{-2\sigma} \varphi_{U}^{2} r_{V},$$

$$r_{UU} - 2\sigma_{U} r_{U} = -4\pi r \varphi_{U}^{2},$$

$$(r^{2})_{UV} = -e^{2\sigma} \left(1 - e^{2}/r^{2}\right),$$

$$\sigma_{UV} = (e^{2\sigma}/r^{3})(m - e^{2}/r) - 4\pi \varphi_{U} \varphi_{V}$$

Define functions a(U),b(V) by setting their derivatives \dot{a},\dot{b} equal respectively to $\varphi_U|_b,\ \varphi_V|_b$, the values on the underside of the inner potential barrier. Define further functions A(U),B(V) by $\ddot{A}=4\pi r_0^2\dot{a}^2,\ddot{B}=4\pi r_0^2\dot{b}^2$, with the boundary conditions $A(-\infty)=B(0)=0$. Then

$$\varphi = a(U) + b(V) + r_0^{-2} \{ A(U)b(V) + a(U)B(V) \}, r^2 = r_s^2(U, V) - 2A(U) - 2B(V), \sigma = \sigma_s(U, V) + r_0^{-4}A(U)B(V), m = m_0 + (\kappa_0^2/r_0)\dot{A}(U)\dot{B}(V)$$

Subscript s refers to the static RN solution (mass m_0 , inner-horizon radius r_0) which forms the final exterior state. The general conditions for the validity of the approximation,

$$\dot{A}^2 \ll \ddot{A}, \quad \dot{B}^2 \ll \ddot{B},$$

are satisfied in the situation of interest to us:

$$A \sim [\ln (-U)]^{-(p-1)},$$

 $B \sim |-\ln (-V)|^{-(p-1)}$ $(U \to -\infty, V \to -0).$

These expressions confirm that the metric components $e^{2\sigma}$, r^2 (though not their derivatives) are regular and approach the RN values toward the past end of CH.

Define functions a(U),b(V) by setting their derivatives \dot{a},\dot{b} equal respectively to $\varphi_U|_b,\ \varphi_V|_b$, the values on the underside of the inner potential barrier. Define further functions A(U),B(V) by $\ddot{A}=4\pi r_0^2\dot{a}^2,\ddot{B}=4\pi r_0^2\dot{b}^2$, with the boundary conditions $A(-\infty)=B(0)=0$. Then

$$\varphi = a(U) + b(V) + r_0^{-2} \{ A(U)b(V) + a(U)B(V) \}, r^2 = r_s^2(U, V) - 2A(U) - 2B(V), \sigma = \sigma_s(U, V) + r_0^{-4}A(U)B(V), m = m_0 + (\kappa_0^2/r_0)\dot{A}(U)\dot{B}(V)$$

Subscript s refers to the static RN solution (mass m_0 , inner-horizon radius r_0) which forms the final exterior state. The general conditions for the validity of the approximation,

$$\dot{A}^2 \ll \ddot{A}, \quad \dot{B}^2 \ll \ddot{B},$$

are satisfied in the situation of interest to us:

$$A \sim [\ln (-U)]^{-(p-1)},$$

 $B \sim |-\ln (-V)|^{-(p-1)}$ $(U \to -\infty, V \to -0).$

These expressions confirm that the metric components $e^{2\sigma}$, r^2 (though not their derivatives) are regular and approach the RN values toward the past end of CH.

Pirsa: 09110050 Page 95/100

 The MI singularity survives also in the framework of AS (within the EH truncation)

Pirsa: 09110050 Page 96/100

- The MI singularity survives also in the framework of AS (within the EH truncation)
- The strength of the singularity is even weaker then in the original MI model

Pirsa: 09110050 Page 97/100

- The MI singularity survives also in the framework of AS (within the EH truncation)
- The strength of the singularity is even weaker then in the original MI model
- Integrated tidal forces are finite

Pirsa: 09110050 Page 98/100

- The MI singularity survives also in the framework of AS (within the EH truncation)
- The strength of the singularity is even weaker then in the original MI model
- Integrated tidal forces are finite
- Possible C0 extension (Amos Ori conjecture) is reinforced

Pirsa: 09110050 Page 99/100

- The MI singularity survives also in the framework of AS (within the EH truncation)
- The strength of the singularity is even weaker then in the original MI model
- Integrated tidal forces are finite
- Possible C0 extension (Amos Ori conjecture) is reinforced
- What happens beyond EH truncation?