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Asymptotic safety and deformed symmetry

Lee Smolin
Pl
Nov 2009

1) Prelude

2) An AS theory exists in d< 4

3) An AS exists in d=4 but it is unstable

4) The possibility reduced dimension or anomalous scaling

5) Deformed symmetry as a source of anomalous scaling
6) Why deformed symmetry?

Is. Nucl. Phys. B208 (1982) 439.
L. Crane and Is, Nucl. Phys. B267 (1986) 714-757
Is, in preparation
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Prelude: sketch of the argument of the talk

Warning: this talk is based on new reflections on
old results.
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Ne argue that the non-trivial fixed point in QG is characterized by
nomalous scaling with scaling dimension d; < 4.
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Ne argue that the non-trivial fixed point in QG is characterized by
nomalous scaling with scaling dimension d; < 4.

lhis implies either a breaking or a deformation of Lorentz symmetry in
1e 3+1 world of the laboratory.

Fhis will also propagate to the matter sector.
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Ne argue that the non-trivial fixed point in QG is characterized by
nomalous scaling with scaling dimension d; < 4.

l'his implies either a breaking or a deformation of Lorentz symmetry in
1e 3+1 world of the laboratory.

Fhis will also propagate to the matter sector.

lhere are very strong constraints on Planck scale breaking of Lorentz

ymmetry through absence of bifringence in photon propagation.
/0809.0220, /0708.1737

Deformation of Lorentz invariance is still allowed at Planck scales.
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Ne argue that the non-trivial fixed point in QG is characterized by
nomalous scaling with scaling dimension d; < 4.

l'his implies either a breaking or a deformation of Lorentz symmetry in

1e 3+1 world of the laboratory.

Fhis will also propagate to the matter sector.

lhere are very strong constraints on Planck scale breaking of Lorentz

ymmetry through absence of bifringence in photon propagation.
/0809.0220, /0708.1737

Deformation of Lorentz invariance is still allowed at Planck scales.

t has been shown that deformed symmetry can imply d; <4 (Dario)

semiclassical QG arguments suggest Lorentz symmetry is deformed.
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onsider Horava’s hypothesis: that the critical point is
haracterized by anisotrpic scaling with

E~p’M 2% —ds=2

lote that this already implies superluminal propagation in the
ritical region: 2
dE 2 B\ 3
T — e, 7 —_—
dp M

his then implies breaking or deformation of Lorentz invariance.

will show that this behavior is compatible with deformed Lorentz
wariance. (Magueijo)

Vhichever it is should propagate to the matter sector, so we might
rorry about bounds on breaking or deformation of Lorentz invariance
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low does the transition from usual scaling occur?

E=pc— E~p’M2c
Ve can posit a simple extrapolation (to be justified later by DSR)
E
E\2
(]. %+ :ﬁ) 3

his implies at leading order 4 E

S

‘this applies to photons, with M~M_, this is already well ruled out if
orentz symmetry is broken.

1> 10° M, from the crab nebula, 10’ from some GRBs
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low does the transition from usual scaling occur?

E=pc— E~p’M2c

Ve can posit a simple extrapolation (to be justified later by DSR)

E
=—F
(1+ )3
his implies at leading order 4 E
v—¢fl F——

3 M

‘this applies to photons, with M~M,,, this is already well ruled out if
orentz symmetry is broken.

1> 10° M, from the crab nebula, 10’ from some GRBs
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~v-ray polarization constraints on Planck scale violations of special relativity

Luca Maccione, Stefano Liberati, Annalisa Celotti
SISSA /ISAS. via Bewrut 2.4 34014  Trieste and
INFN, Sezione di Trieste, ma Valerso, 2, 34127 Trieste, ltaly

John G. Kirk
M az-Planck-Institut fiir Kernphysik, Saeupfercheckweg, 1, D-69117, Hewdelbery, Germany

Pietro Ubertini
ITASF-INAF, ma Fosso del Cavakere 100, Roma, [taly
(Dated: September 1, 2008)

Using recent polarimetric observations of the Crab Nebula in the hard X-ray band by INTECGRAL.
we show that the absence of vacuum birefringence effects constrains O(E /M) Lorentz violation in
QED to the level [£] < 9 x 107" at 30 CL, tightening by more than three orders of magnitude

previous constraints. We show that planned X-ray polarimeters have the potential to probe £ ~
107 '® by detecting polarization in active galaxies at red-shift ~ 1.

arxiv.org/abs/0809.0220
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low does the transition from usual scaling occur?

E=pc— E~p’M2c

Ve can posit a simple extrapolation

E
B2
(1+ﬂ)3

his implies at leading order 4 E

‘this applies to photons, with M~M_, this is already well ruled out if
orentz symmetry is broken.

1> 10° M, from the crab nebula, 10’ from some GRBs

‘Larentz symmetry is deformed it is the same order of magnitude...
f+ho Bharmmed cot lrnct waoolr hw CEDRAAI



Nature: current issue, from the Fermi collaboration

A limit on the variation of the speed of light arising

from quantum gravity effects
E
A comerstone of Einstein’s special relativity is Lorentz invanance — ) — C(]_ )
the postulate that all observers measure exactly the same speed of M a
light in vacuum, independent of photon-energy. Whale special rdati- Q

vity assumes that there is no fundamental length-scale associated
wnhmchmmm:;ﬁﬂeulwﬂc{ﬂuﬂnguh

btana = 162X 107" cm or Eppank = Mptanat = 1.22 X 107 GeV), %
at which quantum effects are expected to strongly affect the nature *JIQG - 12;\'1}_’[
of space-time. There is great interest in the (not yet validated) idea

that Lorentz invaniance might break near the Planck scale. A key test

of such violation of Lorentz invarmnce is a possible vanation of

photon speed with energy”’. Even a tiny vanation in photon speed,

when accumulated over cosmological light-travel times, may be
revealed by observing sharp features in y-ray burst (GRB) light-

curves’. Here we report the detection of emission up to ~31 GeV

from the distant and short GRB 090510. We find no evidence for

the violation of Lorentz invanance, and place a lower limit of

1.2Epy,..a on the scale of a linear energy dependence (or an inverse
wavelength dependence), subject to reasonable assumptions about
the emission (equivalently we have an upper Emit of by 4 /1.2 onthe
ris: lomggth scale of the effect). Our results disfavour quantum-gravity Page 23/102
theories™” in which the quantum nature of space-time on a very



Vhy Asymptotic safety points to reduced scaling
imension

. A fixed point for quantum gravity, Nucl Phys B208 (1982) 439.
Crane, Is, Spacetime foam as the universal regulator, GRG 17 (1985) 1209.

Renormalizability of general relativity on a background of spacetime

foam, Nuclear Phvsics B267 (1986) 714-757.
K.G. Wiilson, Phys. Rev. D10 (1973) 2911

G. Parisi, Nucl. Phys. B100 (1975) 368;
IHES/P/76/148 (1976}
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S in quantum gravity for spacetime d<4 d=4-¢

heory: GR coupled to N fermions in a power series in 1/N
Parameters: G, and A
ction: 1 M :
L=———=R+ ) :ilDf—3A.
2K =1
rocedure:

) Cut the theory off at Euclidean p? = A.
) Scale the dimensional parameters by powers of A and N

1

-1 2—r
G Newton — ;}‘ =cNA

(c and g dimensionless functions of the ratio A/M, )

) Compute the graviton propagator to leading order in 1/N
) Choose trajectories for c and g so the theory is finite as A — oQ
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S in quantum gravity for spacetime d<4 d=4-¢

heory: GR coupled to N fermions in a power series in 1/N
Parameters: G, and A
ction: 1 N _ :
L=———R+ Y :DY: —3A.
2K i=1
rocedure:

) Cut the theory off at Euclidean p? = A.
) Scale the dimensional parameters by powers of A

1

Gl':l::wtun S cNA el L Hﬂd_FN
K

(c and g dimensionless functions of the ratio A/M, )

) Compute the graviton propagator to leading order in 1/N
) Choose trajectories for c and g so the theory is finite as A — o0
"1/N’is a small parameter, so c and g can be large. e



he graviton propagator to leading order in 1/N at d=4-¢

wvv@vvw: ww—x-b-;vva\rvw
+MQ-m+Mn-Mﬂ
B e S

= O""“'_Q“M_ Yrm

|

The spin two piece:

2)
1/N o veefd
Dd: 4—F

T eNpPAT*[1-[cNp AT "] 'INF® ~NF2 + gA**N]]’

F2_and F?)_ are given by the spin two parts of the fermion loops:
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Calculation of the fermion loops:

25

Fr —(1--.5)

s a1+ zE)[ e = 7 1[14—

Gy : 1 ]+(p‘*‘)“"”A(a )]

1—3¢
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Calculation of the fermion loops:

5.5 .u

Sord

(2m7)¢

FP =(1-3¢) ra +§-e)[ %12“1[”

: ZL ]+(p1)2"”A(e)]

1-—5¢

Renormalizes A

irsa: 09110044 Page 29/102



Calculation of the fermion loops:

= ]+(p1)2"”2A(£)]

2E

Renormalizes G,
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Calculation of the fermion loops:

P

e A T 2
(;r‘”“%‘){'z-%e —p°A IE[” ‘ ]

FnZ] =(1-£5)
I—5e

p? ie critical behavior at fixed point
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Calculation of the fermion loops:

i

Sord

| ‘:14—; l 2
2 _ . ) 1 - e - = {
F; (1 25)(2ﬁ)4r(1+25)[ 2_%5 pa 6[1-’-1‘%8]

p? ie critical behavior at fixed point

But A(¢) divergesasd—=>4, A(g) ~1/¢

, 2 (-3 (" B
[2(1_8,""8 (1-%3)][, dy[y(1—-y)J **.

Ale)=
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There exists a non-trivial fixed point:

Tt 3 2 ‘;,_‘ﬂ'd 1
c*=t1-te)\ 1+ o) g el +e),

(1 +3e)

*_[l—%e_'_l_ 3 :l%rrd
& 2—3¢ 4 844—¢&)l2m)*

and critical trajectories:

1(..1) 1 M1

c\M/ ¢ ¢
1 L4 (d has input also from tadpole
—)=pg*— d diagrams)

g(M ) T
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There exists a non-trivial fixed point:
p ywd 1

)(Zr)d rll +:‘_£)!

= [l —3e 1 3 ] smd

i i 4

2—3¢ 4 84— (2m)

C‘"=§-.'{l—.%f)(l+ ;
1—*28

Fod o=

(1 +3e)

e

and critical trajectories:

1(_.1)_ r

= ‘11-* * 7

c\M/ ¢ c
{ L4 (d has input also from tadpole
et ST S d diagrams)
g(M) g “14-—1‘ ¥

The spin 2 propagator in leading order in 1/Nisafter A __, ~q

wrafd

Qne.Lan show the theory is now renormalizable to higher order with
aonlv renormalizationce of £ and o reatiired <o lonocacd <« A4



There exists a non-trivial fixed point:

2 \ imd
»_Nea 1 - 1
c sll zt‘)(l'*‘l_ze)(z )dl"(l 3€),
[l—}_‘e 1 3 jl Sord
R d
2—5¢ 4 84—¢e)1(2m)

E

(1 +3e)

<

and critical trajectories:

1(_.1) 1 M1

c\M/ ¢ c
1 L4 (d has input also from tadpole
—)=pg*— d diagrams)

g(M ) e

The spin 2 propagator in leading order in 1/Nisafter A __, ~q
2)

DYN .5 ol
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There exists a non-trivial fixed point:
2 \ imd
)(Zr)dru 3€),

c"'=%;{l—%_£)(l+
1—26'

1—z¢ 1 3 } Smrd -
= e rl1+s
8 [2—%5 4 84—e)l2m)" )
and critical trajectories:
1(..1)_ r M
e\l & A" ™
1 | St (d has input also from tadpole

— ) =p*— diagrams)

g(M) g ,t"""' d!

The spin 2 propagator in leading order in 1/N is after A — o0

P‘ZI

lez;'\"_f= — bl
d=4 NPE[M:_ {E)]
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There exists a non-trivial fixed point:

= 2 \ i7md 5
C _{.{l 2!") 1+1_;E (Zr)drll"’zf)}

1-3e 1 3 smd
2 R r(+3
. [2—%5 4 8l4—¢ l:l 2=)" oddod
and critical trajectories:
1 ( A ) 1 M7
c\M] * AT ™
1 L4 (d has input also from tadpole

— ) =p*— diagrams)

g(M‘) g "ll—r d *

The spin 2 propagator in leading order in 1/N is after A — o0
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There exists a non-trivial fixed point:
2 \ imd
rci+sze),

)(2#)‘! ll E‘)

c*=%{l—§_f)(l

-

g=

I(1+3¢e)

[l—jw_'e 1 3 jl Smrd
i d
2—5¢ 4 84—¢&)1(2m)

and critical trajectories:

1(_.1) 1 M¥" 1

c\M/ ¢
1 L4 (d has input also from tadpole
—)=pg* - d diagrams)

g(M ) =
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low do we control the divergence in the spin two propagator as d =2 4?

PIZ!
Doy =

s d=2 4 this is a divergent contribution to the propagator
roportional to p* At finite A and d=4 the divergence is in In(A/M)

o cancel it we must add a counterterm:

v
sz Mci
anlM/A) (Weyl tensor squared)

Vhere a is on an asymptotically free RG trajectory

“.‘) 4 a
""( A/ 1+(a/4807 ) In(A°/M7)
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Vith the counterterm added we can againtake A — ¢

he graviton propagator at leading order in 1/N at d=4 is now

(2)

Dl_r.""h' — weal
“E T NpHM* —1/ap®—(1/480=7)p” In[-p* /M)
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Vith the counterterm added we can againtake @A — ¢

he graviton propagator at leading order in 1/N at d=4 is now

/N — . =
D s Np*(M*—1/ap®—(1/480=")p” In[-p*/M?))

he the theory is still asymptotically safe:

1 9

£ % __*

» b - » ‘0
.8 a’) (32-,«-’*r 12872 )

irsa: 09110044
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Vith the counterterm added we can againtake @A — ¢

he graviton propagator at leading order in 1/N at d=4 is now

2)

Dl_f."h' w3
— Jap®—(1/480=")p” In[-p*/M?))

M.~ NM renormalized Planck mass
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Vith the counterterm added we can againtake A\ — ¢

he graviton propagator at leading order in 1/N at d=4 is now

Dl;.’\' == Pfl:ﬂﬂ
w T Np (M —1/ap”—(1/480%0)p” In[-p*/M*])

scaling behavior p*

1 ay(M’/p?)
p2—->—a0 p‘lﬂ{*pszz} p4

D astr’)
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Vith the counterterm added we can againtake @A — ¢

he graviton propagator at leading order in 1/N at d=4 is now

2)
Ty

*~1/ap®—(1/480=")p* In[-p*/M*

I/N
DnMﬂ=

N,

The ghost has become a Lee-Wick pole ie acausality
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Vith the counterterm added we can againtake @A — ~¢

he graviton propagator at leading order in 1/N at d=4 is now

{2)

Dl_f."h' ~ w3
“l T NpH(M* —1/ap®—(1/480= )p” In[-p* /M)

With the addition of an R? counterterm for spin 0 the
theory is now perturbatively renormalizable, as first showed
by Stelle and by Tomboulis in the 1/N expansion.

The C? counterterm is absolutely necessary for the theory to exist
at d=4 because it gives the right scaling to the spin 2 propagator
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One AS completion of GR at d=4 is then the following theory:

N
1 S BN N
1=1

% o B

*There are four coupling constants: G, A, a, P
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One AS completion of GR at d=4 is then the following theory:

N
1 VS 1. N_, N_,
1=1

Dk v, B

*There are four coupling constants: G, A, a, .

*However this theory is unphysical:
*The ADM Hamiltonian is not bounded below, so it is
classically unstable
*In perturbation theory it is either not unitary or acausal
(Lee-Wick etc....)
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One AS completion of GR at d=4 is then the following theory:

N
1 = 1 N N
L= R E-— X -
2K2 i ; ¥ 2 ap, s B

*There are four coupling constants: G, A, a, P.

*However this theory is unphysical:
*The ADM Hamiltonian is not bounded below, so it is
classically unstable
*In perturbation theory it is either not unitary or acausal
(Lee-Wick etc....)

Perhaps the second problem can be solved. But the first cannot
be and is fatal. Flat spacetime is unstable.
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One AS completion of GR at d=4 is then the following theory:

N
1 = 1 N
L= R ?,-Dmp%-——)\: 02 =S
+§_j¢ 2

K2 B

*There are four coupling constants: G, A, a, P.

*However this theory is unphysical:
*The ADM Hamiltonian is not bounded below, so it is
classically unstable
*In perturbation theory it is either not unitary or acausal
(Lee-Wick etc....)

Perhaps there is another non-trivial fixed point at d=4 without
these problems. But that must be shown, ie any claim for a fixed

Pirsa: 09110044 Page 49/102

point must show why it is not this one.



One AS completion of GR at d=4 is then the following theory:

N
1 = 1 N N
L= R B —— X ¢
2K2 s ; 4 2 ap, s B

*There are four coupling constants: G, A, a, P.

*However this theory is unphysical:
*The ADM Hamiltonian is not bounded below, so it is
classically unstable
*In perturbation theory it is either not unitary or acausal
(Lee-Wick etc....)

Perhaps the second problem can be solved. But the first cannot
be and is fatal. Flat spacetime is unstable.
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One AS completion of GR at d=4 is then the following theory:

N
1 3 1 N
L= R t—D\Ifi——)\: 02 =
+§_:w :

2K2 B

*There are four coupling constants: G, A, a, .

*However this theory is unphysical:
*The ADM Hamiltonian is not bounded below, so it is
classically unstable
*In perturbation theory it is either not unitary or acausal
(Lee-Wick etc....)

Perhaps there is another non-trivial fixed point at d=4 without
these problems. But that must be shown, ie any claim for a fixed
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ummary up to here:

*For d<4, GR defined in 1/N is AS
*It has just the two coupling constants G, and A
*There is a nontrivial fixed point to leading order in 1/N.
*Once defined there are no new divergences to all orders in 1/N
*There is a ghost

*As there is no new counterterm the classical ADM energy
is positive.

irsa: 09110044 Page 52/102



ummary up to here:

*For d<4, GR defined in 1/N is AS
*It has just the two coupling constants G, and A
*There is a nontrivial fixed point to leading order in 1/N.
*Once defined there are no new divergences to all orders in 1/N
*There is a ghost

*As there is no new counterterm the classical ADM energy
is positive.

*For d=4 there is an AS extension of GR.
*It has four coupling constants G, A, a, p
*A Weyl? counterterm is necessary to define the theory
*It is perturbatively renormalizable
*However it is unphysical: the energy is unbounded from
below and it is either non-unitary or acausal.
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ummary up to here:

*For d<4, GR defined in 1/N is AS
*It has just the two coupling constants G, and A
*There is a nontrivial fixed point to leading order in 1/N.
*Once defined there are no new divergences to all orders in 1/N
*There is a ghost

*As there is no new counterterm the classical ADM energy
is positive.

*For d=4 there is an AS extension of GR.
*It has four coupling constants G, A, a, p
*A Weyl? counterterm is necessary to define the theory
*It is perturbatively renormalizable
*However it is unphysical: the energy is unbounded from
below and it is either non-unitary or acausal.

leithes.is fully acceptable, but the better bet is the theory with q......

lsrmiltnanicarmn Barnimecderd from Belaw



| similar situation holds for four fermi theory (Parisi, Wilson)

| fermions in d=4-¢ =10 3. _g_w,.;. Y,
=

cale the coupling with the cutoff: Gg=gA" *,

he interaction l
7 leading order >@<
1 1/N: a bosonic

1itermediary emerges

+ + - = ®
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he limit A =2 infinity for d<4 can be taken using a non-trivial fixed point

Ge 4%“’“[ gy 2\ 1-/2 ] -2
= = + B =gA°
A 1 -—fGF f (Zﬂ'jd . ;_115 P ) (g) GF grl .
M ME—F N 1 — 4 %"ﬂ’d
8(7") =g + 8" g* (2m)y(1-3e)

he renormalized amplitude is

1

A= —€ : —F
(—M>* —(—p) "B(e))
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he limit A =2 infinity for d<4 can be taken using a non-trivial fixed point

Ge 4%1"-'1[ A4 21-#/2 ] -2
= = + B =gA°
A 1 ——fGF f (2‘“—)4 = ;_lrE P ) (g) GF gd "
M M'Z—F = 1 = 4' %‘ﬂ’d
g(;')=3*+__11" = g* 2=)(1-3¢)°

he renormalized amplitude is

1

A =
(—p ) "Ble))

renormalization of G,
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he limit A =2 infinity for d<4 can be taken using a non-trivial fixed point

Ge 4;“‘[ 7 e 21-8/2 ] -2
— — - B - F
A l—fGF f (21Tjd l—%E \p ) (E) GF gA .
M . 1 = 4-%1rd
g(g) =g+ =8 g* (2m)(1-3e)

he renormalized amplitude is

o =
(—M? — (g))

emergent intermediate boson
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he limit A =2 infinity for d<4 can be taken using a non-trivial fixed point

Ge 4;1“1"‘[ e 2\ 1-e/2 ] -2
- = <+ | B Gg=pA° .
s = W T el L =
M MJ—F . 1 - - 4'%"ﬂ’d
g(;) =g "+ =8 g* (2m)y¥(1-3e)’

he renormalized amplitude is

1
A= — -
)

B(e) ~ 1/¢ so divergentasd 2 4
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he limit A =2 infinity for d<4 can be taken using a non-trivial fixed point

Ge 4%“’“[ ke 2\ 1-2/2 ] -2
= = - B — €
A ]-—-—fGF f (ZTT]d l—%{; 1p ) (E) GF g.rl .
M!—r = 1 g 4'%"‘!
g(g) =g"+ e g* 2m)’(1-le)

he renormalized amplitude is

1
A= —& - —F
e ;

B(e) ~ 1/¢ so divergentasd 2 4

o there is an AS theory for d< 4 but it is singular as d 2 4

- 4-3md -
||||| 09110044 fd - 2 . [%‘12 + pl 2 pl l n f_i ] Page 60/102
(27) A



here is an AS completion in d=4, but the boson requires a counterterm
nd so becomes fundamental

3 1,

rtroduce an auxilliary field: £ =38, —sonbab, 7

he limit d> 4 requires a counterterm: g% —!(5.0)In 1;

u

fter which the renormalized amplitude is:

1
p2 — M2 — (7/2472)p2in(—p2/M?)

o in this case there is an AS completion in d=4 and it is
' stable, unitary, renormalizable theory: ie the four fermion interaction
; softened by an intermediate boson.

j'l 'Y

his is what doesn’t exist for gravity in d=4 which is why an AS
ompietion of gravity requires at least a reduced scaling dimensioiy.



Can we find a non-perturbative mechanism to reduce the scaling
dimension below d=4 at high energies?

That is, find a non-perturbative mechanism so that in the critical
region the theory scales as if d<4, ie for finite .

d‘ -
f (2«) el (2«r)"' Y

) 1
2 =
D(P*)uras = (—p?) ¥ M;
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Can we find a non-perturbative mechanism to reduce the scaling
dimension below d=4 at high energies?

That is, find a non-perturbative mechanism so that in the critical
region the theory scales as if d<4, ie for finite &.

d‘ .
f (2w) ad (2 )“' 2

= 1
2 =
D(P*)uas = (—p?) ¥ M;

This way, the theory can be well defined to all orders in 1/N
without the need for the Weyl? counter-term which destroys

- bia@ Stability of the theory. Page 63102



Can we find a non-perturbative mechanism to reduce the scaling
dimension below d=4 at high energies?

First try: (1985) Suppose that at short distances there is a scale
invariant gas of virtual black holes. Propagation only coherent on
fractal set outside of all horizons. Reduces scaling dimension below
d=4.

Nuclear Physics B267 (1986) 714-757
% North-Holland Publishing Company

RENORMALIZABILITY OF GENERAL RELATIVITY
ON A BACKGROUND OF SPACETIME FOAM

Louis CRANE"
Department of Mathematics, University of Chicago, Chicago, Tl 60637, USA
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Can we find a non-perturbative mechanism to reduce the scaling
dimension below d=4 at high energies?

First try: (1985) Suppose that at short distances there is a scale
invariant gas of virtual black holes. Propagation only coherent on
fractal set outside of all horizons. Reduces scaling dimension below
d=4.

Nuclear Physics B267 (1986) 714-757

© North-Holland Publishing Company

But what about Lorentz invariance?

RENORMALIZABILITY OF GENERAL RELATIVITY
ON A BACKGROUND OF SPACETIME FOAM

Louis CRANE"
Department of Mathematics, University of Chicago, Chicago, Tl 60637, USA
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Can we find a non-perturbative mechanism to reduce the scaling
dimension below d=4 at high energies?

Second try (1986): Loop quantum gravity:
*The vacuum is described by a gas of Wilson loops of the
spacetime connection.
*The gas has finite density as this is required to match the
classical geometry. This is a consequence of the discreteness
of area and volume.
*This is equivalent to a distributional geometry, which has one
spatial dimension below the Planck scale-because
transplankian modes can only propagate along the loops or

edges of the graphs.
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Can we find a non-perturbative mechanism to reduce the scaling
dimension below d=4 at high energies?

Second try (1986): Loop quantum gravity:
*The vacuum is described by a gas of Wilson loops of the
spacetime connection.
*The gas has finite density as this is required to match the
classical geometry. This is a consequence of the discreteness
of area and volume.
*This is equivalent to a distributional geometry, which has one
spatial dimension below the Planck scale-because
transplankian modes can only propagate along the loops or

edges of the graphs.

In fact, there is a physical cutoff, so spin foam
amplitudes are uv finite, so the connection to AS was forgotten.
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ome lessons and opportunities for AS from LQG

lhere is a new fixed point. It is a topological quantum field theory

= BI')r A Frj
.r'\/f"l

SO(1,4) gauge theory, |,J=0,...4

F=0 = Desitter spacetime
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ome lessons and opportunities for AS from LQG

lhere is a new fixed point. It is a topological quantum field theory

— BI'] A Fr;
J,M'-l

SO(1,4) gauge theory, |,J=0,...4

F=0 = Desitter spacetime
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ome lessons and opportunities for AS from LQG

l'here is a new fixed point. It is a topological quantum field theory

S = | B'" A Fry+ gB" A B* e jpmv™
M4
3R can be understood as a cubic interaction added to this TQFT
3ecause of that there is a well defined path integrals (spin foams)
*Some are uv finite but ir divergences have to be dealt with.
*They can be expressed in terms of matrix models (group field theory,

*RG becomes a Hopf algebra (Connes-Kreimer, Markopoulou)

.There is a lot of scope for RG methods to apply to spin foam madels.



ome lessons and opportunities for AS from LQG

lhere is a new fixed point. It is a topological quantum field theory

= BI'] A Fr;
J.M-l

SO(1,4) gauge theory, |,J=0,...4

F=0 = Desitter spacetime

irsa: 09110044 Page 71/102



ome lessons and opportunities for AS from LQG

lhere is a new fixed point. It is a topological quantum field theory

S = B' A Fr; + gB" A B erjxpmv™
A4

3R can be understood as a cubic interaction added to this TQFT

3ecause of that there is a well defined path integrals (spin foams)
*Some are uv finite but ir divergences have to be dealt with.

*They can be expressed in terms of matrix models (group field theory,

*RG becomes a Hopf algebra (Connes-Kreimer, Markopoulou)

.There is a lot of scope for RG methods to apply to spin foam medels.



Can we find a non-perturbative mechanism to reduce the scaling
dimension below d=4 at high energies?

Recently several research programs have found evidence
for d; ~ 2 at high energies:

*Casual dynamical triangulations
*Modern RG approaches:

There is also interest in the proposal by Horava
on anisoptropic scaling:

E~p°M,™?

which has the effect of reducing the scaling dimension
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here is a key question that must be asked of any scenario that claims
he graviton propagator scales anomalously at high energies.

Any anomalous scaling introduces an energy scale, M, which
marks the threshold above which we observe the new physics

*Reduced dimension:

d*—p 1 1 1
— l D(pl) aff — 1 £
f(z-:r)‘ . el N (_pz)l"z! M;

=

*Anisotropic scaling:

E ~ prﬂfg_r
“Cutoff p < M,

Does this imply the breaking or deformation of the lorentz
transformations, as applied by observers who live at d=47?

e what is the symmetry of the scaling region at the fixed poipt?2



et us put this in phenomenological terms. The scaling at the fixed
oint should determine the propagation and scattering of gravitons

nd other particles at transplankian energies and momenta. What
ymmetry group governs those interactions?

0 ask this it is sufficient to consider the theory in the limit

h — 0, Gy — 0 M,

ut with their ratio, Mp, held fixed
his is an experimental regime with two constants, cand M,,.
Vhat is the symmetry group that governs their phenomenology?

his should be determined by the physics at the non-trivial

irsa: 09110044 Page 75/102
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he classical Planck energy regime:

h—>0, GN—>0

lp:\/hGN—~>0 M, = o
N

lo observations of this regime teach us something about
he scaling at the non-trivial fixed point?

hree general possibilities for the symmetry in this regime:

e orentz invariance
*Broken lorentz invariance
*Deformed lorentz invariance (DSR)
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Principles of deformed special relativity (DSR):

1) Relativity of inertial frames
2) The constancy of ¢, a velocity

3) The constancy of anenergy E .,

7) cis the universal speed of photons for E<<E

Amelino-Camelia , Magueijo and Is
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Principles of deformed special relativity (DSR):

1) Relativity of inertial frames

2) The constancy of c, a velocity

3) The constancy of an energy E . .

4) cis the universal speed of photons for E<<E

Consequences:

¢ Modified energy-momentum relations

e Anisotropic scaling, E~p?

* Momentum space has constant curvature given by E .,

e Energy-momentum conservation becomes non-linear
(Coproduct)
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Mathematical realizations:

1) Deformed poincare algebra is a hopf algebra
Acts on a spacetime geometry which is non-commutative.

2) Energy dependent metric: g_, (E), ie the metric is a coupling
constant of matter fields and hence runs under the RG.

Models of DSR:

*DSR is realized precisely in 2+1 gravity with matter
hep-th/0307085
*QFT on kappa-minkowki

*Rainbow metric

irsa: 09110044

*Energy dependent h and c
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Energy dependent metric: g, (E)

 The metric is a coupling constant of matter fields and hence
runs under the RG.

* DSRis the statement that an energy dependent metric has
a symmetry group which is modified but not broken
by the energy dependence.

Energy dependent frame fields

GE(E/JUP) T [eﬂf(E/Mp)TELQ(E/Mp)]

Implies modified energy-momentum relations

gﬂy(E/ﬂJ)pypv = m2C4
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'SR modified energy momentum relations:
E E

E2 2 S 25
(37 =pP9 (37

ieformed Lorentz transformations:

)e? + pct

( E f : pg) transforms as a regular Lorentzian 4-vector

.class of examples, for massless particles

f E
B — =
g (1+pB) -

nplies anisotropic scaling:

El a( ) o
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arieties of asymptotic behavior for DSR

E
=
(1+B77)°
he leading order modification of the speed of light is
dE E
v=—=14+2a ...
dp . ﬁ]\zf
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arieties of asymptotic behavior for DSR

E
—F
(1+53)°
he leading order modification of the speed of light is
dE E
v=—=14+2c« - ...
A e s T

a>0, p>0: both E and p are unbounded: El—ct ( % ) == D

B

*Anisotropic scaling
*Superluminal speed of light
eLifshitz:

.
- — —) _—
Pirsa: 09110044 e 3 a —_— Page 83/102
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arieties of asymptotic behavior for DSR

[> a >0, p< 0: E bounded, p unbounded:

J o

By, = F
=T
lhis also has a kind of inverse scaling.
M Mo

€ — E pm

|5| e

his case has a subluminal speed of light v <1

E
—3-9 |
v=1-2a|8|%
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arieties of asymptotic behavior for DSR

a=1,p> 0: Eunbounded, p bounded:

S p
1+8E) T
lhis also has a kind of inverse scaling and is superluminal

M?
=M —p

P~
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arieties of asymptotic behavior for DSR

a <0,p < 0: Eand p both bounded:

= | |
PRy Y2 2
( M) p°+

Could this eliminate the ghost? ie no pole if u >M

irsa: 09110044 Page 86/102



ISR, anisotropic scaling and observation.

lorava’s hypothesis:

E ~pPM2¢
his is the asymptotic behavior of a version of DSR with
E —
BNz P
(1+ ﬂ) 3
his implies at leading order
it
—_—— =
3 M

his.is.the same order of magnitude of the bound set by FERMI. ........



Arguments for DSR from the semi-classical limit of quantum gravity

*Not rigorous
*Two

Is hep-th/0501091, Nucl.Phys. B742 (2006) 142-157.

Is arXiv:0808.3765

Why should the metric become energy dependent?
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Arguments for DSR from the semi-classical limit of quantum gravity

*Not rigorous
*Two

Is hep-th/0501091, Nucl.Phys. B742 (2006) 142-157.

Is arXiv:0808.3765

Why should the metric become energy dependent?
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Variables: A E‘f qqﬂb = E’f E';?gij

poisson brackets:  { A" (1), E¥(y)} = G35:5° (. )
Connectionrep: W (A, ¢) E:'f(:l:) = Gh(SA('S( )
a\Z

¢ matter fields
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Variables: A, E‘f qq®? = E‘:I Ej—’éij

Poisson brackets: {A;(J;) E‘j’(y)} — G525§53(;ﬁ+ y)

Connectionrep:  W(A, o) E:"fl (z) = —1Gh 0}
e 0 AL ()
Semiclassical states: ‘I’(A.,@) = e'iS(A){(A,Q’)) S
function

0S

. . ey
classical solution: 0 ( ) 5 Aai ( ;I.‘)

S(A) is a time coordinate on configuration space and on solutions
S=u T where T is a coordinate on the spacetime

So an energy eigenstate & [T, c“)] =e MTfu,r [09]
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Semiclassical states: \I/(A, (D) = eiS(A)e—szé-w [(E)l

a,,- fluctuations of metric,

Decompose E operator around a solution _
we ignore them.

(@A ¢ = —hp-

|
P 3
|
L
S
St
©
=¥
|
S
©
S,
=
S
ey
i
%
[~
8.
.2



Semiclassical states: lII(A, @) =. eiS(A)e—MT{w [@

Decompose E operator around a solution

:af 'y "Oa_?’hp d 7
Ei(z)€|A, 0| = E; M 8T£[T’ ?,
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Semiclassical states:

V(A ¢) = e Ve e, [o)

Decompose E operator around a solution:

—hp 0O
uM oT

52 (2)E[A, o] = B §[T, 0] = —E"alprwe™ "€, (9]

hp
M p

e Ctlpg
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emiclassical states: WU(A, ¢) = eis(‘q)e_“"Tgw[qb]

hp
lecompose E operator around a solution: 2 fp = alp

Sa _. S S a_"!hp d

'I.ltl'.:l;ng everything together
E (z)WolAlE[T, 6] = ‘Ifo[A ol piw) E[T, &)

Classical term

EIT, @] = —E*alpwe™ &, 9]
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emiclassical states: (A, b) = eiS(A)e_MTgw[(ﬁ‘]

hp
lecompose E operator around a solution: 1 fﬂ = alp
2 —thp O =
S(@)EA, 6] = B E (T, 6] = — B alpwe™ T6,[9]
'utting everything together

E (z)Wo[AIE[T, 6] = Yo A]E% (1 .&[T o

Energy dependent correction
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emiclassical states: U(A, o) = e-;'S(A)e—mTé-w[é]

hp
lecompose E operator around a solution: 2 fﬂ = alp;
: a_thp % a —1Tw 1]
75 (2)€[A, 9] = E] ar ars = —E)" ol prwe ™ T4€, (4]
'utting everything together

E? (z)WoAJE[T, ¢] = WolAIE* (1 — alpw) €[T, 9]
o the spacetime metric has become energy dependent

g— g(w) = —dT @ dT" + Z €; X ei(l — Oilp[u))

ind there is a modified dispersion relati:on to leading order:

k2
n_ = —g(w)" kuknu = w* : -O[(lpye)”]
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Asymptotic safety suggests a reduced scaling dimension in the critical
region to avoid the catastrophe of the Weyl? counterterm.

A key question is then what happens to the space-time symmetries
in the scaling region.
One attractive possibility is anisotrpic scaling, such as E ~ p*

Fhis is consistent with breaking or deformation of lorentz symmetry

'he symmetry will characterize the scaling of matter at high energy

Anisotropic scaling implies variation of the speed of light with energy.

l'he leading order transition to this is potentially observable now and
is disfavored if Lorentz invariance is broken, rather than deformed.

50 we can hypothesize that the non-trivial fixed point is characterized
by deformed lorentz symmetry. This is just the statement that at
the semi-classical level we should treat the metric as coupling
constants that run under the RG.



