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Abstract: Is there atheory yet to be discovered that underlies quantum theory and explains its structure? If there is such atheory, one of the features
it will have to explain is the central role of complex numbers as probability amplitudes. In thistalk | explore the physical meaning of the statement
&€ogprobability amplitudes are complex&€s by comparing ordinary complex-vector- space quantum theory with the real-vector-space theory having
the same basic structure. Specifically, | discuss three questions that bring out qualitative differences between the two theories: (i) Is information
about a preparation expressed optimally in the outcomes of a measurement? (ii) Are multipartite states locally accessible? (iii) Is entanglement
&€oanonogamousa€e?
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The Question

Motivating question: Is there a theory yet to be discovered

that will explain the structure of quantum theory, particularly
the role of complex numbers?

Not my gquestion: How do empirical observations lead us to
a theory with complex probability amplitudes?

Actual question: Are there qualitative differences between
real-vector-space quantum theory and complex-vector-space
quantum theory that might gives us clues to the origin of

the complex-vector-space structure?

What | will actually do: Discuss three specific questions to
whjch the real and complex theories give very different answers.
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The Two Theories I'm Comparing

The real case

The complex case

yure states

rays in RV

rays in CN

-omplete orthogonal
neasurements

orthogonal bases
for RV

orthogonal bases
for CN

eversible evolution

orthogonal (det=1)

unitary

nixed states

positive unit-trace
operators (real)

positive unit-trace
operators (complex)

“omposition rule

tensor product

tensor product




Note: These two theories can simulate each other.
(Stueckelberg, 1960)

They can even simulate each other locally.
(McKague, Mosca, Gisin, 2009)

But in the simulation, one has to restrict the simulating
theory in order not to get too many possibilities.

So the two theories can be distinguished by what they allow.

A few of the other people who have addressed the general problem:
Gudder and Piron (1971), Maczynski (1973), Maczynski/Lahti (1987),
Bohm M 951), Myrheim (1999), Hardy (2001), Goyal (2008).
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States of a single binary object in the two theories
(Example: photon polarization)

The complex case The real case

1) 1$)

" P W Po)
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The three questions

. How well is information about a pure state expressed
in the outcomes of an orthogonal measurement?

Il.  Are multipartite states locally accessible?

lll. Is entanglement “monogamous”?

L3
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.  How well is information about a pure state expressed
in the outcomes of an orthogonal measurement?
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Information gained about 6 on average

A reasonable measure is

lim
1—rO0)

el

1

2

log (

n

2me

)

whe-_'e | is the mutual information between @ and n

k

-~ @ssuming a uniform a priori distribution over 6.

vertical’
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Definition of mutual information:

16 n, -<anv|9 og (1.6) ) - 3 (otnle)), o ptrl0)),

A reasonable measure is

lim
n—rC0

whete / is the mutual information between g and n

k

RO-w_..)

1

2

log (

n

2me

-=@s8Uming a uniform a priori distribution over g.

)

vertical’
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Comparison with other possible worlds

N\ ertical

irsa; 09110036 0 6 T Page 11/50




R

Our world’s probability law is optimal (for linear polarization)

For any probability law, one can show that

Iim
n—0OoQ0

—

I(0:n ) —

1l
=
> S

(

n

2me

)

—

< logm

The upper bound is achieved for p(6) = cos? 9.|
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Why this works: Wider deviation matches greater slope.




Real-vector-space quantum mechanics in N dimensions

dj

P3

The rule p, = a,? again maximizes the information gained
about a, compared with other conceivable probability rules.

K
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Why this works: Uncertainty in a is uniform and isotropic.
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Making statistical fluctuations uniform and isotropic
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No information maximization for the complex theory.

) »
— Prertical = COSX(¥12),

but y is not uniformly
distributed.

Y )

In N dimensions, a pure state
holds 2(N-1) real parameters,
but there are N-1 independent
probabilities.

|+

Is there some simple underlying explanation of this doubling‘u

———
cf-Spakkens, 2004; Goyal, 2008) Page 1650




Il. Are (Mixed) States Locally Accessible?

State estimation for a single qubit (complex case):

19

™ )

L3
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ll. Are (Mixed) States Locally Accessible?

State estimation for a single qubit (complex case):

J""‘/

k
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Are (Mixed) States Locally Accessible?

State estimation for a single qubit (complex case):

- y




Il. Are (Mixed) States Locally Accessible?
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State estimation for a single qubit (complex case):

L3

=

y
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Summary of this procedure

o

-

F
” 3 ‘-.
-
”

= - - - #.

I :

™ —
~ = B -..
split into e

three By S _--

-

subensembles

—

— == .‘.

Need 3 real parameters.
fach measurement supplies 1 parameter.
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State estimation for a pair of qubits

N -
— -
N B
~ 7’
~ 4
. 7 - .
----3 f----Hop----
— g _F‘ ~ ..
' ~
s source of b
."'-..._ 22 qubit pairs e _,.."".
A% Lo _

Get: coefficients in p of
Need 42 -1=15

I® o, o®1, 0® o,
real parameters. e J
. 3 = F + 9 — 15
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A simpler way of counting: unnormalized state (Hardy, 2001)

m--qf}. JEF— =
{7k < _Ii}--m

-

F
r -
ﬂ ~ T~ J7F
.
\ --
S z |
.

” source of
s qubit pairs b

n--1}° [} --m

Get: coefficients in p’ of

®_
Need 4 = 16 o; ® g, (where g, is the identity)
real parameters. :

X 4 x 4 =16
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C

A composite system with N, x N, dimensions (complex case).

Need (N,N,)? real parameters (unnormalized state).

Local measurements give N2 x N,% = (N;N,)?

independent parameters, exactly as many as needed.

So in the complex case, measurements on the parts
(with attention paid to correlations) provide exactly
the information needed about the whole.

k
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State estimation for a single “rebit” (real quantum bit)

1£)

™ %)
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State estimation for a single “rebit” (real quantum bit)

I§)
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Summary of this process

split into R
ftwo = ~ == "'.

~ -
subensembles
T

Need 2 real parameters.
fach measurement supplies 1 parameter.
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How it looks with an unnormalized state

Need 3 real parameters.
fach measurement supplies 1 parameter.
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State estimation for a pair of rebits (unnormalized)

- S
- T
J-- source of --0

rebit pairs

Get: coefficients in p’ of

Need 4(4+1)/2 =10

real parameters. o; ® o, (where g, is the identity)

3 x3=9

'he misstng contribution, from ¢, ® o, , must be accessed globally.
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In the real theory, states are "bilocally accessible”.

Three objects with dimensions N,, N,, and Nj:

Let K(N) be the number of parameters
in an unnormalized state in N dimensions.

k
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In the real theory, states are "bilocally accessible”.

Three objects with dimensions N,, N,, and Nj:

Let K(N) be the number of parameters @ @
in an unnormalized state in N dimensions.

Number of parameters accessible bilocally: @

K
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R

In the real theory, states are "bilocally accessible”.

Three objects with dimensions N,, N,, and Nj:

Let K(N) be the number of parameters
in an unnormalized state in N dimensions.

Number of parameters accessible bilocally:

K(N)JK(N,)K(N;)

k
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R

In the real theory, states are "bilocally accessible”.

Three objects with dimensions N,, N,, and Nj:

Let K(N) be the number of parameters M
in an unnormalized state in N dimensions.

Number of parameters accessible bilocally:

K(N KN, )KINS) + [K(N,N,) — KIN)K(N,)] K(N;)

3
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R

In the real theory, states are "bilocally accessible”.

Three objects with dimensions N,, N,, and Nj:

Let K(N) be the number of parameters @
in an unnormalized state in N dimensions.
Number of parameters accessible bilocally:

KIN KN KN + [K(N{N,) = KIN,)K(N,)] K(N3)
+ [K(N;N3) — K(N;)K(N;)] K(N,)

k
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R

In the real theory, states are "bilocally accessible”.

Three objects with dimensions N,, N,, and Nj:

Let K(N) be the number of parameters
in an unnormalized state in N dimensions.
Number of parameters accessible bilocally:

K(IN KN K(N;3) + [K(N{N,) = KIN)K(N)T K(N3)
+ [K(N;N3) = KIN)K(N3)] K(N,)
+ [K(N,N3) = K(N,)K(N3)] K(N,)

K
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R

In the real theory, states are "bilocally accessible”.

Three objects with dimensions N,, N,, and Nj:

Let K(N) be the number of parameters @ @
in an unnormalized state in N dimensions.

Number of parameters accessible bilocally: @

K(NKIN,KIN,) + [K(N;N,) — KINK(N,)] K(N)
+ [K(N{N3) — K(N;)K(N3)] K(N,)
+ [K(N,N3) — K(N,)K(N3)] K(N,)

\ For,sthe real theory, this exactly equals K(N, N, N,). I
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Functions K(N) corresponding to exact bilocal accessibility:

K(N) =N (ordinary probability theory)
K(N) = N(N +1)/2 (real-vector-space quantum)
K(N) = N? (quantum theory)

K(N) = (N"+ N5)/2, r=0,s=0

(Hardy and Wootters, in preparation)




Functions K(N) corresponding to exact local accessibility:

K(N) =N (ordinary probability theory)
—KEAN =N N2 reat-vector-spacequantam—

K(N) = N? (quantum theory)

K(N) = N’

In this sense the real-vector-space theory is more nonlocal,
or miore holistic, than actual qguantum theory.
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lll. Is Entanglement “Monogamous”™?

Entanglement in the complex case:

) = \/iiuom +[11))

This state is maximally entangled: to create it,
one needs to transmit one qubit between the two sites.

k
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Mixed-state entanglement in the complex case

Let p be an equal mixture of
1

V2

(100) +]11)) and |®) = %uon — |10))

%)

One might think this mixture is also maximally entangled.

But no. The same p is also an equal mixture of

5(10) +il1))® (10) — il1)) and 3 (10) —i[1)) ® (0) +i[1))

which can be created locally.

k I—I
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Entanglement monogamy in the complex case

A®-----@B If A and B are maximally entangled,
then neither can be at all entangled
with C.
oC

The reason: If either A or B were entangled with C, then
AB would be in a mixed state, but every maximally entangled
state is pure.

3
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Mixed-state entanglement in the real case

Let p be an equal mixture of

|\D>=%(|oo>+m>) i = \%uon 110))

This mixture is maximally entangled!

Every decomposition of p into real pure states consists of
maximally entangled states. The decomposition

%(|0)+z‘|l))®([0)—i|l)) and %(|0>—i|1>)®(10>+i|1>)

is not Alowed. So a mixed state can be maximally entangled.
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No entanglement monogamy in the real case

@B
S ) Three rebits can be
AW_ ! pairwise maximally
= ___‘ C entangled.

1
PABc=g(lf@f@I+0y®ay®l+ay®I®Jy+1®ay®ay)

The reduced two-rebit state is

1
PABj 1 (I RI+oy® Gy) , which is maximally entangled.
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No entanglement monogamy in the real case

»_ : ,
e & For n rebits, there exist
o 2= :‘ 21 mutually orthogonal
. o~ . "5 states, each of which has
™S .
e S 'f‘ g maximal entanglement
‘.’.— e vwud between any two rebits.
---- »

1
Re Z (.9119&‘,)""1 R---@ (sn_lay)k"-l ® or;‘"
kn

Sj=:|:1

So one can hide n-1 classical bits in n rebits.
Thedocal observers cannot access any of these bits,
e¥en with unlimited classical communication.
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Summary

Complex: An orthogonal measurement accesses
only half the parameters of a pure state.

Real: Information about a pure preparation is optimally
expressed in the outcomes of a measurement.

Complex: Multipartite states are locally accessible.
Real: Multipartite states are bilocally accessible.
Complex: Entanglement is monogamous.

Real: Arbitrarily many objects can be pairwise

maximally entangled.

k
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Tentative conclusion, and a nagging question

“Complex” may be telling us to what extent nature is limited in its
nonlocality, or its holism. The real case would also be limited,
but less so (bilocal accessibility).

But “limited holism” does not give us a direct answer to the
question: Why does a complete orthogonal measurement access
only half the parameters of a pure state?

k
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One more try: Information about a transformation

00) + |11)
00) — [11)
01) + |10)
01) — |10)

Information about the special unitary
transformation U is expressed
optimally in the outcomes.

00) + |11)

k
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