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Abstract: | present an overview of how inspiral-merger-ringdown (IMR) waveforms are currently being used within LIGO and Virgo search efforts.
I'll discuss search strategies from the two major astrophysics working groups within t he LIGO/Virgo collaboration searching for transient
gravitational-wave signals - the Compact Binary Coal escence group and the Burst Group.

For masses where the inspiral, merger and ring-down phases are prominent in the LIGO/Virgo band both working groups have developed pipelines
that are sensitive to these systems and are now trying to work together to make a joint statement about LIGO and Virgo's sensitivity to IMR systems.
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_IGO / Virgo searches for binary inspiral.
2ast, present, and future.

Chad Hanna - california institute of Technology
on behalf of the LIGO Scientific Collaboration and Virgo Collaboration
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Loosely defined, gravitational-wave data analysis is the procedure of detecting and
estimating the parameters of gravitational wave signals. Some day, when we have
signals, we'll call it Astronomy.

| will be referring to the analysis of LASER interferometric detectors like

S ——— Exaggerated for effect:

Gravitational waves can
cause the relative distance
in two arms of a laser
interferometer to change.

The signal required to keep
the interferometer “locked”
during this can be calibrated
to be proportional to the

amplitude of the passing
Fhase GW
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|. PN theory describes the
beginning phase of
coalescence, the inspiral. L.
We have and will continue = 0
to exploit PN models for GW :
analysis. I'll talk about what -5
has been done so far
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Time Domain EOBNE Waveforms ( 30+30 Ms BBH)

Time (s)
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Strain
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ll. Numerical Relativists are regularly evolving
compact systems beyond inspiral. I'll discuss
how the LVC collaboration includes NR.

lll. What does the future hold? Speculation
about the coming decade... What ideas will
inform experiment in 10 years?
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1. Immediate goals of the LVVC collaboration
a) where we are
b) what we can do with what we have

2. Where we are starting to go, the next couple of years
a) Going beyond the inspiral, using numerical relativity

3. Advanced detectors — 10 years down the road
a) What do we expect to find?
b) What we can do with it
c) What we need to know to get the most out of our
signals
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Gravitational waves have been indirectly observed in binary pulsar systems that lose
orbital energy at a rate predicted by GR.

These sources have oo low of a frequency for ground based detectors to measure the
signal

Double NS systems and systems with other compact objects (such as black holes) can
be relevant to LIGO / Virgo if they have evolved to tighter orbits such that the orbital
period is tens of milliseconds

The existence of binary pulsars at lower frequency and population synthesis models
suggest that higher frequency compact binary systems exist.

We expect NS-NS systems and systems involving stellar mass black holes to exist from
binary stellar evolution. Heaver systems involving infermediate mass black holes may
also exist but often require more exotic formation scenarios

BOTTOM LINE: Compact binaries are known to be great GW sources...
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What can we do in the mean time?:
1. Constrain merger rates

Even without detections we can consfrain models for binary coalescence rates.

This in turn can consirain tunable parameters in population synthesis models, efc.
2. Provide additional information about some EM events

GRB 070201 had an overlap an location error box in Andromeda. LIGO was able fo
exclude the progenitor as compact binary coalescence in Andromeda to high confidence
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Goal: state 90% confidence upper bound on the merger rate of compact binaries in
the nearby universe as a function of mass from direct measurement of GWs.

Rates have sometimes been quoted as
mergers/yr/(Ny=c)

This rate gives is normalized to galaxies
like the Milkyway. Since LIGO/Virgo

is sensitive beyond our galaxy we can
detect signals from many galaxies.

We no longer use wa%; as the normalization
Instead we use L., (10" suns in blue light)

It is important to normalize things this way
nearby where the galaxy density is not unifornr
As our range improves it is less relevant and
we can simply use volume (e.g. Mpc?)

) Fn (1O /1P
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Goal: state 90% confidence upper bound on the merger rate of compact binaries in
the nearby universe as a function of mass from direct measurement of GWs.
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This is open ended, but we have an example GRB070201

m=—piisa: 09110032
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GRB070201 had an error box overlapping Andromeda.
LIGO observations excluded that it's progenitor was a
compact merger to greater than 99%
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The results shown on the previous slides made use of filtering the data for the
inspiral only part of the waveform. For low mass systems this is okay.

Last Stable Orbit for a Schwarzschild Black Hole = 6M
In GW frequency that corresponds to ~ 4400 Hz (M__ / M)

For heavier systems the Merger and ring down phase are in LIGO / Virgo's
sensitive band. A 30 solar mass binary has the 6M radius at LIGO’s most sensitive
spot (~150HzZ).

Searching for heavy systems is less founded than searching for stellar mass objects, but
it is also more rewarding because they often require more exotic situations than simple
stellar evolution to form.

Page 14/34

) [N 1//72)) ] AV11V G et rate



lost of the mass space produces 1 : :
raveforms with inspiral, merger o e e — e |
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Ve filter with EOB waveforms and ‘ )
eed about ~2000 waveforms to cover Horizon Distance vs Total Mass
he space with sufficient accuracy. 1000—% - :

900 - EOB in:-.piml—mcm__tré—nngdnwﬂ _‘

he EOB waveforms are tuned to 2 g0k : : i
IASA-Goddard NR in mass ratios of g?ml 7 297 ]
:1 — 1:4, but have been extended 2 i High mass Might we 1
nalytically to the entire mass range = region goto higher .
Time Domain EOBNR Waveforms (30+30 Ms BBH) E 500__ : Masses some -

. > 400+ day? 3

- S 300 : 1
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nanno and Damour 99,00: Damour, Jaranowski and Schaﬁar 00: Damour, Sath rakash and Iver 9
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‘hese EOB + NR waveforms are
alled EOBNR on the remaining
lides

Effective Distance vs. Chirp Mass (With H1. H2. L1 Cperating)

s o FoundinHi H2 L1
| |* o FoundinHi.LI

wi I POy £ " o FundinHZ L1

ALSE ALARM RATE IS NOT TAKEN
NTO ACCOUNT HERE. We have plans
> constrain the rate of such systems
1 the absence of a detection.

Time Domain EOBNE Waveforms ( 30+30 Ms BBH)
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1. Increasingly asymmetric mass ratios and more orbits if possibile
2. Spin.
3. Matter.
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We can do science without detections. but let's face it we stand to
learn far more from what we can see than what we cannot.

There are many, speculative sources that might show up as signals in
this detector era. And there are many theories (also sometimes
speculative) that can be constrained by not observing certain
phenomena.

But there is one class of sources where it is likely not just possible to
have tens of signals in the first year of advanced detector running.

QUESTION: HOW CAN WE EXTRACT THE MOST PHYSICS FROM
BINARY MERGERS?
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We may hope to detect about 40 events per year  The Astrophysical Joumnal. 6751459Y 1467, 2008
above SNR 8.

We expect the sources to be uniformly distributed in space. The
number of events should go up as the cube of our range. Another way
of putting this is that the probability of getting an event above a
certain SNR is inversely proportional to the SNR cubed at constant
sensitivity.

P(SNR >x) a (SNR)3

That means if we get about 32 events above SNR 8 we only expect 4
above SNR 16 and nothing above SNR ~30.

Question: If we detect for one year and get our 40 detections making all the world happy that
we found gravitational waves, what can we do the next year assuming the same sort
of numbers to get the best physics out?
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LIGO-T0900288-v2 AdvLIGO tunings

--=-NO SRM
__|----ZERO DET, low P. |
- |——ZERO DET, high P.

Itis possible fo tune
GW detectors to a narrow
band mode. But not without

effort. One has to pick |1~~~ “NSNS Opt.
in advance what the ===~ BHBH 20deg
interesting frequency is. i
Assuming another year S o s

like the first one do we
fry narrow band tuning?

.......

Strain [1/vHz]

e e e - e e e o e o e o g ) e e i

What do we gain? Probing
neutron star EOS? Magnetic
fields? Deviation from GR?
Do we expect these effects
to show up at any particular
frequency given the 10 o — : —
systems we observe from 1 2 3

- 10 10 10
the previous year? Frequency [Hz]
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We will only have a limited observation time and modest signals.
Advanced LIGO/Virgo will not be easy!

To extract information about new physics we really need to know where
to look.

Those interested in Neutron Star physics have been thinking about
this and are making proposals.
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A Challenge: Whatelse can we learn from binary
mergers in the advanced detector era?

(matter in strong gravity, alternative theories...)

What will we need to do to maximize
our knowledge ( a different detector configuration?)

Thanks for your time, any questions?
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Itis possible fo tune

GW detectors to a narrow
band mode. But not without
effort. One has to pick

in advance what the

interesting frequency is.

Assuming another year
like the first one do we
tfry narrow band tuning?

What do we gain? Probing
neutron star EOS? Magnetic
fields? Deviation from GR?
Do we expect these effects
to show up at any particular
frequency given the

systems we observe from
the previous year?
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1. Increasingly asymmetric mass ratios and more orbits if possibile
2. Spin.
3. Matter.
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‘hese EOB + NR waveforms are
alled EOBNR on the remaining i g

Effective Distance vs. Chirp Mass (With H1, H2. L1 Operating)
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ALSE ALARM RATE IS NOT TAKEN
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> constrain the rate of such systems - |
1 the absence of a detection. =
Time Domain EOBNE Waveforms ( 30+30 M=s BBH) ; :_
| E
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Ve filter with EOB waveforms and i .
eed about ~2000 waveforms to cover Horizon Distance vs Total Mass

EOB inspiral-merges-ringdown
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The results shown on the previous slides made use of filtering the data for the
inspiral only part of the waveform. For low mass systems this is okay.

Last Stable Orbit for a Schwarzschild Black Hole = 6M
In GW frequency that corresponds to ~ 4400 Hz (M__ / M)

For heavier systems the Merger and ring down phase are in LIGO / Virgo's
sensitive band. A 30 solar mass binary has the 6M radius at LIGO’s most sensiiive
spot (~150Hz).

Searching for heavy systems is less founded than searching for stellar mass objects, but
it is also more rewarding because they often require more exotic situations than simple
stellar evolution to form.
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This is open ended, but we have an example GRB070201

30

D(Mpc)

1 4 7 10 13 16 19 22 25 28 31 34 3|

A28 2008 mso [ _.1[ }

Asirophys.J 681:1419-1428 20

GRB070201 had an error box overlapping Andromeda.
LIGO observations excluded that it's progenitor was a
compact merger to greater than 99%
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Goal: state 90% confidence upper bound on the merger rate of compact binaries in
the nearby universe as a function of mass from direct measurement of GWs.
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