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Abstract: It has been conjectured that higher-dimensional rotating black holes become unstable at a sufficiently large value of the rotation, and that
new black holes with pinched horizons appear at the threshold of the instability. We search numerically, and find, the stationary axisymmetric
perturbations of Myers-Perry black holes with a single spin that mark the onset of the instability and the appearance of the new black hole phases.
We also find new ultraspinning Gregory-L aflamme instabilities of rotating black strings and branes.
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Motivation

@ Super-String theory is one of the most compelling theories of
quantum gravity, and contains gravity in d = 10.
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@ Super-5String theory is one of the most compelling theories of
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@ The AdS/CFT correspondence relates a (d — 1)—QFT with a
d—dimensional theory of gravity.
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® In large extra dimensions scenarios, M7, ~ R”JIP;;”. and M, can

be of the T eV order. Possible creation of micro black holes at the
LHC?
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Motivation
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Super-5String theory is one of the most compelling theories of
quantum gravity, and contains gravity in d = 10.

The AdS/CFT correspondence relates a (d — 1)—QFT with a
d—dimensional theory of gravity.

J‘_I_
In large extra dimensions scenarios, U' R" U‘ ", and Mp;, can

be of the T'eV order. Possible creatmn Df mIcro black holes at the
LHC?

In General Relativity the number of dimensions d is a parameter.
One expects interesting new dynamics in higher dimensions: number
of rotation angles is |(d —1)/2]
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Motivation
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Super-String theory is one of the most compelling theories of
quantum gravity, and contains gravity in d = 10.

The AdS/CFT correspondence relates a (d — 1)—QFT with a

d—dimensional theory of gravity.

. . . 2 2
In large extra dimensions scenarios, —'U;?f ~ B”JIP;;, and M, can

be of the T eV order. Possible creation of micro black holes at the
LHC?

In General Relativity the number of dimensions d is a parameter.
One expects interesting new dynamics in higher dimensions: number
of rotation angles is |(d —1)/2].

We need a phase diagram for black holes in higher dimensions:
finding new non-linear solutions is very challenging, so we study
stability and zero-modes.

Page 6/111



Asymptotically flat black holes

Review of the Gregory-Laflamme instability

Single spinning MP solutions

By Ultraspinning instability

‘Spectral power’

B Results

Discussion of the results in the single
Bl Equal angular momenta MP

E] Results

lM§ Discussion & Conclusions
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Asym. Flat vacuum BHs - Compact spatial horizon

@ In d = 4, the Kerr black hole is unique, given its mass M and
angular momentum .J and is stable (Teukolsky equation).
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in the same topological class:
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Asym. Flat vacuum BHs - Compact spatial horizon

@ In d = 4, the Kerr black hole is unique, given its mass M and
angular momentum .J and is stable (Teukolsky equation).

@ For d = 5, there is no uniqueness given M and {.J;. .o}, not even
in the same topological class:

Single spinning BHs — 5D

Partial results about stability for
J1 = J> (more about it later).
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Asym. Flat vacuum BHs - Compact spatial horizon

@ In d = 4, the Kerr black hole is unique, given its mass M and
angular momentum .J and is stable (Teukolsky equation).

@ For d = 5, there is no uniqueness given M and {.J;, .Jo}, not even
in the same topological class:

Single spinning BHs — 5D

Partial results about stability for
J1 = J> (more about it later).

@ d > 6: the only explicit solution is MP - new static numerical black
objects with spatial section horizon topology S% x S%—* (Kleihaus et
al., conical singularity), many horizon topologies (Emparan et al.,
blackfold approach). Stability?
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Asym. KK vacuum BHs - strings & branes

@ A black brane is a black hole with a non-compact spatial horizon.
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Asym. KK vacuum BHs - strings & branes

@ A black brane is a black hole with a non-compact spatial horizon.

@ In d = 4, there are no asymptotically KK black strings (no
non-trivial black holes in d = 3 asym. flat Eistein’s gravity).
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Asym. KK vacuum BHs - strings & branes

@ A black brane is a black hole with a non-compact spatial horizon.

@ In d = 4, there are no asymptotically KK black strings (no
non-trivial black holes in d = 3 asym. flat Eistein’s gravity).

@ For d > 5, easy construction: compact spatial horizon black hole x
flat directions

) =
[{'SBI‘E.I ne JH'__I'H E 2 i’.fﬁ ' LEE
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Asym. KK vacuum BHs - strings & branes

@ A black brane is a black hole with a non-compact spatial horizon.

@ In d = 4, there are no asymptotically KK black strings (no
non-trivial black holes in d = 3 asym. flat Eistein’s gravity).

@ For d > 5, easy construction: compact spatial horizon black hole x
flat directions

.') £
d'SBrc.L ne “IFH-__?H + {EE : d;

@ Asym. KK black strings & branes are unstable:
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Asym. KK vacuum BHs - strings & branes

@ A black brane is a black hole with a non-compact spatial horizon.

@ In d = 4, there are no asymptotically KK black strings (no
non-trivial black holes in d = 3 asym. flat Eistein’s gravity).

@ For d > 5, easy construction: compact spatial horizon black hole x
flat directions

{i'S-J—;T'[I ne JHE‘H %3 dz ' (EE
@ Asym. KK black strings & branes are unstable:

o dshy = dsz,, . : Gregory and Laflamme in ‘93.

? ds%H = {f._‘:?i—f_,”_i Ricardo Monteiro, Malcolm Perry and JES.
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A black brane is a black hole with a non-compact spatial horizon.

In d = 4, there are no asymptotically KK black strings (no
non-trivial black holes in d = 3 asym. flat Eistein’s gravity).

For d > 5, easy construction: compact spatial horizon black hole x
flat directions
ds?ﬂr'u ne f.’llrh..-i_:'f-f s dz : dz

Asym. KK black strings & branes are unstable:

2 - Gregory and Laflamme in ‘93.

Schw-

-.2 — a
2 d-‘nBH — ds

° ds%H — d._e:-%ff__”_: Ricardo Monteiro, Malcolm Perry and JES.

Charged or AdS black strings have more complex line elements, but
can be made stable.
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@ Static Gregory-Laflamme instability: ds? =ds% , + dx-dx
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@ Static Gregory-Laflamme instability: ds? = ds2 . +dx-dx

@ Perturbation depends on x, # and r:

0

- .
H ___ ik
= { 0 0

() -
] .where h,; = e “(spherical — wave)
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@ Static Gregory-Laflamme instability: ds? = ds% , + dx-dx

@ Perturbation depends on x, # and r:

1k-x |i "I'-"._-r"_, 0

Hip =€ 0 0 ] .where h,; = E[“{.ﬁphﬁré.f:ral — wave)

@ Using the Traceless- Transverse gauge: H4, =0 VaH5 =0
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@ Static Gregory-Laflamme instability: ds? = ds% , + dx-dx

@ Perturbation depends on x, 7 and r:
kx| Pap O Ot = _
Hag —€e== 0 o0 .where h,;, = e " (spherical — wave)

@ Using the Traceless- Transverse gauge: HA,=0. VAH5 =0

@ Einstein’s equations: Ay H 45 = 0 reduce to Aph,;, = Ah,,,
ArP.g=-—0P,3—2R " ,’P.s,and A= —k-k
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¢ [he brane becomes unstable for
o <k, & L>L.=ZxM
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e [ he brane becomes unstable for
kl <k. < L>L.=—2 x M.

o |f one periodically identifies the
coordinate r in a domain of size R,
then £ must be 2an/R .n € Z, so the
string becomes stable for R < L...
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o [ he brane becomes unstable for

o kl|<k.©L>L.=2 M.
0.03 = _ e
o8 o |f one periodically identifies the
0.02 coordinate r in a domain of size R,
e then & must be 2an/R.n € Z, so the
\ string becomes stable for R < L...
0.00
00 01 02 03 04
KM

@ Key observation: the threshold mode |k| = k. signals a new phase
of black strings - non-uniform black strings (conjectured by Gubser).
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e [ he brane becomes unstable for
— kK <k. < L>E. =Z <M

o |f one periodically identifies the

aM
0.02 coordinate r in a3 domain of size K.
== then & must be 2mn/R .n € Z, so the
string becomes stable for R < L...
0.00
00 01 02 03 04

ki M
@ Key observation: the threshold mode |k| = k. signals a new phase
of black strings - non-uniform black strings (conjectured by Gubser).

@ A complete non-linear analysis was only recently fully understood by
esa:0o1002s YVISEManN et al., and confirms the linear expectation. Page 26/111
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Gregory-Laflamme instability - 3/3 (wiseman, et ai. '93)
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Gregory-Laflamme instability - 3/3 (wiseman, et ai. ‘93)
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e [ he brane becomes unstable for
i kl<k.oL>L.=2 x M.

0.03

o |f one periodically identifies the
0.02 coordinate r in a3 domain of size R,

then k£ must be 2mn/R .n € 7Z, so the
string becomes stable for R < L...

oM

0.01

0.00
00 01 02 03 04

ki M
@ Key observation: the threshold mode k| = k. signals a new phase
of black strings - non-uniform black strings (conjectured by Gubser).
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e [he brane becomes unstable for
— <k oL>E—=«xM

0.03
o |f one periodically identifies the

0.02 coordinate x in a domain of size R,
then & must be 2mn/R.n € Z, so the
string becomes stable for R < L...

oM

0.01

0.00
00 01 02 03 04
kiM
@ Key observation: the threshold mode k| = k. signals a new phase

of black strings - non-uniform black strings (conjectured by Gubser).

@ A complete non-linear analysis was only recently fully understood by
esa:0o1002s VVISEMan et al., and confirms the linear expectation. Page 32111
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Gregory-Laflamme instability - 3/3 (wiseman, et a1 '93)
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— Single spinning MP solutzons

Single spinning Myers-Perry (MP) (Myers and Perry ‘86)

Single spinning MP line element: Kerr like {f.7.8.0} x S¢4

M= Ji N
¥ : 'r-.-. R § ) e ) (L7 ¥
ds” = —dt” + ————(dt + asin” Gdgp)”~ + ¥.° ( B JH')

R \ :

£y <) =

) - 2 ) ) “)
+~ (r"-+a”)sin- fdo™ + r~ cos” HdQ-_rf—_Lu

? > Y 'm

2 2 = _ 2 = 3
Yor=—r"+t+a sl N—vrta —7_ (

d—5
) . Honzon: A(r.) =20

r
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Single spinning MP line element: Kerr like {f.7. 4.0}

ds® = —dt® + 'f_

e L asin” Bdo) + ¥4
d- 532 dt + asin” 6do)

¥
»

d

re 2
L df- )
A

S £ = Y Y ¥ Y
<~ 4+ a”)sm” Gdo” -+ '~ cos™ H';fgl_rf—_h

. | F

-~ d—5
P . =) By : 3 . o I = 'S
E- — T T & S 9 _A — 5 4+ g — rr-n ( ) .
r

Horizon: A(r.) =20
Asymptotic charges:

s 167G M 2]
'PJ;N = a —

(d —2)Qq_» 2 M
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Single spinning MP line element: Kerr like {f.7.8. 0} x §4—

. _ ;""r_ 3 e f.f -
ds? — —di2 + — ™ __(dt + asin? 0do)? + X2 ( T L+ de?
pd—o% 2 A ;
= S __r»: i "_ -..111 H; ;rk —+— kl}"‘ H,{f()_

“*(d—4)

) ) ) I‘ LI_F} .
Y2 —r2 1 g2cos20. A=r%+a*—-1r? ( m) . Hornizon: A(r.) =20

TrL 'i"
Asymptotic charges:
13 160GM d—2 J

¥y, — a —

g (d —2)Q;_5 2 M

@ d = 4: Kerr Black hole, extremality bound |a| < r,,,/2.
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Single spinning Myers-Perry (MP) (Myers and Perry ‘86)

Single spinning MP line element: Kerr like {f.7.8.0} x S

: . r'I‘I_I _ ey ) e (fT,i": ; r.
d"'-'-) — _ffrf-“ - ﬁ F;‘rf_ -+ a SIN Hfff:ﬂ A = E_ ( A = = UIH“ )

a—
e

3 ] m ) = Y ) ¥ =)
+ (r“+a”)sin” fdo” + r~ cos” 8dC):

“(d—4)
2 - = SR - 2 2 2 Fm ' d—>5 _ |
Y —r"+acos 0 A—=—r+ta-—7 —) . Hornizon: A(r.) =20
=

Asymptotic charges:

d—3 167G M d—2.]

e — | &=
<2 (d —2)Qq 5 2 M

@ d = 4: Kerr Black hole, extremality bound |a| < r,,/2.
@ d = 5: Extremality bound, |a| < r,,, and naked singularity at
al— .
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Ultra-spinning instability (Emparan, Myers '03)

@ For d > 6, no upper bound on |a|, so spin it up!

S.d—d.
.. L. ~r,

- By Iy
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Ultra-spinning instability (Emparan, Myers ‘03)

@ For d > 6, no upper bound on |a|, so spin it up!

= @ L is the {#. 0} pancake scale
&

®L-" L, is transverse S%* scale.

L.~a»>r,r.
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@ L is the {#. o} pancake scale
L, is transverse S%* scale.

@ Ly > L, : the S9=4 sphere ‘sees’ the pancake
as a two-plane - locally (BH ), _ o x R2/i e a
string <— GL unstable!!
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Ultra-spinning instability (Emparan, Myers ‘03)

@ For d > 6, no upper bound on |a|, so spin it up!

s @ L is the {#. 0} pancake scale

® L~ L, is transverse S%* scale.

@ Ly > L, : the S9—4 sphere ‘sees’ the pancake
as a two-plane - locally (BH) > xR? i e a
string — GL unstable!!

@ B oy Iy

@ Zooming near the pole # = 0, taking la| — +oc and keeping
> — 2 Yo e

Tt I

>
9 = > dr_ P R > . .9
ds~ ~ —f(r)dt= + ) +7r°dQy_4 +do” + o do~,
\T)
where
Pd—ﬁ
Pirsa: 09110028 jj(r) — ]_ =3 ITL and o = a "";i_l]_fg Page 42/111



Ultra-spinning instability - What to expect? (Emparan, Myers ‘03)
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Ultra-spinning instability - What to expect? (Emparan, Myers '03)
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Ultra-spinning instability - What to expect? (Emparan, Myers ‘03)
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Ultra-spinning instability - What to expect? (Emparan, Myers '03)
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‘Spectral power’ - The method (R. Monteiro, M. J. Perry and JES ‘09)

@ This numerical method was first applied to gravitational systems in
the study of the thermodynamic negative mode of the Kerr black
hole, i.e

-'ALh_—lB — /\JIIAB

where A € {t.7.0.0}.
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‘Spectral power’ - The method (R. Monteiro, M. J. Perry and JES ‘09)

@ This numerical method was first applied to gravitational systems in
the study of the thermodynamic negative mode of the Kerr black
hole, i.e

.ALh_{B — )\hd—iB
where A € {t.7.0.0}.

@ Discretises the PDE's domain, in an unevenly spaced grid of

dimension N, whose sample points are the extrema of the
Chebyshev polynomials:
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@ This numerical method was first applied to gravitational systems in
the study of the thermodynamic negative mode of the Kerr black
hole, i.e

ALh_—lB = /\hd_ig >

>

-x=— Al -=

where A € {t.7.0.0}.

@ Discretises the PDE's domain, in an unevenly spaced grid of
dimension N, whose sample points are the extrema of the
Chebyshev polynomials:

e Advantages:
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‘Spectral power’ - The method (R. Monteiro, M. J. Perry and JES ‘09)

@ This numerical method was first applied to gravitational systems in
the study of the thermodynamic negative mode of the Kerr black
hole, i.e

.ALh__lg = /\hd_ig —

N —oc

=

-x— A8 -x

where A € {t.7.0.0}.

@ Discretises the PDE's domain, in an unevenly spaced grid of
dimension NV, whose sample points are the extrema of the
Chebyshev polynomials:

o Advantages:
o Exponential accuracy with increasing V.
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‘Spectral power’ - The method (R. Monteiro, M. J. Perry and JES ‘09)

@ This numerical method was first applied to gravitational systems in
the study of the thermodynamic negative mode of the Kerr black
hole, i.e

AL}?_—IB :f\hd—iB — é-ng\g-x

N —oc s

where A € {t.7.0.0}.

® Discretises the PDE's domain, in an unevenly spaced grid of
dimension N, whose sample points are the extrema of the
Chebyshev polynomials:

o Advantages:
o Exponential accuracy with increasing V.
¢ No Runge phenomenon, suitable for non-periodic domains.
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@ This numerical method was first applied to gravitational systems in
the study of the thermodynamic negative mode of the Kerr black
hole, i.e

ALh_—lB — )\hd_ig e

=

-x=ANB-x

where A € {t.7.0.0}.

@ Discretises the PDE's domain, in an unevenly spaced grid of
dimension N, whose sample points are the extrema of the
Chebyshev polynomials:

o Advantages:
o Exponential accuracy with increasing V.
e No Runge phenomenon, suitable for non-periodic domains.
e Powerful methods to solve generalised eigenvalue problems.
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@ This numerical method was first applied to gravitational systems in
the study of the thermodynamic negative mode of the Kerr black
hole, i.e

>

AL!I?_{B :/UIAB f-:‘-‘* -}_C:f\g-x

where A € {t.7.0.0}.

@ Discretises the PDE's domain, in an unevenly spaced grid of
dimension NV, whose sample points are the extrema of the

Chebyshev polynomials:
e Advantages:
o Exponential accuracy with increasing V.
e No Runge phenomenon, suitable for non-periodic domains.
e Powerful methods to solve generalised eigenvalue problems.

e Disadvantages:
=—— o Dense matrix - Toeplitz, in particular circulant.
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‘Spectral power’ - The method (R. Monteiro, M. J. Perry and JES ‘09)

@ This numerical method was first applied to gravitational systems in
the study of the thermodynamic negative mode of the Kerr black
hole, i.e

-ALh_—lB = /\}IAB e

N —oc

>

'E:f\

low

- X
where A € {t.7.0.0}.

@ Discretises the PDE’'s domain, in an unevenly spaced grid of
dimension N, whose sample points are the extrema of the

Chebyshev polynomials:
o Advantages:
o Exponential accuracy with increasing V.
e No Runge phenomenon, suitable for non-periodic domains.
o Powerful methods to solve generalised eigenvalue problems.

e Disadvantages:
—— o Dense matrix - Toeplitz, in particular circulant.
e [he perturbed metric functions need to be analytic.
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‘ S pect ral powe ril & S i ngle Spi n n i ng M P Dias, Figueras, Monteiro, JES and Emparan '09)

@ We want to study:
ALh_{B —

where A € {t.7.8.0.S9*} and Ay is evaluated on the single
spinning MP background solution.

Pirsa: 09110028 Page 55/111



‘Spectral power’ & Single spinning MP .. ruue v, 1£5 0t Emparan 09

@ We want to study:
AL.II__lB — ;\.'I.?__’!l 2,

Ery

where A € {t.r.8.0,.S%*} and Ay is evaluated on the single
spinning MP background solution.
@ For A < 0 we have solutions for perturbations of the d + n brane

system, A = —k - k and n = dim k, or thermodynamic negative
mode.
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i S pECt ral [J{JI‘J\'V‘Ieril & S i ngle Spi n n i ng M P Dias, Figueras, Monteiro, JES and Emparan "'09)

@ We want to study:
AL.-IIAB — /\.-‘T'r_;g.
where A € {t.r.6.0.S9*} and Ay is evaluated on the single
spinning MP background solution.
@ For A < 0 we have solutions for perturbations of the d + n brane
system, A = —k - k and n = dim k, or thermodynamic negative
mode.

@ If one wants to look at on-shell perturbations of the d—dimensional

single spinning MP solution, search a posteriori for the solutions
which have A = 0.
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We want to study:

ALJ’I_%B — ,,U?_Jlg.

where A € {t.7.8.0.S9 %} and Ay is evaluated on the single
spinning MP background solution.

For A < 0 we have solutions for perturbations of the d + n brane
system, A = —k - k and n = dim k, or thermodynamic negative
mode.

If one wants to look at on-shell perturbations of the d—dimensional
single spinning MP solution, search a posteriori for the solutions
which have A = 0.

Search for solutions which preserve the R, x U(1), x SO(d — 3)qa,_,

| hee © © By 0
0 h, hgy 0 0
hap = 0 hr-¢ hege 0 0
hey O 0 bhy 0
| 0 0 0 0 | hggr{}ggﬂ.____ ] e



Reducing the equations: Gauge choice

@ Gauge freedom: hap — hap + 2V 4&R), where £ is a gauge
parameter.
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Reducing the equations: Gauge choice

e Gauge freedom: hag — hap + 2V 4€p,, where £g is a gauge
parameter.

@ We worked in the TT gauge:

\_"'__lh'_lg =0 ."‘?'4__1 =@
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Reducing the equations: Gauge choice

@ Gauge freedom: hap — hap + 2V 4&p), where £ iIs a gauge
parameter.

@ We worked in the TT gauge:
v__ih'JLB =1 .h!'_k__l =1

@ For A # 0, the TT gauge fixes all gauge freedom, because
ArVia€p) =0, ¥€a.
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Reducing the equations: Gauge choice

@ Gauge freedom: hap — hap + 2V 4€5),, where £g is a gauge
parameter.

@ We worked in the TT gauge:
'\7_4}1-*3 =¥ h'_l__l =1

@ For A # 0, the TT gauge fixes all gauge freedom, because
ArV(a€p) =0, V4.

@ In the A = 0 case, there is residual gauge freedom for gauge
parameters £ 4 satisfying (064 = 0, and V&% = 0:
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Reducing the equations: Gauge choice

@ Gauge freedom: hap — hap + 2V 4&p,, where £p is a gauge
parameter.

@ We worked in the TT gauge:
T__;}I'JLB = h'_l__l =1

@ For A # 0, the TT gauge fixes all gauge freedom, because
ArViaép) =0, V€a.

@ In the A = 0 case, there is residual gauge freedom for gauge
parameters £ 4 satisfying (04 = 0, and V4&* = 0:

e Boundary conditions: metric perturbations regular on the
horizon, and preserve asymptotic flatness.
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Reducing the equations: Gauge choice

@ Gauge freedom: hap — hap + 2V 4&p), where £ is a gauge
parameter.

@ We worked in the TT gauge:
T__lh'JLB —4 h"J"__l —

@ For A # 0, the TT gauge fixes all gauge freedom, because
ArVia€p) =0, V€a.
@ In the A = 0 case, there is residual gauge freedom for gauge
parameters £ 4 satisfying (064 = 0, and V&% = 0:
e Boundary conditions: metric perturbations regular on the
horizon, and preserve asymptotic flatness.
e £4 must be such that V, 4&5, preserves the background
symmetry.
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Reducing the equations: Gauge choice

@ Gauge freedom: hap — hap + 2V 4&R), where £ iIs a gauge
parameter.

@ We worked in the TT gauge:
v__;h'JLB —@ ."‘1'_1__1 —

@ For A # 0, the TT gauge fixes all gauge freedom, because
ArVa€p) =0, V€a.

@ In the A = 0 case, there is residual gauge freedom for gauge
parameters £ 4 satisfying (04 = 0, and V&% = 0:

e Boundary conditions: metric perturbations regular on the
horizon, and preserve asymptotic flatness.
e £4 must be such that V 4£5, preserves the background

symmetry.
¢ One can prove that there are no £, satisfying these conditions.
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Reducing the equations: Gauge choice

@ Gauge freedom: hag — hap + 2V 4&p,, where £ is a gauge
parameter.

@ We worked in the TT gauge:
Vaih?p =0 A y—4

@ For A # 0, the TT gauge fixes all gauge freedom, because
ArViaép) =0, ¥€a.
@ In the A = 0 case, there is residual gauge freedom for gauge
parameters £ 4 satisfying (04 = 0, and V&% = 0:
e Boundary conditions: metric perturbations regular on the
horizon, and preserve asymptotic flatness.
e £4 must be such that V 4&g, preserves the background

symmetry.
¢ One can prove that there are no £, satisfying these conditions.

o Gauge freedom fixed even for A = 0.
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Reducing the equations: The PDE system

® hs, hiy and h,, components appear algebraically in the TT
conditions, and can be solved as a function of {h,,. h,4. hgg, hq}
and their derivatives.
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Reducing the equations: The PDE system

® hy, his and h,, components appear algebraically in the TT
conditions, and can be solved as a function of {h,,. h.g. hga. ha}
and their derivatives.

@ The Arhy, Arhsy and Aph,, are automatically solved if the
equations for {h,,, h,s. hga. hq} are satisfied - manifestation of the
gauge freedom.
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Reducing the equations: The PDE system

® hs, hiy and h,, components appear algebraically in the TT
conditions, and can be solved as a function of {h,,. h,4. hes, hq}
and their derivatives.

@ The Aprhsy, Aphsy and Aph,, are automatically solved if the
equations for {h,, . h,4. hgse. ho} are satisfied - manifestation of the
gauge freedom.

@ We are left with a system of four coupled second order PDEs in
‘{h”._ h.,.,j* hb't}* hg}}.
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h::, hts and h,s; components appear algebraically in the TT
conditions, and can be solved as a function of {h,,. h.s. hgs. ha}
and their derivatives.

The Arhy, Arhsy and Aph,, are automatically solved if the
equations for {h,,.h,4. hes. hq} are satisfied - manifestation of the
gauge freedom.

We are left with a system of four coupled second order PDEs in
{hr-r-- h g s hHH* hgg}’.

Boundary conditions (regular tetrad + Eddington-Finkelstein
coordinates):
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h::, hss and h,, components appear algebraically in the TT
conditions, and can be solved as a function of {h,,. h,s. heg, hq}
and their derivatives.
The Aphy, Arhsy and Aph,, are automatically solved if the
equations for {h,,.h,4. hgs. hq} are satisfied - manifestation of the
gauge freedom.
We are left with a system of four coupled second order PDEs in
{hrr,hrg.hog. ho '}
Boundary conditions (regular tetrad + Eddington-Finkelstein
coordinates):

e On the horizon r = r.:

(0)
hrr (0)

(0) (0)

e —

N
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h¢, hts and h,, components appear algebraically in the TT
conditions, and can be solved as a function of {h,,. h,s. hgg. ha}
and their derivatives.
The Arhy, Aphsy and Aph,, are automatically solved if the
equations for {h,,, h,4. hga. hq} are satisfied - manifestation of the
gauge freedom.
We are left with a system of four coupled second order PDEs in
'{hr-r* h.,.;_j.. hrjg. hgg}.
Boundary conditions (regular tetrad + Eddington-Finkelstein
coordinates):
e On the hornizon r = r.:
h I}-1}i-] (0) (0) (0)
B — — = hoa=h_,, heo=hygy and hqg=hg .

o At infinity:
hr'r' = h;'H = h‘-‘.‘-"":} == hfl = 0.
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Results in 4D and 5D

@ Results in 4D and 5D are very similar
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@ Results in 4D and 5D are very similar - No zero modes:

@ For the Kerr black hole the negative mode is finite at extremality.
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@ For the Kerr black hole the negative mode is finite at extremality.

@ In 5D the negative mode diverges near extremality as

e |

2 =
k ~(r,—a)

Pirsa: 09110028
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Results for d > 6

@ Bad numerics in 6D (likely due to the weak asymptotic decay at
infinity - common in many contexts).
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Results for d > 6

@ Bad numerics in 6D (likely due to the weak asymptotic decay at
infinity - common in many contexts).

d=17
0 LY

40

LN

%G g3 10 135 20 15 30
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@ Bad numerics in 6D (likely due to the

weak asymptotic decay at
infinity - common in many contexts).

0

~_-20 . '.. - =
.-I_..:_ . - L] - - iy
-30 = - -30 - - -
40 . s 40 b -
5 5
%D 05 10 15 20 25 30 %L} g5 10 15 20 25 30
&My - T -
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@ Bad numerics in 6D (likely due to the weak asymptotic decay at
infinity - common in many contexts).

0
~10
g - - - =
< -30 :‘_ < -30 3 =
= Tae = L
B¢ o5 10 5 76 35 36 %0 o5 10 15 20 25 3.0
il - 1]

@ New GL instabilities /| thermodynamic modes negative modes.
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Results for d > 6

@ Bad numerics in 6D (likely due to the weak asymptotic decay at
infinity - common in many contexts).

d=7
0 e

~_-20 "=
K - K :
30 - _30
40 . . 40
Y6 05 10 15 20 25 30 20 05 10 15 20 25 3.0
= T - ailN

@ New GL instabilities / thermodynamic modes negative modes.
@ (lassical equations of motion satisfied for £. = 0! New solutions!
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Results for d > 6

@ Bad numerics in 6D (likely due to the weak asymptotic decay at
infinity - common in many contexts).

d=7
0 % 3;2

. -20 .
o -~ *

~-30 -30

40 44

= -5“' - -

Y6 05 10 15 20 25 30 00 05 10 15 20 25 30

@ New GL instabilities / thermodynamic modes negative modes.
@ (lassical equations of motion satisfied for £. = 0! New solutions!
@ Are these the instabilities we expect? If so, why so many?
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The first threshold mode ¢ = 1

@ Myers and Emparan provided heuristic arguments for the instability
appearance:
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The first threshold mode ¢ = 1

@ Myers and Emparan provided heuristic arguments for the instability
appearance:

e The black hole temperature is given by

1 . d—5
T— ( .,I = F })
4w \r< +a“ r,
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The first threshold mode ¢ = 1

@ Myers and Emparan provided heuristic arguments for the instability
appearance:

e The black hole temperature is given by

Tor — 1 ( _}’2;‘_ = d—i)
lr \ r< + a- r.

e [he temperature reaches a3 minimum for

E)T) f)%ﬁ) . :
- = —F ¢
ary.. \aej. .

1l
ST,
b "*"-“
Rl
o

|
<~ -¥

T
et 1|
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The first threshold mode ¢ = 1

@ Myers and Emparan provided heuristic arguments for the instability
appearance:

e The black hole temperature is given by

1 2r, d—>5
TH — ( .. L . _1"_ : )
ix \rs +a“ i

e [he temperature reaches 3 minimum for

f)T) 9*S =Ee s o /d—3
aj., \ar}l. =ttt V&S

o (a/ry) < a,: Ty and S decrease like in Kerr

(a/ry) > a,: rapidly T ~r_ " and S ~ 1121‘1_4 (membrane)
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The first threshold mode ¢ = 1

@ Myers and Emparan provided heuristic arguments for the instability
appearance:

e The black hole temperature is given by

1 2r, d—5
IH = ( 5 I, = T })
4 \ r< + a“ i

o ['he temperature reaches 2 minimum for

EJT) 6)35) =" jd—3
—_— — — — f — —_— — /
arj, \arj, =\, ¥d-5

o (a/ry) < a,: Ty and S decrease like in Kerr

(a/ry) > a.: rapdly Ty ~ r-'and S ~a2r¢? (membrane)

@ The f{ =1 mode appears in all dimensions precisely for a/r. = a.!
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Interpretation - 1/2

@ Seems to be inherently thermodynamic: most likely connects to
another MP solution with a different M and J (more later).
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@ Seems to be inherently thermodynamic: most likely connects to
another MP solution with a different A and J (more later).

@ The natural generalisation to more complicated geometries is

.)2}5.
. z _ has a zero mode.
' 0.J;0J; ] 5,
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@ Seems to be inherently thermodynamic: most likely connects to
another MP solution with a different A and J (more later).

@ The natural generalisation to more complicated geometries is

)_)5
By ——§ £ _ has a zero mode.
; f)-],: f'),]_} M

@ What about the other modes?
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Interpretation - 1/2

@ Seems to be inherently thermodynamic: most likely connects to
another MP solution with a different A and J (more later).

@ The natural generalisation to more complicated geometries is

S {— has a zero mode.
' {)_L: l.’)]), A

@ What about the other modes?

e We can study what is the effect of the perturbations on the
horizon, because we also determined the eigenvectors — hsp.
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Interpretation - 1/2

@ Seems to be inherently thermodynamic: most likely connects to
another MP solution with a different M and .J (more later).

@ The natural generalisation to more complicated geometries is

)_15
e {— has a zero mode.
' ()-L: "r)']_; A

@ What about the other modes?

o We can study what is the effect of the perturbations on the
horizon, because we also determined the eigenvectors — hsp.

» Embed the two dimensional horizon (the SY* is suppressed) in
four-dimensional Euclidean space (Frolov '04): covers the entire
horizon for all values of the rotation a/r,,,, but has a cone at
the pole.
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Interpretation - 2/2

@ Perturbed spatial horizon for the thresholds ¢ =2.3.4 in 7D:
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Equal angular momenta MP solution in odd dimensions

@ In d =2N + 3, the equal angular momenta MP solution can be
written as a co-dimension 1 manifold:

ds® = — f(r)’dt*+g(r)*dr*+h(r)*[de+A, dz* — O f‘}dﬂz—'—."jd.&*%—;_\; ,

where
> 9 gy —1
2 I'm aT,, I
.glr,]'_: 1 — = g f“}: —
i e g(r)R(r)
_’ j_"'»_ ; - j_\,_
J ) o | {Ji I‘ {Ir
GE ST 06 =
- ipmedadsl Sl 2! h{r}_
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Equal angular momenta MP solution in odd dimensions

@ In d =2N + 3, the equal angular momenta MP solution can be
written as a co-dimension 1 manifold:

ds®> = — f(r)*dt*+g(r)*dr* +h(r)*[di+A, dx* —Q(r)dt]* +r°dstpx

where

IN ) >N
> e a Tm
nNr)- =11 — fr-:!- = —”. ? ==
g\r, ( N 2N +2 f g(r)h(r)

/ : 3 ) "q: ¥ -\I_
e - a-r-. ar’
’J? E .r:. i_ P li.-n— (l = = - _;"TI : ) : Q f ;f‘ } — Irl

f.ﬂ_\_h (r }2 :

D _‘\-
—

@ ds>_, and J = dA /2 are the metric and K3hler form on CE
respectively.
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Equal angular momenta MP solution in odd dimensions

@ In d =2N + 3, the equal angular momenta MP solution can be
written as a co-dimension 1 manifold:

ds® = — f(r)?dt*+g(r)?dr* +h(r)*[dv+A, dz* —Q(r)dt]* +r°dsiox

where
N o gnry —k
¢ \2 Im A" Tm

alr—rn—— s  J{r)= ,
T et g(r)h(r)

N = o

5 > T, ar:,
Ml —r -t - | ) — -
s r<Vh(r)-

N
1o

@ ds>_, and J = dA /2 are the metric and K3hler form on CF
respectively.

@ Perturbations expanded in charged Harmonics on CB" —
co-dimension two problem (7 and r dependence): non-trivial due to

rrsaoonoes COUpling of A with ¥ and £. (Kunduri, Lucietti, Reall '06 & Martin, Reall '09) page o111



@ For N > 2, the following inequality holds:

( a ) 1 3 ( a ) v N
" = .-\_l ‘::-H- l— : T -\-_‘I- :
Fm J _ 22N F'm ax { N + ]_]l 2N
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@ For N > 2, the following inequality holds:

( a ) = ( a ) vN
= — " < =7 === = oy
'm J P 2N o J one (N + 1) =~

@ The range in a/r,, between the thermodynamic zero mode and
extremality increases with N: expect interesting physics for
sufficiently large N, maybe ultraspinning instability.
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@ For N > 2, the following inequality holds:

( a ) E = ( a ) VN
. — e -~ ¢ = e NEl-
'm J _ 22N Fm ax { N L+ ]_]l 2N

@ The range in a/r,,, between the thermodynamic zero mode and
extremality increases with N: expect interesting physics for
sufficiently large N, maybe ultraspinning instability.

@ We only have PDEs in ¥ and r, and o is Killing, so we can easily
analyse the time dependence of the perturbation by Founer
expanding it in time (hyg = E"ﬂfli?__lﬁ), leading to ODEs in r.
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For N > 2, the following inequality holds:

( a ) =—1 ( a ) B VN
Fm J _ EE:L % Fm ax {_\- — ]_) “_:_ :

The range in a/r,, between the thermodynamic zero mode and
extremality increases with N: expect interesting physics for
sufficiently large N, maybe ultraspinning instability.

We only have PDEs in # and r, and &; is Killing, so we can easily
analyse the time dependence of the perturbation by Fourner
expanding it in time (h g = 5-5355_45), leading to ODEs in r.

If modes with {2 > () are detected, then we undoubtedly have an
unstable asym. flat black hole with compact horizon.
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For N > 2, the following inequality holds:

((1) = __}(a) /N
Fm J _ 2\.‘121 F'm it {_\ — ]_]l_\:.:

The range in a/r,, between the thermodynamic zero mode and
extremality increases with N: expect interesting physics for
sufficiently large NV, maybe ultraspinning instability.

We only have PDEs in # and r, and &; is Killing, so we can easily
analyse the time dependence Uf the perturbation by Fourier
expanding it in time (h 4z = e%th aB). leading to ODEs in r.

If modes with {2 > ( are detected, then we undoubtedly have an
unstable asym. flat black hole with compact horizon.

Harmonic expansion on CPY is used to study which symmetries are
broken by the perturbatlons For N =3 (d =9), the £ =2 harmonic
breaks all the CE Symmetrles perturbative black hole saturates
generalisation of Hawking's rigidity theorem to higher d (voiiands. ishibashi -

and
Page 104/111

Wald "06. and lsenberg and Moncned "08).



Results

@ Stationary case () = 0:
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Results

@ Stationary case () = 0):
@ [ = 1 appears where predicted & { = 2 in d = 9 appears too:
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Results

@ Stationary case {2 = 0:
@ { = 1 appears where predicted & /{ = 2 in d = 9 appears too:

GBED GBES —— m—

@ Dispersion relation (2 = 0:
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Results

@ Stationary case () = 0:
@ { = 1 appears where predicted & { = 2 in d = 9 appears too:

6

@ Dispersion relation () = 0:
@ £ =1is NOT an instability of the MP, but £ = 2 IS:
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@ For k = 0, one finds

0.05 3
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0.01 ]
l
|
|

0.00 <
0.6855 0.6860 0.6865 0.6870 0.6875
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Discussion & Conclusions

@ Conclusions:
o Asym. flat black holes can be unstable.
o Instabilities often connect different families of black holes.
o Blackfold approach gives a generic picture, but merger zone
only with numerics.
e Numerical perturbative results useful, but should be confirmed
at the non-linear level.
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Discussion & Conclusions

@ Conclusions:
e Asym. flat black holes can be unstable.
o Instabilities often connect different families of black holes.
o Blackfold approach gives a generic picture, but merger zone
only with numerics.
o Numerical perturbative results useful, but should be confirmed
at the non-linear level.

@ Future directions:
e (onsider the time dependence in the single spinning MP
solution (PDEs).
e Break transverse sphere in the single spinning MP solution
(saturate Hawking's rigidity theorem).
o (Consider a background MP with several angular momenta
plsastp 00 turned on. oped U111



