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more is the same
»

one spin
statistical average: <O0>= tanh h

many spins

‘'ocus on one spin _Heff / (kT) = Ur[hr + Kz <O >]

statistical average: h,=[h+Kz<o>]
e

< 0 >=tanh(h_;)

z=number of nn

or, if there is space variation, heg = hr +K Zs nn to r <O's>
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Mean Field Theory is Only Partially Right

Mean field theory says that spin moves in the average field produced by
all other spins. But actual value is often larger in magnitude than mean
value and fluctuates in sign. Net result is error, with unknown sign. The
same ideas can be applied to lots of problems. (In particle physics mean
field theory often goes with the words “one loop approximation™ or
“tadpole diagram™.)

As we shall discuss in detail, mean field theory gives an interesting
and instructive theory of phase transitions, but one which is only
partially right. Near the critical point, for lower dimensional
systems, including three dimensions, fluctuations dominate the
system behavior and mean field theory gives the wrong answer,
badly wrong. Very near first order phase transitions, fluctuations
also count, but in a less obvious manner.

However in high dimensions, usually above four, mean field theory

__gives a good picture of phase transitions. It also has features which
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point the way toward the right theory. It is also simple to use



simplified phase diagram for ferromagnet

':‘S"Etic field The basic variables defining the state of the system
are the magnetic field and the temperature. We
describe what is happening by looking at the
magnetization. The magnitude of the magnetization

first order= measures the extent to which the spins in the

in magnetization at zero field system are lined up with each other. Its sign

describes the direction of the alignment. [f the

temperature _ _
temperature is sufficiently low, the system has a
near critical point ritical point non-zero magnetization even at zero magnetic
jump~ (T. - TY jump=0 field. At these lower temperatures, the zero-field

magnetization has two possible values, for the two
possible directions in which the spins may align
themselves.

The heavy line is the locus of points at which this spontaneous magnetization is non-

zero. As one crosses this line, there is a discontinuous jump in the magnetization,

which maintains its magnitude but reverses its direction. This jump is a first order

phase transition. Typically, this jump decreases in size as the temperature gets higher

until, at some critical point, the jump goes continuously to zero. This point is then

th&“p&¥ition of a continuous phase transition. Page 4oz
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Behavior in neighborhood of critical Point
k
l'he mean field equation is <Or>= tanh hes with heg = he +K Z, mntor <Os>.

/NVe assume that we are near the critical point both the field and the
nagnetization are small. Then we can expand the equation for <0y> in a
yower series in hef  <Oy>= tanh heg = hef—heg?/3

Ve also assume slow variation in space and that the temperature is close to
‘riticality. To lowest order hef = Kz <0¢> = <0¢>. The lowest order result
s used in the cubic term and the rest is evaluated exactly as

:Gr>=hr+ <Ur>[1't] +K zs nntor [<Us> = <Ur>] == <Ur> 3/3

Here, t is the temperature deviation from criticality t=1-Tc/T. Finally replace
he remaining K by its critical value, 1/z and expand to second order in the
lifference s=r to obtain

)=hr -t <Or> + a* V? <0p>/z - <0>%/3
['his is the near-critical mean field theory in the Weiss model of a
erromagnet. It is the continuum version. On the lattice
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Behavior in neighborhood of critical Point

l'he mean field equation is <Or>= tanh heg with heg = he +K Z, mntor <Os>.

Ve assume that we are near the critical point both the field and the
nagnetization are small. Then we can expand the equation for <0y> in a
yower series in hef  <Oy>= tanh hef = hef—heg?/3

/Ve also assume slow variation in space and that the temperature is close to
riticality. To lowest order hes = Kz <0r> = <0,>. The lowest order result
s used in the cubic term and the rest is evaluated exactly as

<O>=he+ <O>[14] +K 25w r [<Os> - <07>] - <07>3/3

Here, t is the temperature deviation from criticality t=1-Tc/T. Finally replace
he remaining K by its critical value, 1/z and expand to second order in the
lifference s=r to obtain

)=hr -t <O> + a* V% <0p>/z - <0>7/3

['his is the near-critical mean field theory in the Weiss model of a
erromagnet. It is the continuum version. On the lattice
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Behavior in neighborhood of critical Point

l'he mean field equation is <Or>= tanh hes with heg = he +K Z, mntor <Os>.

Ve assume that we are near the critical point both the field and the
nagnetization are small. Then we can expand the equation for <0y> in a
yower series in hef  <Op>= tanh heg = hef—heg?/3

/Ve also assume slow variation in space and that the temperature is close to
‘riticality. To lowest order hef = Kz <0y> = <0,>. The lowest order result
s used in the cubic term and the rest is evaluated exactly as

<O>=hp+ <O>[14] +K 25w r [<Os> - <07>] - <07>3/3

Here, t is the temperature deviation from criticality t=1-Tc/T. Finally replace
he remaining K by its critical value, 1/z and expand to second order in the
lifference s=r to obtain

)=hy -t <Op> + a? V% <0p>/z - <0>¥/3

['his is the near-critical mean field theory in the Weiss model of a
erromagnet. It is the continuum version. On the lattice
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Conclusions from Weiss Mean Field Theory

For example, go after magnetization when

h=0, no variation in space
0=t <0> + <0>¥/z

t is proportional to (T-Tc)
if t is positive there is but one real solution <g>=0.

if t is negative we have a possible solution <0>=0, and also the
solutions

<g>=+ (-tz)m

One should choose the solution which actually minimizes the free energy. I
turns out that this solution is the one which has the same sign as h.

Therefore as h passes through zero for T less than Tc there is a jump in the
magnetization proportional to the square root of -t.
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Conclusions from Weiss Mean Field Theory

For example, go after magnetization when

h=0, no variation in space
0=t <0> + <0>3/z

t is proportional to (T-Tc)
if t is positive there is but one real solution <g>=0.

if t is negative we have a possible solution <0>=0, and also the
solutions

<g>=+ (_tz)ﬂl

One should choose the solution which actually minimizes the free energy.
turns out that this solution is the one which has the same sign as h.
Therefore as h passes through zero for T less than Tc there is a jump in the
magnetization proportional to the square root of -t.
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Conclusions from Weiss Mean Field Theory
For example, go after <H> when h=0, no
variation in space

-H/ kT = KE(JrUS +h20r

Ve assume neighboring spins are uncorrelated

<H>/(kT) = Kz<0> <0> + other effects

earTc <0>? =0 aboveT. <0>? = -tz below
ience specific heat,d <H>/dT has a jump at T.. It looks like

]
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Critical Opalescence and Fluctuations

In the early 20th century experimenters observed what is called
critical opalescence. As the critical point is approached, a fluid
which is otherwise clear and transparent is seen to become
milky and reflects light. This phenomenon was explained by
Smoluchowski (1908) and Einstein (1910)

Einstein particularly showed that the scattering came from
density fluctuations, and noted that these fluctuations diverged at
the critical point. Soon thereafter,in 1916 and 1914, Ornstein
and Zernike put together a theory which show that the
fluctuations came from large regions of correlated fluctuations
and derived a qualitatively correct mean field theory treatment
of the phenomenon.

This development would prove to be particularly important
because spatial and correlational structure would turn out to be
~thekey to understanding phase transitions. Page 412
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Weiss Mean Field Theory for Correlations
For example, go after <0.0>, when h=0, no variation in space,T>Tc

Ozhr _t <Gr> + Zs nn [or[<05> - <0-r>]/Z - <Gr> 3/3
neglect cubic term, differentiate equation with respect to hy

0=(d hr /d hu )t (d<C+>/d hu ) + 2o mn 10 r [d<0s>/d hy — d<Tr>/d hu]/z

d<0r>/d hyis correlation function g(r=u)= <[0r - <0¢>] [Ou - <Ou>] >,
which then obeys

0=8ru —t g(r=u) + 25 mwr [g(s-u) - g(r-u)]/z

define G(q)=Zexp[-iq.(r-u)] g(r-u) so that

g +[ -t + 22i=1,2..4 (cos qi - 1)/z | G(q)
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Weiss Mean Field Theory for Correlations
For example, go after <0.0,>, when h=0, no variation in space,T>Tc

Ozhr _t <Ur> + Zs nn mr[‘(Us) - <G'r>]lz - <Gr> 3/3
neglect cubic term, differentiate equation with respect to hy

0=(d hr /d hu )t (d<C+>/d hu ) + 2o mn 1o r [d<Ts>/d hy — d<T>/d hu]lz

d<0r>/d hyis correlation function g(r-=u)= <[0r - <0¢>] [Ou - <Ou>] >,
which then obeys

0=0ru -t g(r-u) + 2 wor[g(s=u) - g(r=-u)]/z

define G(q)=Zexp[-iq.(r-u)] g(r-u) so that
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Fourier transform of correlation function obeys

0=1 +{-t +2 2i=1,2..a[cos(aq) - 1]/z } G(q)

We can now solve for G(q) = 1/{t+2Z,=1,2,,,., [1 - cos (aqi)]/z}

and invert the Fourier transform to get

g(r-s)= | dq exp[iq.(r-s) J/(211)¢ 1/{t+22.i=1.2..a[1 - cos (aq)]/
z}
Here the integrals over each component of q extend from -TT/a

to TT/a. To get a result for large spatial separation expand to
second order in q and extend the integrations to cover all q

One can perform the integral to find that
g(r-s)~ exp[-| r-s |/€)/ | r-s |d-2

ywhen the exponent is of order one, and d >2.The correlation
leneth. & is given by &=a/(zt) 12
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Correlation function looks like

The result is then of the form
g(r-s)~ exp[-| r-s |/€]/ | r-s |d-2
The correlation length, €, is given by £=a/(zt)2

This result is important. It says that the correlations in space
extend over longer distances as one gets closer to criticality.

So the fact that the phase transition will only occur in an infinite
system partially shows up in mean field theory. The correlation
extending to infinity is a crucial fact in phase transitions. However,
mean field theory allows a phase transition in a periodic but finite
system.

Also, mean field theory gets an answer which is somewhat incorrect
in the neighborhood of the critical point. Near the critical point
"E%4f(t)V but V=1 in d=2 and V= 0.64 in three dimensions. Page 42162
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Conclusions from Weiss Mean Field Theory:
The magnetic susceptibility

The quantity 0 <0>/0 h, calculated at fixed T, is called the magnetic
susceptibility. It is given by the Fourier transform of the spin
correlation function as d <0>/0 h=G(0).Thus. we know its value in

mean field theory, which is
d <o>/0 h~ 1A.

So the infinite correlation length has as its direct consequence
the infinity in this important thermodynamic derivative.
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Mean Field Theory of Fluids

| did not describe the development of mean field theory in
anything like historical order. Van der Waals derived the first
mean field theory in the 1870s. He was interested in
understanding the data of Andrews (1869) which showed a phase
transition line separating a liquid and a vapor phase that then
ends in a critical point in which the two become identically the
same. Pierre Curie noticed that the behavior of a ferromagnet
has a close analogy to that of a fluid in 1895. Later in 1907,
Pierre Weiss worked this remark into a theory like the one
mentioned here. Fluids no doubt came first because they were
more familiar and because experiments existed.

T.Andrews, "On the continuity of the gaseous and liquid states of matter,” Phil. Trans. Roy. Soc.
159, 575-590(1869). Reprinted in: T. Andrews,, The Scientific Papers, Macmillan, London (1889).

J.- D. van der Waals, thesis Leiden, 1873.

P. Curie, Ann. Chem. Phys. 5, 289 (1895). PWeiss, |.Phys. 6,661 (1907).
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van der Waals derivation

The starting point was the perfect gas law
PQ=NT perfect gas law,

which of course shows no phase transition. Van der Waals then
introduced two corrections to describe what he had inferred about
fluids and the atoms or molecules which formed them. First, he argued
that the molecules could not approach each other too closely because
of an inferred short-ranged repulsive interaction among the molecules.
He probably based his understanding of this repulsion upon the fact that
it is very hard to compress liquids like water. This repulsive effect should
reduce the volume available to the molecules by an amount proportional
to the number of molecules in the system. Thus, (2 in the perfect gas law
should be replaced by the available or effective volume, (2-Nb, where b
would be the excluded volume around each molecule.
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van der waals’ second effect

The second effect is more subtle. The pressure, P is a force per unit area
produced by the molecules hitting the walls of the container. However, van
der Waals inferred that there was an attractive interaction pulling each
molecule towards its neighbors. This attraction is the fundamental reason
why a drop of liquid can hold together and form an almost spherical shape.
Again we see that familiar facts can be translated into theoretical
understanding. As the molecules move toward the walls they are pulled
back by the molecules they have left behind them, and their velocity is
reduced. Because of this reduced velocity, their impacts impart less
momentum to the walls The equation of state contains the pressure as
measured at the wall, P. This pressure is the one produced by molecular
motion inside the liquid, NT/(£2-Nb), minus the correction term coming
from the interaction between the molecules near the walls. That
correction term is proportional to the density of molecules squared. In

symbols the correction is a(N/{2)2 where a is proportional to the strength
of the interaction between molecules. Van der Waals' corrected
expression for the pressure is thus

P=oRIKT/(Q-Nb)-a(N/Q)?
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Many Different Phase Transitions:

liquid -gas
paramagnetic to ferromagnetic

(un)mixing of solids and liquids
superconducting, .....

an der Waals: (1873) Different simple
Juids-gas transitions have very similar
1ermodynamic properties. Derives
iean field theory of liquid.

urie-Weiss (1907) mean field theory
f magnets.

ut, each different phase transition

alls for its own theory.

Johannes Diderik van der Waals -
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After van der Waals
Many Different Mean field theories

The theory of phase transitions involving the unmixing of fluids was developed
by van der Waals himself, while such unmixing in solids was described by W. L.
Bragg and E. |.Williams. Literally dozens of such theories were defined,
culminating in the theory of superconductivity of Bardeen, Cooper and
Schrieffer. These theories are all different in that they have different physical
quantities playing the roles we have given to the magnetic field, or T-Tc, or
serving as the order parameters. The order parameter is the quantity that can
undergo a discontinuous jump in the first order transition, and describes the
symmetry group of the physical situation.The magnetization is the order
parameter of the ferromagnet, the density is the order parameter in the liquid-
gas transition. Much effort and ingenuity has gone into the discovery and
description of the order parameter in other phase transitions. In the anti-
ferromagnetic transition the order parameter is a magnetization that points in
opposite directions upon alternating lattice sites. In ferroelectrics, it is the
electric field within the material. The superfluid and superconducting transition
have as their order parameter the quantum wave function for a macroscopically
occupied state. Liquid crystals have order parameters reflecting possible
different kinds of orientation of the molecules within a liquid. The description
s oopfizhese different manifestations of the phase transition concept reflect moreesze
than 3 centuryvy of work in condensed matter phvsics ohvsical chemistrv etc



Order Parameter, generalized

 Landau (~1937)suggested that
hase transitions were
nanifestations of a broken
ymmetry, and used the order
)arameter to measure the extent of
reaking of the symmetry.

' in ferromagnet, parameter =
nagnetization

" in fluid, parameter = density

L.D. Landau
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Generalized Mean Field Schemes |

Many different mean-field schemes developed:. Each one
has an order parameter, an average of a microscopic
quantity. Landau generalized this by assuming an

. _ note: no
expansion of the free energy in an order parameter, cubic term
This free

F= [dr[a-hM+tM2+cM*+(VM)? ] energy
applies to
expansion assumes a small order symmetry ¢
parameter (works near critical point) and Ising mode

small fluctuations (works far away?!)
h is magnetic field

t is proportional to (T-T)

minimize F in M: result General Solution M(h, (T-T,))
singularity as t,h both go through zero!
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=Fa+ /dr{ 5| VE(r)|* +o(T)|¥(r)|* +U(r)|\I!(r)|2+g|'I'(r)|"}

Superfluid density near the critical temperature in the presence of random planar
defects

D. Dalidovich, A.J. Berlinsky and C. Kallin

Department of Physics and Astronomy, McMaster University,
Hamulton, Ontario, Canada L8S M1
(Dated: November 14, 2008)
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Why minimize?

Thermodynamics says that the free energy is extremized by the
variation in any macroscopic parameter, e.g. any extensive
variable. This is part of a general idea that the free energy is a
probability, which arises from how the partition function is used.
In statistical mechanics only the most probable things happen.
This applies to all macroscopic phenomena, Now M(r) is not
quite macroscopic, but Landau’s idea was that at the long wave-
length part of it it was “macroscopic enough” so that one could
neglect its fluctuations. This point of view has turned out to be
wildly successful.
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Vary M(r) to vary F
F=[dr[a-hM+tM2+cM*+(VM)?]

itegrate by parts in gradient term
oF= [dr SM(r) [-h+2tM(r)+4cM(r)3-V 2 M(r)]

to minimize F, coefficient of OM(r) must vanish

05, h+2eM(r)+4cM(r)3-V2 M(r)

Hence we have an equation for M! That is a general
equation for the order parameter in mean field theory
with the Z2 symmetry, i.e. symmetry under sign change

of M.
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Generalized Mean Field Schemes ||
Crucial part of the solution: for T<T., jump in order

parameter goesas M ~ (T.-T)* with g =1/2

This square root ( =1/2) appears
to be a Universal result.

s
Mean Field Theory predicts all g o}
near-critical behavior S e ™ 05|
! e *
. _ S e,
rder parameter, jump, . | ““mm
nd free energy were o
CrUCial Concepts order parameter in mean
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order parameter and free energy were crucial
concepts

free energy could be expressed in terms on any descriptors of
systems behavior. It is a minimized by the correct value of any
one of them, We have thus come loose from the particular
thermodynamic variables handed to us by our forefathers,

order parameter could be anything which might jump in the
transition.

other variables could be anything at all.

In the meantime Schwinger was working on electromagnetic
fields for World War |l radar. He use variational methods and
effective fields (“lumped variables™) to build electromagnetic

Pirsa: 0910013% Page 60/62

CuUIts.



A worry?

-
1
|
|
l
|
|
I
|

Mean field theory

e ——

gives M ~ (-,; . T)ﬁ . >
and g=1/2 L L

This power is, '

however, wrong. |
Experiments are 3 alites
closer to | )

M~ (T.-T)"® in 3D .t
1880-1960: No one - P ... OV |

worries much about
discrepancies order parameter: density versus

irsa: 09100137 Temperature In hql'“d gas phéée%lIGZ
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STOP Here
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