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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(-H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(-[3H), and keeping the
number of particles fixed, we use as our weight function exp[-f}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—[3H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(-H), and keeping the
number of particles fixed, we use as our weight function exp[-f}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—[3H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—[3H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—H), and keeping the
number of particles fixed, we use as our weight function exp[-f(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—H), and keeping the
number of particles fixed, we use as our weight function exp[-f(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—H), and keeping the
number of particles fixed, we use as our weight function exp[-f(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—pH), and keeping the
number of particles fixed, we use as our weight function exp[-p(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—H), and keeping the
number of particles fixed, we use as our weight function exp[-f}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—H), and keeping the
number of particles fixed, we use as our weight function exp[-[(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function P ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(-[3H), and keeping the
number of particles fixed, we use as our weight function exp[-f(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—[3H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—H), and keeping the
number of particles fixed, we use as our weight function exp[-[}( H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function P ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—[3H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function \ ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—[H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—[3H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—pH), and keeping the
number of particles fixed, we use as our weight function exp[-{}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—[3H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—H), and keeping the
number of particles fixed, we use as our weight function exp[-[(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—[3H), and keeping the
number of particles fixed, we use as our weight function exp[-[}(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function  ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—H), and keeping the
number of particles fixed, we use as our weight function exp[-[}( H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integml over wave vectors or momenta in the form

L .
This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L.s L 3 :
;—'(2—5) ‘/dk:{:ﬁ) _/JP vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .3 o :
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This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .
Y (e dk = ( — vi.1

> = (5)" [dk=(55)" [ar

m
This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form
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This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form
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m .
This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L :
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This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible

formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

Z L .3 L .3 -
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This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L.s L \3 :
X - (5)" [ k= (5)" [ ap "
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .: L .: :
Z—'(i;)i./dk=iﬂ)i'/dp vi.1

(34}

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .: L .: :
Z—'(.g)i‘/dkllﬂ){/dp vi.1

1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch

Pirsa: 09100135 Page 65/254

together classical mechanics and quantum theory.



Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L . 3 ' i1
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This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form
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This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L L . ;
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(34}

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.VWe imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form
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This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form
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This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TI/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .3 , L 3 i1
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This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .3 L .3 ,
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This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .: L .: ;
Z—'(.;;)i‘/dk={ﬂ)i'/dp vi.1

I

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L.3 Y .
;—(g} ‘/dk:{ﬁ) _/JP vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik'r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .3 L 3 -
—_ (— = — A
>~ (L [ Ly [ ‘
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .: F :
Z—'(.)—_)i/dk:{.rh)i/ffp vi1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .3 L .3 :
— (— = — A
Z (37 _/dk_‘:z.-.-n) _/dp "
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

Z—-(—) /dk—{.;f—,;)"_/dp vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

_.(_._) /dk_{rh / vi. 1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
Pirsa: 09100135 Page 80/254
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

_.(_) /dk—{——) / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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together classical mechanics and quantum theory.
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

. :
Z—-(—) /dk—i_,—:_j)‘/dp vi-1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
ogether classical mechanics and quantum theory. rege paet



Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .3 L 3 1
2= ) =) [
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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together classical mechanics and quantum theory.



Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L :
Z-'(E;)i/dk=iﬁ)i/dp vi.1

(84}

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L.s .
;_(E) ‘/eik—{;) / vi. 1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch

ogether classical mechanics and quantum theory. Page 85254



Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .3 L .3 .
Y= () [ = (55)" [ e “
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .: L .: :
Z_'(S;)l_/dk:{-ﬁ)s_/dp vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

Z—-(—) /dk—{',;i—h)'i‘/dp vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h? in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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together classical mechanics and quantum theory.



Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L ,: :
Z—-(—) /dk—t_ﬁ)‘/dp e

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
Pirsa: 09100135 Page 89/254
ogether classical mechanics and quantum theory.



Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .: | .
Z—-(E)i‘/u‘k:{ﬂ)i/ffp vi.1

m

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L 3 L 3 . 1
X - (5)" [ = (z)° [ ap
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch

Pirsa: 09100135 Page 91/254

together classical mechanics and quantum theory.



Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

_.(__) /Jk—{_) / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
Pirsa: 09100135 Page 92/254
ogether classical mechanics and quantum theory.
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .3 ' ,
Y- () [ = (55" [ e "
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

_.(_) /dk_{;-_h) / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L.s N .
;—'(.E) ./dk:{ﬂ) ./dp vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .3 R :
Y= () = (gp)" [ o "
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L . 3 L «3 :
>~ (3) [ac=(5)" [ap vi.
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .3 L 3 :
Y- () [ = (55" [ e "
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .3 e a3 :
Y- ()" [ k= ()" [ do "
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

_.(__) /dk—{——) / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
Pirsa: 09100135 Page 100/254
ogether classical mechanics and quantum theory.
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

_.(_) /dk_{;) / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

_.(__) /dk—{——) / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
Pirsa: 09100135 Page 102/254
ogether classical mechanics and quantum theory.
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik'r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .3 L 3 :
- (5" [ =)’ [ "
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L . 3 L 3 -
Y= () [ = (55" [ e .
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L . 3 L (3 -
—_ (— = ((— A
Z (27 _/dk_‘:z:.-h) /dp "
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L . 3 L .3 .
;—'(_E) ‘/dk:(ﬂ) ./JP vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)3?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

_.(_) /,jk‘{rh) / vi. 1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integr'al over wave vectors or momenta in the form

_.(_) /Jk—{__) / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
Pirsa: 09100135 Page 108/254
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .: - :
Z_(;;)i‘/dkziﬁ)"/dp vi.1

(341

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

Ly L \: :
Z~(.;;)‘/Jk:1_ﬁ)‘/dp ol

(4}

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L :
Z—-(—) /Jk—iﬁ)‘[dp s

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .3 L 3 1
Y- ()" [ k= ()" [ do
This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h? in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*"?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .: L :
Z‘(g)i‘/t&Zlﬁ;ﬁ)i'/dP vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

_.(__) /fjk_{;: / vi. 1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*”
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .3 | . -
;—'(;:,;) ‘/JRZ{.,—L_};) _/U'P vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

_.(_) /,[k_{; / vi. 1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

Z—(—) /Jk—i.%)‘_/dp vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .: \
> (o) [aem ) [

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch

Pirsa: 09100135 Page 118/254

together classical mechanics and quantum theory.



Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,
of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .
> (— " (Rl vi.1
> = (5)" [dk=(55)" [ap
Im
This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .3 | A i1
Y= () [ = (55" [ e
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .: L .: .
Z—-(E)i‘/dk:{:ﬁ)i‘/‘dp vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .3 L 3 1
Y- () [ = (55" [ e
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik'r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L 3 L 3 . 1
Y= () [ a=(gp)" [ o
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L . 3 L .3 .
Y= () = (gp)" [ o “
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L . 3 L 3 :
;—'(E) ‘/Jk:{ﬁ) _/JP vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch

Pirsa: 09100135 Page 125/254

together classical mechanics and quantum theory.



Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L L :
Z—-(j?)i/‘lk:{ﬁ)i/‘{[p V|.1

m

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

_.(_) / /tfp vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L 3 L 3 . 1
Y- () [ = (55" [ e
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L :
Z—‘(Eii/dk—lg,_—h) / vi.1

(441

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .3 L .3 :
;—'(5;) ‘/dk:{.ﬁ) /dP vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

m__(_) /dk_(;T;, / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h? in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

| A L .: :
Zﬂ(g)i/tfk:{ﬁ);'/dp vi.1

1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

_.(_) / /dp vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h? in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an inr.egral over wave vectors or momenta in the form

_.(_) /Jk_{m) / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

_.(_) / /dp vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TI/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,
of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integml over wave vectors or momenta in the form

m__(_ /dk_(}Tf, / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L 3 L 3 . 1
Y= () = (gp)” [ oo
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L.a L 3 -
;—'(i;) ./dk:{ﬂ) /dP vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .
;—'(;:) /dk-{q)/ vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an inl:egral over wave vectors or momenta in the form

_.(__) /dk—{—) / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

ko ' .
;—-(E) ‘/dk:(ﬂ) /JP vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L.3 L .3 .
;—-(E) ‘/dk:{ﬁ) /dp vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik'r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

AL :
> = (5)" [dk=(55)" [ap vi.

m

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

AR L\ :
Z—'(i;)i/dk=l§;};)‘/dp vi.1
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This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L.3 e - Bs 43 :
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This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .3 L .3 -
Y= () [ = (55" [ e "
This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

_.(ﬁ) /dk—{——) / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .3 L 3 :
Y= ()" [ k= ()" [ ao "
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

| A L \: :
Z—'(.E;)i‘/dk:lﬂ)‘/dp vi.1
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This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L.s ' P .
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This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

_.(_)/dk_{Th / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

_.(__) /dk—{——) / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L . L .. .
Z—'(.;:)i/dk:{_;_—h)i/dp vi.1

m

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .: ' .
Z_'(Ei)i/dk:{*ﬁ)i/dp vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

¢ A .
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This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

_.(__) /dk—{————) / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .3 L 3 -
;—'(5;) ./Jk:{.ﬁ) _/JP vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L . A .
Z_'(.;;)i/dk:{‘ﬁ)i/-dp vi.1

m

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)3?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

_.(__) /Jk—{_) / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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ogether classical mechanics and quantum theory.
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an inl:egral over wave vectors or momenta in the form

__(.__) /Jk-_{m)/ vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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together classical mechanics and quantum theory.
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L.s .
;—'(5;)‘/!11(—{;_—’]) / vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible

formulation of classical mechanics. So something funny will have to be done to patch

Pirsa: 09100135 Page 161/254

together classical mechanics and quantum theory.



Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

Lyl L .3 :
;—‘(Eg) ‘/Jk;iéﬁ) '/JP vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description
To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

_.(_) /dk_i—“‘) / vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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ogether classical mechanics and quantum theory.
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L L .: ;
Z—'(E)i./de{:;E)i'/dP vi.1
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This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik'r). The wave number k=(k, k, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .: L .: -
Z—‘(El;‘/ffk:{g)i_/ffp vi.1
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This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h®. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .3 L .3 -
Y- () [ = (55" [ e "
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .: e .
Z_.(q—_)‘/dk:{;-—h)‘/dp vi.1

This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p's,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L . L .: :
Z—'(ﬂ)i/deIE_};)i/dP vi.1
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This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes. We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)*?
exp(ik-r). The wave number k=(k, ky, k;) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,

of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as Z
m

Usually, but not always, many terms contribute from such a sum so that it

can be written as an integral over wave vectors or momenta in the form

L .3 L 3 :
;—'(g) ‘/Jk:{ﬁ) /JP vi.1
This result is interpreted by saying that the quantum sum over m goes into a sum over

phase space in discrete pieces of size h’. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch
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together classical mechanics and quantum theory.
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One mode

In the grand canonical formulation, the only difference between bosons and
fermions is the possible values of the excitation number of a given type, n; .
For bosons this n can be any non-negative integer 0,1,2,... For fermions
the excitation or mode can either be empty or occupied, corresponding to
n=0 or 1. In either the bose or the fermi cases, the probabilities are given by

p(n)=(1/Z) exp[-P(e-n)n],

We next look to a single mode of excitation. For the
fermion, the normalizing factor is 5= 1 +exp|-f(e-u)]

The probability for finding the state full is
<n> =1/ {1 +exp[P(e-u)]} vi.2a
The probability for finding the state empty is
1-<n> =1/ {1 +exp|[-p(e-u)]} vi.2b
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Extreme Limits for fermions

The extreme quantum limit is the one
with large values of B u=p/(kT). In that
limit the mode is always completely full
(empty) depending on whether (g-l) is
negative (positive).

The extreme classical limit is the one
with large values of - Y. In that limit,

in equilibrium, all modes have a very
low probability of being occupied and

<n>= exp[-B(&- )]

Pirsa: 09100135

This picture gives plots of <n> versus £¢/y for
various values of 1/(B p).The large numbers
indicate highly degenerate situations, while the
smaller ones are closer to the classical limit.
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Extreme Limits for fermions

The extreme quantum limit is the one ' ]
with large values of B pu=p/(kT). In that ' Ml
limit the mode is always completely full
(empty) depending on whether (g-J) is
negative (positive).

The extreme classical limit is the one
with large values of -8 Y. In that limit,

in equilibrium, all modes have a very 0.2 - :

low probability of being occupied and :

et ) TN TR
0 1 2 3 4 5

This picture gives plots of <n> versus §/y for
various values of 1/(B p).The large numbers
indicate highly degenerate situations, while the
smaller ones are closer to the classical limit.
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For the boson

the equilibrium probability distribution for occupation of the
ingle mode is  p(n)=(1/Z) exp[-p(e-u)n].  All integer
alues of n between zero and infinity are permitted.

I'he normalizing factor is

=1 +exp|[-ple-u)] + +exp[-2p(e-u) |+ +exp[-3p(s-u)]

==1/{1 -exp[-P(e-u)]}

Note that e-u must be positive.

"he average occupation is <n> = 1/ {exp[p(e-n)]-1} Vvi.3 show this®

\n extreme quantum limit is the one with very small positive
alues of B (e-u). In that Iﬁ'nit. the mode can have lots and
ots of quanta in it. You can even have macroscopic
)ccupation of a single mode, in which a finite fraction of the
:ntire number of particles is in a single mode. This is also
alled Bose-Einstein condensation after the discoverers of
his effect.

Satyendra Nath Bose

lhe extreme classical limit is once more a very large value of - Y and a small
verage occupation of the state. Once more <n>= exp[-B(&- {)] in this

| FYRisk: 09100135 Page 178/254
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For the boson

the equilibrium probability distribution for occupation of the
ingle mode is  p(n)=(1/%) exp[-p(e-u)n].  All integer
alues of n between zero and infinity are permitted.

I'he normalizing factor is

=1 +exp|[-ple-u)] + +exp[-2p(e-u) |+ +exp[-3p(e-u)]

==1/{1 -exp[-p(e-n)]}

Note that e-u must be positive.

"he average occupation is <n> = 1/ {exp[f(e-u)]-1} Vvi.3 show this

\n extreme quantum limit is the one with very small positive
alues of B (e-u). In that Iﬁ'nit. the mode can have lots and
ots of quanta in it. You can even have macroscopic
)ccupation of a single mode, in which a finite fraction of the
:ntire number of particles is in a single mode. This is also
alled Bose-Einstein condensation after the discoverers of
his effect.

Satyendra Nath Bose

lhe extreme classical limit is once more a very large value of - Y and a small
verage occupation of the state. Once more <n>= exp[-B(&- {)] in this
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Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

'H:Zf}n, vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;

Pirsa: 09100135 ] Page 180/254

Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf}n, vi.4

and the statistical mechanics is given by the usual formula

pin}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

Hsz}n, vi.4
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:ZF}HJ vi.4

s 2.0 . . .
and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a spgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf}m vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

Hsz‘,n, vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z 1
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Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

'H:Zf}n, vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf}n, vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

Hsz;nJ vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z 1
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Here u is called the chemical potential. The density of particles increases as 1 increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
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p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.
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objects under consideration are conserved quantities, e.g. atoms or molecules, and they
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statistical theory in which we allow the total number of particles to vary, and use a
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Here u is called the chemical potential. The density of particles increases as 1 increases.



Independent Excitations: waves
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objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
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Here u is called the chemical potential. The density of particles increases as u increases.
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One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf}n, vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.
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don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.
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Here u is called the chemical potential. The density of particles increases as u increases.
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One example of a boson excitation is provided by a set of waves.There are two major
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respectively photons and phonons. In the simplest situation, the Hamiltonian for the
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a spgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of
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Here u is called the chemical potential. The density of particles increases as 1 increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number
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Here u is called the chemical potential. The density of particles increases as 1 increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula
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where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
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don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form
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N = Z n;
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Here u is called the chemical potential. The density of particles increases as 1 increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula
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where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of
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statistical theory in which we allow the total number of particles to vary, and use a
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form
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Here u is called the chemical potential. The density of particles increases as 1 increases.
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examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number
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Here u is called the chemical potential. The density of particles increases as 1 increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of
that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n,
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf}n, vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a spgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf"”‘ vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a spgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z r
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Here u is called the chemical potential. The density of particles increases as u increases.
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respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;

Pirsa: 09100135 ] Page 206/254

Here u is called the chemical potential. The density of particles increases as u increases.
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One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as 1 increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

pi{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as 1 increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system
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and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a spgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H = Zf_} I ; vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

’Hsz}n, vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as 1 increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf}n, vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as 1 increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

Hrsz}n, vi.4

S . . .
and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of
that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z 1
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf}n, vi.4

and the statistical mechanics is given by the usual formula

pi{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

Hsz}n, vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as 1 increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf‘,n, vi.4

Y . . .
and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

Hsz}n, vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/=Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

?‘{sz’,nJ vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a spgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;

Pirsa: 09100135 ] Page 222/254

Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf}n, vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a spgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf‘,n, vi.4

. o] . . .
and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a spgle excitation of type j and n;is the number of excitations of
that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

T = Z €;1; vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a spgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf}n, vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf}flj vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

'H:Zf}n, vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sipgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:ZF‘,HJ vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a sigle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z 1
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf}n, vi.4

e a0 . . .
and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a spgle excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Independent Excitations: waves

One example of a boson excitation is provided by a set of waves.There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

H:Zf}n, vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, ¢, is the energy of a single excitation of type j and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don't interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;
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Here u is called the chemical potential. The density of particles increases as u increases.



Waves=Special bosons

ge=hw, so in the classical limit the energy of a photon goes to zero.

the probability distribution for the single mode is

p(n)=(1/%) exp[-p & n]

The normalizing factor is

=1 +exp[-p ] + +exp[-2p |+ +exp[-3p €] +... so that

1
& 1 wexpl-B €]

Note that € must be positive or zero. The average energy in the mode is

<n>¢ = &/ {exp[p £]-1}= hw/ {exp[p hw]-1}

Classical limit = high temperature <n>e=1/f = kT

Therefore classical physics gives kT per mode. A cavity has an infinite number of
electromagnetic modes. Therefore, a cavity has infinite energy?!?

In quantum theory high frequency modes are cut off because they must have small
average occupations numbers, <n>. Therefore the classical result of kT per mode is
simply wrong. So there is no infinity.

In this way, Planck helped us get the right answer by introducing photons and starting off
the talk about occupation numbers! Foge st
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Waves=Special bosons

ge=hw, so in the classical limit the energy of a photon goes to zero.

the probability distribution for the single mode is

p(n)=(1/%) exp[-p & n]

The normalizing factor is

=1 +exp[-p ] + +exp[-2p e |+ +exp[-3p €] +... so that

1
& explB ]

Note that € must be positive or zero. The average energy in the mode is

<n>¢ = ¢/ {exp[Pp £]-1}= hw/ {exp[p hw]-1}

Classical limit = high temperature <n>e=1/f =kT

Therefore classical physics gives kT per mode. A cavity has an infinite number of
electromagnetic modes. Therefore, a cavity has infinite energy?!?

In quantum theory high frequency modes are cut off because they must have small
average occupations numbers, <n>. Therefore the classical result of kT per mode is
simply wrong. So there is no infinity.

In this way, Planck helped us get the right answer by introducing photons and starting off
the taik about occupation numbers! roge st









photons in Cubic Cavity

k=(ks.ky,kz)=2TT(m,my,m;)/L where the m’s are integers describing the cavity’s modes
Here w=ck (There are two modes for each frequency)

H= Z Nm. o hck(m)

We can then find the average energy in the form

| 1
<H>=2 o hck
H ; e (m)(-xp[,ih(‘k(m}) e

If the box is big enough, the sum over m can be converted into an integral over k.

L\3 | 1
<H>=2(— d*k hck
H ( -) / a exp(ghek) — 1

-

The integration variable can then be made dimensionless

2 L 3 . 1
<H>=— i
i 3 (QJT.iht'k) / ¢ expl(qg) — 1

and the integral rewritten in a form which converges nicely at zero and infinity.

L 3 [ . |
<H>= ‘.!(R‘T}J( ) / dq 4:‘.’:;"

2whek Jo (—'2{[)( q) — 1 Page 238/254
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photons in Cubic Cavity

k=(kyky,kz)=2TT(mymy,mz)/L where the m’s are integers describing the cavity’s modes
Here w=ck (There are two modes for each frequency)

H= Z Nm. o hck(m)

We can then find the average energy in the form

1
CH>=2Y Ny, lick |
H ; i = T (m)vxp(-mf‘“m}) -

If the box is big enough, the sum over m can be converted into an integral over k.

L 3 _ |
= 2| — Pk hek
" (2:.') / : - exp(3hek) — 1

The integration variable can then be made dimensionless

2 L 3 . 1
<H >=— i
H 3 ('.er.ih('k) / i exp(q) — 1

and the integral rewritten in a form which converges nicely at zero and infinity.

L 3 [ : 1
<H>= Q(A'T)J( ) [ dq 47?1;"9“:[)(
Jo 2
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Conserved Fermions in Box

In a metal electrons act as independent quasiparticles with energy an
momentum relation energy = €, For modes with energy near the
value of the chemical potential, these modes behave very much like
non-interacting particles with a changed energy-momentum relation.
For example they move with a velocity v=V&,. Only the electrons

Paul Dirac has a . § : : : :

beautiful quancum  With energies close to the chemical potential, called in this context
mechanics book the Fermi energy, play an important role in moving heat and particles
which | enjoyed through the system. The electrons near the Fermi energy are said to

reading when | was ) ) o
a grad student. be close to the top of the Fermi sea. For lesser energies, within that

sea, the electrons are mostly frozen into their momentum states
and cannot do much

For some materials, like Aluminum, £p = p%(2m). For these the
Fermi sea forms a ball with radius pe.

Calculate the T=0 energy density, particle density, and pressure of these
electrons in terms of pe You may use the free particle energy-momentum
relation. Harder: Calculate the entropy density as a function of T at low T,

i, Enrico (1926). "Sulla quantizzazione del gas perfetto monoatomico” (in Italian). Rend.
¥ 3: 145-9_, translated as On the Quantization of the Monoatomic Ideal Gas.
«12-14. doi:ar Xiv:cond-mat/99 | 2229vI.
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Conserved Fermions in Box

In a metal electrons act as independent quasiparticles with energy an
momentum relation energy = £, For modes with energy near the
value of the chemical potential, these modes behave very much like
non-interacting particles with a changed energy-momentum relation.
For example they move with a velocity v=V&p. Only the electrons

Paul Dirac has a , ) ? . : :

beautiful quancum  With energies close to the chemical potential, called in this context
mechanics book the Fermi energy, play an important role in moving heat and particles
:"e:':;g' ::"::’n"ldm through the system. The electrons near the Fermi energy are said to
2 grad sudant be close to the top of the Fermi sea. For lesser energies, within that

sea, the electrons are mostly frozen into their momentum states
and cannot do much

For some materials, like Aluminum, £p = p%(2m). For these the
Fermi sea forms a ball with radius pe.

Calculate the T=0 energy density, particle density, and pressure of these
electrons in terms of pe You may use the free particle energy-momentum
relation. Harder: Calculate the entropy density as a function of T at low T,

i, Enrico (1926). "Sulla quantizzazione del gas perfetto monoatomico” (in ltalian). Rend.
i 3: 145-9. , translated as On the Quantization of the Monoatomic Ideal Gas.
~12-14. doi:arXiv:cond-mat/9912229v]1.
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a Conserved Fermions in Box

- In a metal electrons act as independent quasiparticles with energy an
5 momentum relation energy = £, For modes with energy near the

* value of the chemical potential, these modes behave very much like

non-interacting particles with a changed energy-momentum relation.

For example they move with a velocity v=V&,. Only the electrons

Paul Dirac has a , ) _ ) ’ i

beautiful quantum  With energies close to the chemical potential, called in this context
mechanics book the Fermi energy, play an important role in moving heat and particles
:'::;g' f:h':’ne:’wu through the system. The electrons near the Fermi energy are said to
a grad student. be close to the top of the Fermi sea. For lesser energies, within that

sea, the electrons are mostly frozen into their momentum states
and cannot do much

For some materials, like Aluminum, £p = p%(2m). For these the
Fermi sea forms a ball with radius pe.

Calculate the T=0 energy density, particle density, and pressure of these
electrons in terms of pe You may use the free particle energy-momentum
relation. Harder: Calculate the entropy density as a function of T at low T,
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Conserved Fermions in Box

In a metal electrons act as independent quasiparticles with energy an
momentum relation energy = £, For modes with energy near the
value of the chemical potential, these modes behave very much like
non-interacting particles with a changed energy-momentum relation.
For example they move with a velocity v=V&p. Only the electrons

Paul Dirac has a , . . . : )
beautiful quancum  With energies close to the chemical potential, called in this context

mechanics book the Fermi energy, play an important role in moving heat and particles
v 7 through the system. The electrons near the Fermi energy are said to

reading when | was

a grad student be close to the top of the Fermi sea. For lesser energies, within that

sea, the electrons are mostly frozen into their momentum states
and cannot do much

For some materials, like Aluminum, £p = p%(2m). For these the
Fermi sea forms a ball with radius pe.

Calculate the T=0 energy density, particle density, and pressure of these
electrons in terms of pe You may use the free particle energy-momentum
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Conserved Fermions in Box

In 2 metal electrons act as independent quasiparticles with energy an
momentum relation energy = £, For modes with energy near the
value of the chemical potential, these modes behave very much like
non-interacting particles with a changed energy-momentum relation.
For example they move with a velocity v=V&p. Only the electrons

Paul Dirac has a ] . . ; : .

beautiful quancum  With energies close to the chemical potential, called in this context
mechanics book the Fermi energy, play an important role in moving heat and particles
e e through the system. The electrons near the Fermi energy are said to

reading when | was ) ) o
a grad student. be close to the top of the Fermi sea. For lesser energies, within that

sea, the electrons are mostly frozen into their momentum states
and cannot do much

For some materials, like Aluminum, €p = p%(2m). For these the
Fermi sea forms a ball with radius pe.

Calculate the T=0 energy density, particle density, and pressure of these
electrons in terms of pe You may use the free particle energy-momentum
relation. Harder: Calculate the entropy density as a function of T at low T,
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Conserved Fermions in Box

In a metal electrons act as independent quasiparticles with energy an
momentum relation energy = €, For modes with energy near the
value of the chemical potential, these modes behave very much like
non-interacting particles with a changed energy-momentum relation.
For example they move with a velocity v=V&p. Only the electrons

Paul Dirac has a , . : : ! :

beautiful quancum  With energies close to the chemical potential, called in this context
mechanics book the Fermi energy, play an important role in moving heat and particles
which | enjoyed through the system. The electrons near the Fermi energy are said to

reading when | was

a grad student be close to the top of the Fermi sea. For lesser energies, within that

sea, the electrons are mostly frozen into their momentum states
and cannot do much

For some materials, like Aluminum, £p = p%(2m). For these the
Fermi sea forms a ball with radius pe.

Calculate the T=0 energy density, particle density, and pressure of these
electrons in terms of pe You may use the free particle energy-momentum
relation. Harder: Calculate the entropy density as a function of T at low T,

i, Enrico (1926). "Sulla quantizzazione del gas perfetto monoatomico” (in Italian). Rend.
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Conserved Fermions in Box

In a metal electrons act as independent quasiparticles with energy an
momentum relation energy = £, For modes with energy near the
value of the chemical potential, these modes behave very much like
non-interacting particles with a changed energy-momentum relation.
For example they move with a velocity v=V&p. Only the electrons

Paul Dirac has a , ) " : . ’

beautiful quancum  With energies close to the chemical potential, called in this context
mechanics book the Fermi energy, play an important role in moving heat and particles
which | enjoyed through the system. The electrons near the Fermi energy are said to

reading when | was ) ) o
a grad student. be close to the top of the Fermi sea. For lesser energies, within that

sea, the electrons are mostly frozen into their momentum states
and cannot do much

For some materials, like Aluminum, €p = p%(2m). For these the
Fermi sea forms a ball with radius pe.

Calculate the T=0 energy density, particle density, and pressure of these
electrons in terms of pe You may use the free particle energy-momentum
relation. Harder: Calculate the entropy density as a function of T at low T,
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‘ Conserved Fermions in Box

- In 2 metal electrons act as independent quasiparticles with energy an
5 momentum relation energy = €, For modes with energy near the

< value of the chemical potential, these modes behave very much like

non-interacting particles with a changed energy-momentum relation.

For example they move with a velocity v=V&,. Only the electrons

Paul Dirac has a , : : _ . :

beautiful quancum  With energies close to the chemical potential, called in this context
mechanics book the Fermi energy, play an important role in moving heat and particles
WISk S anjoyes through the system. The electrons near the Fermi energy are said to
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a grad student be close to the top of the Fermi sea. For lesser energies, within that

sea, the electrons are mostly frozen into their momentum states
and cannot do much

For some materials, like Aluminum, €p = p%(2m). For these the
Fermi sea forms a ball with radius pe.

Calculate the T=0 energy density, particle density, and pressure of these
electrons in terms of pr You may use the free particle energy-momentum
relation. Harder: Calculate the entropy density as a function of T at low T,
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Conserved Bosons in Box

At low temperatures fluid Helium?®, that is bosonic helium, undergoes a
phase transition into a superfluid state in which it can move without
viscosity. This is believed to arise because a finite fraction of the entire
number of atoms falls into a single quantum mode, described by a single
wave function. The basic theory of how this ocurs is due to Nikolay
Nikolaevich Bogolyubov.

The Einstein-Bose theory of a phase
transition in a non-interaction Bose liquid is a
pale reflection of the real superfluid
transition. However, it is quite interesting
both in its own right and also because the
recent development of low temperature-low
density Bose atomic or molecular gases may
make it possible to observe this weak-
iinaiiliiienikiiabainn interaction-effect.

| shall outline the three dimensional theory. The theory in two dimensions is more complex.
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Bose Transition

1 1
n=number of particles per unit volume = E 2 1+ exp{ple(m) - u]}

m

Here the sum is over a vector of integers of length three, and the energy is

e(m)=m2 h2 /(2ML2), M being the mass of the particle. For a sufficiently large box, there ar
two qualitatively different contributions to the sum. The term in which m=0 can be
arbitrarily large because u can be arbitrarily small. The remaining terms contribute to an
integral which remains bounded as 1 goes to zero. The result is

1 dp 1

= L’ Bu +f h? p°
-Lp 1 .
+exp[p oM Pu]

The integration has a result that goes to zero as T° as the temperature goes to zero. If this
system is to maintain a non-zero density as T goes to zero, which we believe it can, it can on
do so by having the first term on the right become large enough so that a finite proportion
of the entire number of particles in the system will fall into the lowest mode. This is
believed to be the basic source of superfluidity.
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Dynamics of fermions at low temperature

Landau described fermions at low temperature by saying that they had a free energy which
depended upon, f(p,r,t) the occupations of the fermion modes with momentum in the
neighborhood of P and position in the neighborhood of r at time t. As the occupations
changed the free energy would change by

Then, using the usual Poisson bracket dynamics the distribution function would obey, as in
equation v.| 3.

al ﬂP,l",t) + (VP E(P,l’,t)) ; Vl' ﬂp,l',t) - (vl" E(P,l',t)) ) VP ﬂp,r,t)

= collision term

The collision term will be the same as in the classical Boltzmann equation with one important
difference: Since fermions cannot enter an occupied state, the probabilities of entering a final
state will be multiplied by a factor of (1-f). Thus, Landau proposed a “Boltzmann equation” fol

degenerate fermions of the form below, with the new terms in red

[0 + (Vpe) Ve - (Vrg)- Vp] fip) =

. ”' dq dp dq d(p+q - p-q") d(e(p)+ £(q) - £(p)-£(q"))
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