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Probability distribution

't = 2MkT

Whenever this relation is satisfied, p has the right variance, MkT, and the right Maxwell-

Boltzmann probability distribution.

3 .3/2 &
) 2 exp[—Bp?/(2M))]

p(p) = (

More generally, if we have a Hamiltonian, H(p,r), for the one-particle system, the
Maxwell-Boltzmann distribution takes the form

p(Psr)=exp[-BH(p,r)]/Z, v.7
where, the the simplest case the Hamiltonian is
H(p,r) = p*/(2M) +U(r)

Maxwell and Boltzmann expected that, in appropriate circumstances, if they waited
long enough, a Hamiltonian system would get to equilibrium and they would end up
with a Maxwell-Boltzmann probability distribution

Question: Should we not be able to derive this distribution from classical mechanics
alone? Maybe we should have to assume that we must long enough to reach
equilibrium? Anything more?

pisa: clgesanething of the form v.7 is called by mathematicians a Gibbs measure and by phfsizasts a
RBoltzmann distribution or often a Maxwell-Boltzmann distribution Why? Should we care?



Statistical and Hamiltonian Dynamics

We have that the equilibrium p=exp(-H)/Z. How can this arise from time dependence ¢
system? One very important possible time-dependence is given by Hamiltonian mechanics

dq, OH
At dpa
dp,  OH
dt _Uq,,

The simplest case is a particle moving in a potential field with a Hamiltonian

H=p7/(2M) + U(r) and consequently equations of motion

1
el P,
dt
{
ar p;"-\f

==
The statistical mechanics of such situations is given by a probability density function
p(p,r.t) such that the probability of finding the particle in a volume element dp dr
about p,r at time tis p(p,r.t) dp dr. The next question is, what is the time-
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ependence of this probability density? Or maybe, how do we get equilibrium
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Calculation concluded .....

Orpla.t) + pla,t) Y (02, Vi) + Y _Vidp, pla.t) =0
J J

The Hamiitonian case is special. There are two kinds of coordinates

Xj=q., withV; = dp, H and x=p, withV; = —dq, H. In that case, the divergence term
(Dge Ope H =0p dqe H)p =0.  This result, called Liouville’s theorem, says that the size of the
volume element is independent of time. As a result the the probability density obeys a
special equation, with no divergence term

dp(p,q.t) + Z Op H)0y, — (04, H)Op_ |p(p.gq,t) =0 v.10

The time derivative of any function of p and q is given in Hamiltonian mechanics by

dX (p.q)/dt = [(,, H)D,, — (0, H)D,,| X (p. @) v.11

In particular if H is the Hamiltonian, assumed to be a function of the p’s and g's but
not containing any other t-dependence, then dH/dt=0, i.e. H is independent of time.
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Calculation Continued .....
jdx g(x) p(x,t+dt) =‘[ dx g(x+dtV(xt)) p(x.t)

expand to first order in dt

_[ dx g(x) p(x.t) +dt ,[ dx g(x)op(x,t) = J. dx g(x) p(x.t) + _[ dx dtV(x.t)[d:g(x)] p(x.t)
throw away the things that cancel against each other to get

J dx g(x)ap(x,t) - ,[ dx V(x,t)[0xg(x)] p(xt) =0
integrate by parts on the right hand side, using the fact that p(x,t) vanishes at x=% infinity

J dx g(x{ap(xt) + dx [V(xt) p(x.t)]}=0

Notice that g(x) is arbitrary. [f this left hand side is going to always to vanish, the { } must
vanish. We then conclude that dep(x,t) + dx [V(x,t) p(x,t)] =0. That's for one coordinate,
If there are lots of coordinates this equation reads

p(x. ”+Pf"2(f) ‘,)4—210, plz,t) =0 v.9

We call the second term on the left the dlvergence term. It describes the dilation of the
volume element by the changes in the x's caused by the time development. The last term
is the direct result of the time-change in each coordinate X(t) Now we have the &eneral
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result for the tlme development of the probability density. We go look at the Hamiltonian



Calculation concluded .....

dp(x.t) +p(x,) Y (0:, Vi) + Y _ Ve, plx.t) =0
| J

The Hamiltonian case is special. There are two kinds of coordinates

X=q, withV;=dp, H and x=p, withV; = -dq, H. In that case, the divergence term
(qu Opa H =0p dqe H)p =0.  This result, called Liouville’s theorem, says that the size of the
volume element is independent of time. As a result the the probability density obeys a
special equation, with no divergence term

‘l}"fi(!',‘ f!" ” +_ Z"(r]’”' H](I)qw (f)'{. H}(}!r.:fj( I). I'[. f) — {] V'10

The time derivative of any function of p and q is given in Hamiltonian mechanics by

dX (p,q)/dt = Z““f"' H)d, — (0, H)d, X(p q) v.11

ik

In particular if H is the Hamiltonian, assumed to be a function of the p’s and g's but
not containing any other t-dependence, then dH/dt=0, i.e. H is independent of time.
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Calculation concluded .....

Oplx.t)+ plx,t) Z(U‘,-} Vi) + Z Vi0z, p(z,t) =
j ]

The Hamiltonian case is special. There are two kinds of coordinates

X;=q, withV, = dp, H and x=p, withV; = —dq, H. In that case, the divergence term
(qu Ope H =0pu dq H)p =0.  This result, called Liouville’s theorem, says that the size of the
volume element is independent of time. As a result the the probability density obeys a
special equation, with no divergence term

Np(p.q,t) + Z Op. ',, (f),{ H ) p(p 3.1) =4 v.10

The time derivative of any function of p and q is given in Hamiltonian mechanics by

dX (p,q)/dt = Z““’"' H)d, — (0, H)d, X(p, q) v. 11

ik

In particular if H is the Hamiltonian, assumed to be a function of the p’s and g's but
not containing any other t-dependence, then dH/dt=0, i.e. H is independent of time.
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Calculation concluded .....

Orpla,t) + pla,t) Y (02,V;) + Y Vide, pla,t) =0
J J

The Hamiltonian case is special. There are two kinds of coordinates

X;j=q, withV, = dp, H and x=p. withV, = —dq, H. In that case, the divergence term
(g Opu H -0pq dgqe H)p =0.  This result, called Liouville’s theorem, says that the size of the
volume element is independent of time. As a result the the probability density obeys a
special equation, with no divergence term

dp(p,q.t) + Z:(”f"' H ](),,_‘ (f)q_. H)d, :p( p.q,t) =0 v.10

The time derivative of any function of p and q is given in Hamiltonian mechanics by

dX (p.q)/dt = Z“Hf'* H)o, - (0, H)od, |X(p.q¢) v.11

ik

In particular if H is the Hamiltonian, assumed to be a function of the p’s and g's but
not containing any other t-dependence, then dH/dt=0, i.e. H is independent of time.
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Calculation concluded .....

Hhplx. t)+ plx.t) Z((')‘,_., Vi) + Z V0, p(z,t) =
J J

The Hamiltonian case is special. There are two kinds of coordinates

X;=q. withV; = dp, H and x;=p, withV; = —dq, H. In that case, the divergence termr
(dge dpe H =0 dqo H)p =0.  This result, called Liouville’s theorem, says that the size of the
volume element is independent of time. As a result the the probability density obeys a
special equation, with no divergence term

Np(p,q,t) + Z Op, dy., f)q H)o, p(p gi)=y v.10

The time derivative of any function of p and q is given in Hamiltonian mechanics by

dX (p.q)/dt = [(,, H)D,, — (0, H)D,,| X (p. @) v.11

ik

In particular if H is the Hamiltonian, assumed to be a function of the p’s and g's but
not containing any other t-dependence, then dH/dt=0, i.e. H is independent of time.
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Poisson Bracket
The Poisson Bracket is Defined by

{(f.g} =) { il i]

f:)q“ Mo IGa Opa
d.p ={H.p} for any function of p's and g’s, with no explicit time-dependence
dX/dt={X,H}

These Poisson brackets are rather like the commutators of quantum mechanics. For exampl
{f.2).h}+ {{h.N.g}+ {{g.h).f}=0. The same kind of relation is true for operators in quantum
theory with { and } replaced by [ and ]. The bracket relations for classical time-dependence
are very much like the time-dependence of operators and density matrices in quantum
theory. This relation between quantum mechanics and the canonical version of classical
mechanics is quite surprising and turns out to be quite deep.

Note the difference in sign between the relation for dX/dt and the one for d; p. | have
gotten one of those signs wrong many times in my life. Think for a bit about why we write

dep but dX/dt. Why?
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Liouville’s Theorem and conservation of phase space
volume

This theorem is the statement that volume elements in phase space are conserved in
the course of a motion. That'’s the consequence of the vanishing divergence term. So
if you start off with a p(p,q,0) at time zero which is non-zero in some region of phase
space, of volume €)(0), after a time, p(p.q,t) will progress to occupy a different region
of phase space of volume ()(t). According to Liouville’s theorem the volumes of the
regions before and after will be unchanged, Q(t)= €(0). Imagine that the probability
density was constant within the region you picked, i.e. p(p,q,0)=1/Q(0). Then, by the
same argument to any tiny subvolume of the original region would also have its volume
preserved under the transformation, and therefore the value of p(p,q,t) within the new
region would be the same as as the one within the old. Within the new region, p(p.q,t)

=1/Q(0).
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Any function of H will do

To achieve equilibrium we can have the probability density be any function of the
Hamiltonian and the other conserved quantities in the system. The following functions
are in broad use. We assume one type of particle, with number N.

Canonical ensemble: p = exp(-BH)/Z(B) N is fixed

This is the right ensemble to use if a small system with a known
number of particles is weakly coupled to a larger system so that
it might exchange energy but not particles with the larger
system. This is OK to use if there are no other important
conserved variables, beyond the ones mentioned. If you have a
system in motion, watch out for the momentum. If you have a
galaxy, watch out for angular momentum.

Microcanonical ensemble: p = d(E-H)/ X(E) N is fixed

This is the right ensemble to use if the energy and number of
particles in a small system are known. This is OK to use if there
are no other important conserved variables, beyond the ones
mentioned. However, small systems with fixed energy can often
have other hidden conserved things.
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Liouville’s Theorem and conservation of functions oof
the energy

p(p.q.t) + > _[(3p, H)Dy, — (84, H)p,1p(p.q.t) =0

If p(p.q.0) is any function of the Hamiltonian, e.g. p(p.q.0)= Z'exp[- PH(p.q)] then this
same functional form will hold for all times, assuming that the Hamiltonian has no explicit
time dependence. p(p,q.0)=f(H(p,q)) implies that p(p,q,t)=f(H(p.q)) for any f.

Further, if p is any function of a time-independent H and of any other conserved function of p
and g (but not t) then p will be a solution of our equation. Thus, not only is the Boltzmann
function a solution describing the equilibrium time-dependence of a Hamiltonian system,
there are many other solutions as well.

Classical mechanics is not enough to specify a unique equilibrium probability density in a
classical system. Something else is needed in addition.
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Liouville’s Theorem and conservation of phase space
volume

This theorem is the statement that volume elements in phase space are conserved in
the course of a motion. That'’s the consequence of the vanishing divergence term. So
if you start off with a p(p,q,0) at time zero which is non-zero in some region of phase
space, of volume ((0), after a time, p(p.q.t) will progress to occupy a different region
of phase space of volume ()(t). According to Liouville’s theorem the volumes of the
regions before and after will be unchanged, Q(t)= €(0). Imagine that the probability
density was constant within the region you picked, i.e. p(p,q,0)=1/Q(0). Then, by the
same argument to any tiny subvolume of the original region would also have its volume
preserved under the transformation, and therefore the value of p(p,q,t) within the new
region would be the same as as the one within the old. Within the new region, p(p.q,t)

=1/Q(0).
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Liouville’s Theorem and conservation of functions oof
the energy

dp(p,q,t) + mep_TH]e),,\ —(0y. H)O,_ p(p.q.t) =0

If p(p.q,0) is any function of the Hamiltonian, e.g. p(p,q.0)= Z'exp[- BH(p,q)] then this
same functional form will hold for all times, assuming that the Hamiltonian has no explicit
time dependence. pP(p,q.0)=f(H(p.q)) implies that p(p,q,t)=Ff(H(p.q)) for any f.

Further, if p is any function of a time-independent H and of any other conserved function of p
and g (but not t) then p will be a solution of our equation. Thus, not only is the Boltzmann
function a solution describing the equilibrium time-dependence of a Hamiltonian system,

there are many other solutions as well.

Classical mechanics is not enough to specify a unique equilibrium probability density in a
classical system. Something else is needed in addition.
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Liouville’s Theorem and conservation of functions oof
the energy

dp(p.q.t) + Z:(iip,_H]i),,__ (0y, H)Op, lp(p.q.t) =0

If p(p.q.0) is any function of the Hamiltonian, e.g. p(p.q.0)= Z'exp[- PH(p.q)] then this
same functional form will hold for all times, assuming that the Hamiltonian has no explicit
time dependence. p(p,q.0)=f(H(p,q)) implies that p(p,q,t)=f(H(p.q)) for any f.

Further, if p is any function of a time-independent H and of any other conserved function of p
and g (but not t) then p will be a solution of our equation. Thus, not only is the Boltzmann
function a solution describing the equilibrium time-dependence of a Hamiltonian system,

there are many other solutions as well.

Classical mechanics is not enough to specify a unique equilibrium probability density in a
classical system. Something else is needed in addition.
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Liouville’s Theorem and conservation of functions oof
the energy

dp(p,q,t) + z:(r’);,.} H)o,, — (0, H)op, :p{p. g,1) =10

If p(p.q,0) is any function of the Hamiltonian, e.g. p(p.q.0)= Z'exp[- PH(p.q)] then this
same functional form will hold for all times, assuming that the Hamiltonian has no explicit
time dependence. p(p,q,0)=f(H(p.q)) implies that p(p,q,t)=f(H(p.q)) for any f.

Further, if p is any function of a time-independent H and of any other conserved function of p
and g (but not t) then p will be a solution of our equation. Thus, not only is the Boltzmann
function a solution describing the equilibrium time-dependence of a Hamiltonian system,

there are many other solutions as well.

Classical mechanics is not enough to specify a unique equilibrium probability density in a
classical system. Something else is needed in addition.
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Any function of H will do

To achieve equilibrium we can have the probability density be any function of the
Hamiltonian and the other conserved quantities in the system. The following functions
are in broad use. We assume one type of particle, with number N.

Canonical ensemble: p = exp(-BH)/Z(B) N is fixed

This is the right ensemble to use if a small system with a known
number of particles is weakly coupled to a larger system so that
it might exchange energy but not particles with the larger
system. This is OK to use if there are no other important
conserved variables, beyond the ones mentioned. If you have a
system in motion, watch out for the momentum. If you have a
galaxy, watch out for angular momentum.

Microcanonical ensemble: p = d(E-H)/ X(E) N is fixed

This is the right ensemble to use if the energy and number of
particles in a small system are known. This is OK to use if there
are no other important conserved variables, beyond the ones
mentioned. However, small systems with fixed energy can often
have other hidden conserved things.
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Any function of H will do, continued

Grand Canonical ensemble: p = exp[-B(H-UN)J/Z(B.H)

This is the right ensemble to use if a small system is weakly coupled to a
larger system so that it might exchange energy and particles with the
larger system. This is OK to use if there are no other important
conserved variables, beyond the ones mentioned. However watch out
for many different kinds of particles, each type has a conserved N.
Classical mechanics is provided with extra factors of 1/N! in p for each
different kind of particle. Particle statistics automatically does this in
quantum theory.

For large systems, and for most purposes, all ensembles are equivalent to one another.
Why?
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Any function of H will do

To achieve equilibrium we can have the probability density be any function of the
Hamiltonian and the other conserved quantities in the system. The following functions
are in broad use. We assume one type of particle, with number N.

Canonical ensemble: p = exp(-BH)/Z(B) N is fixed

This is the right ensemble to use if a small system with a known
number of particles is weakly coupled to a larger system so that
it might exchange energy but not particles with the larger
system. This is OK to use if there are no other important
conserved variables, beyond the ones mentioned. If you have a
system in motion, watch out for the momentum. If you have a
galaxy, watch out for angular momentum.

Microcanonical ensemble: p = &(E-H)/ X(E) N is fixed

This is the right ensemble to use if the energy and number of
particles in a small system are known. This is OK to use if there
are no other important conserved variables, beyond the ones
mentioned. However, small systems with fixed energy can often
have other hidden conserved things.
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Any function of H will do

To achieve equilibrium we can have the probability density be any function of the
Hamiltonian and the other conserved quantities in the system. The following functions
are in broad use. We assume one type of particle, with number N.

Canonical ensemble: p = exp(-BH)/Z(B) N is fixed

This is the right ensemble to use if a small system with a known
number of particles is weakly coupled to a larger system so that
it might exchange energy but not particles with the larger
system. This is OK to use if there are no other important
conserved variables, beyond the ones mentioned. If you have a
system in motion, watch out for the momentum. If you have a
galaxy, watch out for angular momentum.

Microcanonical ensemble: p = d(E-H)/ X(E) N is fixed

This is the right ensemble to use if the energy and number of
particles in a small system are known. This is OK to use if there
are no other important conserved variables, beyond the ones
mentioned. However, small systems with fixed energy can often
have other hidden conserved things.
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Any function of H will do, continued

Grand Canonical ensemble: p = exp[-B(H-UN)J/Z(B.H)

This is the right ensemble to use if a small system is weakly coupled to a
larger system so that it might exchange energy and particles with the
larger system. This is OK to use if there are no other important
conserved variables, beyond the ones mentioned. However watch out
for many different kinds of particles, each type has a conserved N.
Classical mechanics is provided with extra factors of 1/N! in p for each
different kind of particle. Particle statistics automatically does this in
quantum theory.

For large systems, and for most purposes, all ensembles are equivalent to one another.
Why?
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Say it again
For the simplest case in which H=p?/(2M) + U(r), the result of Hamiltonian mechanics is
that the probability distribution p(p, r, t) has the time dependence

dp(Pyrt)+( p/M) Ve p(pyr.t) - (Ve U)'Vp p(pyrit) =0

A time independent solution of this equation would be that p could be any function
of H. This result stands in apparent contradiction to our knowledge of statistical
mechanics which tells us that the probability distribution should be the Maxwell-
Boltzmann distribution, i.e. one which is exponential in H. What additional
information should we bring to bear on this situation’

We already have a hint from the Brownian motion calculation that this calculation

might give the Maxwell-Boltzmann result. Let’s go back to that and see what equation
we get for p. The Einstein model for Brownian motion is

dp/dt=.....+ n(t)-p/t

where ... might stand for additional terms coming from Hamiltonian mechanics. |
plan to study successively the effect of the two terms in this model upon the
equation for p and then put it all together.
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The friction term -p/t

We already know the effect of this term. It is a generalized velocity of the form included in
equation v.7, withV(p,t)= -p/t.  We therefore know immediately what effect this term has

on the equation for the probability distribution. It gives, via equation v.9

dep(px,t) = - dp [V p] = ..+ dp [Pt p(p.x.t)]
where x is the variable conjugate to p in a Hamiltonian formulation. We hold on to this result

to use in our later analysis. (Note that derivative dp acts on everything. )

However, we cannot just look up our old result to get the effect of the other term, the
stochastic kicks, 1, in the Brownian model

dp/dt=.....+ n(t)-p/T

As we shall see in a bit, their average first order effect is zero but their effect to second order
produces a result proportional to the time that they have been in action. Our old result does
not include second order effects. So we shall go back almost to the beginning to assess the
effect of these kicks upon the time-dependence.
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calculation of the effect of dp/dt=......+ n(t)
Recall our old calculation of d; p. In this situation, we are after an

understanding of the behavior of the momentum p. We have two ways of
calculating the average of a function of momentum at time t+0t. The first

comes from computing I dp g(p) p(p.,t+dt). That same average is obtained
by taking the solution at time t+dt, which is of the form p(t+dt)=p(t) +dp.
Here, Op is given by the effect of the stochastic term, so that

ot 51
op = / ds n(s)
Jt

Then the average at time t+0t can also be written as < ,[ dp g(p+0p) p(p.t)> .
Here, the average <..> is an average over the possible values of the stochastic
variables 1(s) for s between t and t+0t. If we equate these two expressions,
we find

f dp g(p) p(p.t+d1) il I dp g(p+dp) p(p.t)>

The right hand side can be rearranged by shifting the origin of integration and replacing
the variable p by p-dp. Then this right side becomes < j dp g(p) p(p-Op,t)>.and

| dpgp) pp+8t) = < | dp gp) p(p-Spy>
e Bince g(p) is arbitrary, we it follows that
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calculation of the effect of dp/dt=......+ n(t) continued

NEwY
p(p.t+dr) = < p(p-Op.t)> op :/ ds n(s)
t

expand (the result is particularly simple because Op does not depend upon p (or g))

p(p.t) + L dr p(p.t) = <p(p.t)>+<dp> dp p(p.t)+ <dp*> (dp)* p(p.t)/2

The first terms on each side cancel, the average of dp is zero, and the rest gives

dep(pe) = [ <dp?>/(201) ] (9p)* p(p:)

The average has the value:

+6t t+61 YEwy t+t
[6p]* / du/ ds < n(u)n(s) >= / du/ ds I'd(u — s) = I'dt
L

N nis)= =l8-s) ) so that we end up with the result

de p(p.t) =.... (I72) (dp)? p(p.¥)

This describes a diffusion in momentum space.

(Notice that because it is diffusive, this result cannot be followed backward in time!

Notice also that we had to go to second order in our calculation of the effect of the randor
igks because the second order effect here is linear in 8t and we were holding gpn £o all
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calculation of the effect of dp/dt=.....+ n(t)
Recall our old calculation of d: p. In this situation, we are after an

understanding of the behavior of the momentum p. We have two ways of
calculating the average of a function of momentum at time t+0t. The first

comes from computing Idp g(p) p(p.t+0t). That same average is obtained
by taking the solution at time t+dt, which is of the form p(t+dt)=p(t) +dp.
Here, Op is given by the effect of the stochastic term, so that

t+41
(jp — / ds 1n(s)
1

Then the average at time t+0t can also be written as < I dp g(p+op) p(p.t)>.
Here, the average <...> is an average over the possible values of the stochastic
variables 1)(s) for s between t and t+dt. If we equate these two expressions,
we find

I dp g(p) p(p.t+d1) =R I dp g(p+dp) p(p.t)>

The right hand side can be rearranged by shifting the origin of integration and replacing
the variable p by p-dp. Then this right side becomes < j dp g(p) p(p-Op.,t)>.and

j dp g(p) p(pt+dr) = < J dp g(p) p(p-Op.t)>
et 8ince g(p) is arbitrary, we it follows that
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Effect of Brownian motion: toward a unique probability distribution

We put together our two different pieces of the Brownian time derivative
equation and get:

it pPXE) ..ot (T72) (3p)* plpxct) + dp [PFT p(pct)]

The ...’s refer to terms which might come from usual Hamiltonian mechanics. We shall
put them aside for a moment. An equation, like to one here, obtained from averaging the
stochastic mechanics of a Langevin equation, is called a Fokker-Planck equation.

We look for a time-independent solution of this equation to see what is the equilibrium
behavior. Write p(p,x,t)=exp[-Q(p,x)] and find

0 =...dp[ (I72) (-0pQ) + p/T]

which has the solution Q=p? /(I" T) +C(X), where C(x) is a “constant” of integration.
To get the usual Hamiltonian result, use equation v.6 to replace I' t. Also, write
C(x)= U(x)/(kT) since that is what comes from the usual Hamiltonian mechanics.

Then, Q becomes p?/(2MkT) + U(x)/(kT), which is exactly the result of Hamiltonian
mechanics.

Einstein’s result shows that, in order to get the Maxwell-Boltzmann equilibrium result, w

have to go beyond Hamiltonian mechanics and include some stochastic behayior; This is
surprise.
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Effect of Brownian motion: toward a unique probability distribution

We put together our two different pieces of the Brownian time derivative
equation and get:

dt p(px.t) =....+ (I72) (dp)* p(px.t) + dp [p/T p(p.xt)]

The ...s refer to terms which might come from usual Hamiltonian mechanics. We shall
put them aside for a moment. An equation, like to one here, obtained from averaging the
stochastic mechanics of a Langevin equation, is called a Fokker-Planck equation.

We look for a time-independent solution of this equation to see what is the equilibrium
behavior. Write p(p,x,t)=exp[-Q(p.x)] and find

0 =....dp[ ([72) (-9pQ) + pit]

which has the solution Q=p? /(T" t) +C(X), where C(x) is a “constant” of integration.
To get the usual Hamiltonian result, use equation v.6 to replace I 1. Also, write
C(x)= U(x)/(kT) since that is what comes from the usual Hamiltonian mechanics.

Then, Q becomes p?/(2MkT) + U(x)/(kT), which is exactly the result of Hamiltonian
mechanics.

Einstein’s result shows that, in order to get the Maxwell-Boltzmann equilibrium result, w

have to go beyond Hamiltonian mechanics and include some stochastic behayior, This is
surprise.
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Effect of Brownian motion: toward a unique probability distribution

We put together our two different pieces of the Brownian time derivative
equation and get:

de p(pxt) =....+ (I72) (dp)* p(p.xt) + dp [P/t p(p.xt)]

The ...s refer to terms which might come from usual Hamiltonian mechanics. We shall
put them aside for a moment. An equation, like to one here, obtained from averaging the
stochastic mechanics of a Langevin equation, is called a Fokker-Planck equation.

We look for a time-independent solution of this equation to see what is the equilibrium
behavior. Write p(p,x,t)=exp[-Q(p,x)] and find

0 =.... dp [ ([/2) (-0pQ) + p]

which has the solution Q=p? /(I" t) +C(X), where C(x) is a “constant” of integration.
To get the usual Hamiltonian result, use equation v.6 to replace I 1. Also, write
C(x)= U(x)/(kT) since that is what comes from the usual Hamiltonian mechanics.

Then, Q becomes p?/(2MkT) + U(x)/(kT), which is exactly the result of Hamiltonian
mechanics.

Einstein’s result shows that, in order to get the Maxwell-Boltzmann equilibrium result, w

have to go beyond Hamiltonian mechanics and include some stochastic behayior, This is
surprise.
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