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The scattering: o

iven that there are particles available with the appropriate initial momentum, the scattering rate
to a volume element of final momentum dp” dq” can be writtenasdp  dq” Q(p,q *P»q )
e probability that we could get the particles we need for the scattering produce a factor

p,r,t) dq f(q,r.t ), so that the total scattering rate for this process is

P,r.t) _[dq fiqyrit)dp dq” Q(p,q *P,q )
The process itself reduces the number described by p,r at the rate shown. Conversely, there is an
inverse process, and a corresponding rate of increase of f(p,r,t)
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Brownian motion:
Robert Brown (1773-1858) saw particles of pollen “dance around” in fluid under microscope.Thi

motion was caused by many tiny particles hitting the grains of pollen.

N The many moving tiny particles are of course molecules of the
liguid. They were too small to see under a microscope when
Brownian motion was discovered, but it was obvious they were
there. You can see the molecules of liquid hitting the bigger particle
in the animation on the left. (The size of the molecules has been
dramaucally increased 1n order to make them visible).

http:/ f'www . worsleyschool net/science/files/brownian/motion. htmi

-

b Seen.

.

Albert Einstein (1905) explained this dancing by many, many collisions with molecules in fluid
dp/dt=....+ n(t)-p/T

p=(px by P N= (M. N, N ¥

N(t) is a Gaussian random variable resulting from random kicks produced by collisions. Since
the kicks have random directions <n(t)>=0. Different collisions are assumed to be
statistically independent

<Ni(t) Ni(s)> =Id(t-5)dx v.2

The relaxation time, T, describes friction slowing down as the particles moves through the
medium. In contrast [ describes the extra momentum picked up via the collisions. Both
represent the same physical effect, little particles hitting our big one. However, they operate in
a somewhat different fashion. The individual kicks point in every which direction and only in

risatfywolang run produce any concerted change in momentum. On the other hand the term ineepys2
is a friction tending to continually push our particle toward smaller speeds relative to the



Calculate momentum from dp/de=....+ n(t)-p~

t —t

t
Plt) = / dt’ n(t") exp(— ) v.3

7

Because P(t) is a sum of many random variables according to the central
limit theorem, it must be a Gaussian random variable.  Therefore it
has a Gaussian probability distribution. In equilibrium, P(t) should have
the variance, M kT, with M being the mass of the Brownian particle. In
equilibrium it will have the Maxwell-Boltzmann probability distribution

3

m):i;g t‘.‘{])[—.tﬂj/(g.“f)]

p(p) = (

Notice that if this works out for us, it will be our first “proof” that the ideas of
Gibbs, Boltzmann, and Maxwell about the canonical distribution was correct.

So we would have a proof that this “law” works, at least in this situation. |n
physics, we often use laws long before there is any substantial proof that they are
correct. We use little bits of evidence, intuition, and guesswork and gradually
convince ourselves that X "must be” right. If X is attractive, we hold on to that
view until there is overwhelming evidence to the contrary.
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Calculate momentum from dp/de=....+ n(t)-p/t

t —t

4
P(t) :/ dt’ n(t") exp(— ) v.3

T

Because P(t) is a sum of many random variables according to the central
limit theorem, it must be a Gaussian random variable. = Therefore it
has a Gaussian probability distribution. In equilibrium, P(t) should have
the variance, M kT, with M being the mass of the Brownian particle. In
equilibrium it will have the Maxwell-Boltzmann probability distribution

3
27 M

p(p) = ( )3';‘3 9}:1)[—.1;12/(2;\!)]

Notice that if this works out for us, it will be our first “proof” that the ideas of
Gibbs, Boltzmann, and Maxwell about the canonical distribution was correct.

So we would have a proof that this “law” works, at least in this situation. |n
physics, we often use laws long before there is any substantial proof that they are
correct. We use little bits of evidence, intuition, and guesswork and gradually
convince ourselves that X “must be" right. If X is attractive, we hold on to that
view until there is overwhelming evidence to the contrary.
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Calculate Variance of P(t)

<p,(Op(s)>= [ duf dv<n,()n(s)>
v.4

<p,(Op(s)>= [ du [’ dvrs,,o(u-v)exp[(t-u)/t-(s-v)/ 1]

....... if t > s the integral over u always gets a contribution from the delta-function so that this
expression then becomes

<p,(t)p,(s)>= [~ dvTs,, exp[-(t+s-2v)/ 1] v5

)
=(§“ rrexp[-1t-s|/7]

so we see that pj?/(2M), where M is the mass of the Brownian particle is on one hand given by
2

< P, >=I't / (4M)
2M

On the other hand, we know that in classical physics this quantity is kT/2. Thus we obtain tt
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relation between the two parameters in the Einstein model.
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Calculate momentum from dp/de=....+ n(t)-p/

t —t

ot
Pit)= / dt’ r;(f')t’.‘(p(— ) v.3

T

Because P(t) is a sum of many random variables according to the central
limit theorem, it must be a Gaussian random variable.  Therefore it
has a Gaussian probability distribution. In equilibrium, P(t) should have
the variance, M kT, with M being the mass of the Brownian particle. In
equilibrium it will have the Maxwell-Boltzmann probability distribution

3

P(P) = (5737

)32 exp[—3p?/(2M)]

Notice that if this works out for us, it will be our first “proof™ that the ideas of
Gibbs, Boltzmann, and Maxwell about the canonical distribution was correct.

So we would have a proof that this “law” works, at least in this situation. |n
physics, we often use laws long before there is any substantial proof that they are
correct. We use little bits of evidence, intuition, and guesswork and gradually
convince ourselves that X "must be” right. If X is attractive, we hold on to that
view until there is overwhelming evidence to the contrary.
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Calculate Variance of P(t)

<p,OP(s)>= [ duf” dv<n,t)n(s)>
v.4

<p,(Op(s)>= [ du [’ dvrs,,d(u-v)exp[-(t-u)/t-(s-v)/ 1]

....... if t > s the integral over u always gets a contribution from the delta-function so that this
expression then becomes

<p,(O)p(s)>= [~ dvTs, , exp[-(t+s-2v)/ 1] v5

=°£* reexpl-lt-sl /7]

so we see that p/?/(2M), where M is the mass of the Brownian particle is on one hand given by
2

<p" >=I't / (4M)
2M

On the other hand, we know that in classical physics this quantity is kT/2. Thus we obtain tt
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Probability distribution

't = 2MkT

Whenever this relation is satisfied, p has the right variance, MkT, and the right Maxwell-
Boltzmann probability distribution.

3 \3/2 2,
M ) L exp|—3p°/(2M)]

p(p) =

More generally, if we have a Hamiltonian, H(p,r), for the one-particle system, the
Maxwell-Boltzmann distribution takes the form

p(psr)=exp[-pH(p,r)]/Z, v.7

where, the the simplest case the Hamiltonian is
H(p,r) = p*/(2M) +U(r)

Maxwell and Boltzmann expected that, in appropriate circumstances, if they waited
long enough, a Hamiltonian system would get to equilibrium and they would end up
with a Maxwell-Boltzmann probability distribution

Question: Should we not be able to derive this distribution from classical mechanics
alone? Maybe we should have to assume that we must long enough to reach
equilibrium? Anything more?

risa o9fpeinething of the form v.7 is called by mathematicians a Gibbs measure and by physiessts a
Boltzmann distribution or often a Maxwell-Boltzmann distribution Whyv? Should we care?






Statistical and Hamiltonian Dynamics

We have that the equilibrium p=exp(-H)/Z. How can this arise from time dependence ¢
system?! One very important possible time-dependence is given by Hamiltonian mechanics

dq,, B JOH
dt P
dp,  JH
_-fkf-- N _r')r[,,_

The simplest case is a particle moving in a potential field with a Hamiltonian

H=p"/(2M) + U(r) and consequently equations of motion

P _ _gy
dt
{
dr o/ M

dt

The statistical mechanics of such situations is given by a probability density function
p(p,r.t) such that the probability of finding the particle in a volume element dp dr
about p,r at time tis p(p,r.t) dp dr. The next question is, what is the time-

Pirsa: 09100129
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Time Dependence of Dynamical systems:
A much more general problem

Instead of carrying around the variables p and r, let me do something with much
simpler formulas. I'm going to imagine solving the dynamical systems problem in which
there is a differential equation dX/dt=V(X(t),t) to get a solution X(t). | will have a
probability function p(x,t) dx which is the probability that the solution will be in the
interval dx about x. This is a probability because, when we start out the initial data is
not just one value of x but a probability distribution, given by p(x,0). So the situation at
a later time must be described by a probability distribution then as well. So what is the
time dependence of the probability distribution? One way to approach this problem is
to ask what does the distribution mean. Specifically, if we have some function g(X) of
the particle coordinates at time t, that function has an average at time t given by

jdx g(x) p(x.t). Naturally the average at time t + dt is-[dx g(x) p(x,t+dt). That same
average is obtained by taking the solution at time t+dt, which is

X(t+dt) =X(t)+V(X(t),t))dt v.7

and calculate its average using the probability distribution which is appropriate at the
earlier time, i.e. the average is | dx g(x+dtV(x,t)) p(x.t). Equate those two expressions for

the average
Pirsa: 09100129 J dx g(x) p(xt+dt) =de glx+dtV(xt)) p(xt) v.8 Page 4452
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Time Dependence of Dynamical systems:
A much more general problem

Instead of carrying around the variables p and r, let me do something with much
simpler formulas. I'm going to imagine solving the dynamical systems problem in which
there is a differential equation dX/dt=V(X(t),t) to get a solution X(t). | will have a
probability function p(x,t) dx which is the probability that the solution will be in the
interval dx about x. This is a probability because, when we start out the initial data is
not just one value of x but a probability distribution, given by p(x,0). So the situation at
a later time must be described by a probability distribution then as well. So what is the
time dependence of the probability distribution? One way to approach this problem is
to ask what does the distribution mean. Specifically, if we have some function g(X) of
the particle coordinates at time t, that function has an average at time t given by

jdx g(x) p(x.t). Naturally the average at time t + dt is'[dx g(x) p(x,t+dt). That same
average is obtained by taking the solution at time t+dt, which is

X(t+dt) =X(t)+V(X(t).t))dt v.7

and calculate its average using the probability distribution which is appropriate at the
earlier time, i.e. the average is | dx g(x+dtV(x,t)) p(x,t). Equate those two expressions for

the average
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Calculation Continued .....
I dx g(x) p(xt+dt) =J. dx g(x+dtV(xt)) p(x.t)

expand to first order in dt

_[ dx g(x) p(xt) +dt j dx g(x)op(xt) = _[ dx g(x) p(xt) + _[ dx dtV(x,t)[d«g(x)] p(x.t)
throw away the things that cancel against each other to get

J dx g(x)dp(xt) - _[ dx V(x,t)[0xg(x)] p(x.t) =0
integrate by parts on the right hand side, using the fact that p(x,t) vanishes at x=% infinity

J ax glanpixt) + e Vi) p(xa}=0

Notice that g(x) is arbitrary. If this left hand side is going to always to vanish, the { } must

vanish. We then conclude that dep(x,t) + dx [V(x,t) p(x,t)] =0. That's for one coordinate,
If there are lots of coordinates this equation reads
dp(x.t) + pla,t) Y (32,Vi) + Y Vidu pla,t) =0 v.9

J J
We call the second term on the left the divergence term. It describes the dilation of the
volume element by the changes in the x’s caused by the time development. The last term
is the direct result of the time-change in each coordinate X(t) Now we have the &eneml
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result for the time development of the probability density. We go look at the Hamiltonian






Calculation Continued .....
jdx g(x) p(x,t+dt) =I dx g(x+dtV(xt)) p(x.t)

expand to first order in dt

_[ dx g(x) p(xt) +dt ,[ dx g(x)op(xt) = _[ dx g(x) p(xt) + _[ dx dtV(x,t)[d«g(x)] p(x.t)
throw away the things that cancel against each other to get

,[ dx g(x)ap(x,t) - j dx V(x,t)[dxg(x)] p(xt) =0
integrate by parts on the right hand side, using the fact that p(x,t) vanishes at x=% infinity

J dx g(x)}{ap(x.t) + ox [V(xt) p(x.t)]}=0
Notice that g(x) is arbitrary. [f this left hand side is going to always to vanish, the { } must

vanish. We then conclude that dep(x,t) + dx [V(x,t) p(x,t)] =0. That's for one coordinate,
If there are lots of coordinates this equation reads

Ap(z.t) + p(x.t) Y (3, Vi) + Y Vjda, p(a,t) =0 v.9

J J
We call the second term on the left the divergence term. It describes the dilation of the
volume element by the changes in the x's caused by the time development. The last term
is the direct result of the time-change in each coordinate X(t) Now we have the &eneml
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result for the time development of the probability density. We go look at the Hamiltonian



