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Renormalization: a ==> 3a =a~ Wi{0} >Wi{u} Z =Z K =R(K)

Scale Invariance at the critical point: —=> K. =R(K,)
Temperature Deviation: K=K+t K=K+t~

if t=0 then t"=0

ordered region (t>0) goes into ordered region (t™>0)

disordered region goes into disordered region
if tis small,t"=bt.  b=(a"/a)* defines x. b can be found through a numerical calculation.

coherence length: £€=&patV 2d Ising has v=1; 3d has v=0.64....
&=¢ Soat¥ = Eoa (1)

so V=1/x

number of lattice sites: N =Q/a¢ N”=Q/a"™
N°/N=ad4/a™@ =(a"/a)™ A

Free energy: F = non-singular terms +Nf(t)= F'= non-singular terms +Nf(t’)

f() =f"t*
Specific heat:  C=d*F/dt’~ t*2? form of singularity determined by x

One can do many more roughly analogous calculations and compare with experiment and
numerical simulation. Everything works!

P 2" However notice that this is not a complete theory. It is a phenomenological theofy: Ve have
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Homework:

Add a term in Z; (h 0; ) to the weighting function, W, for the one dimensional Ising
Hamiltonian. Find the value of the average spin in the presence of a small magnetic field h.
Define the magnetic susceptibility as the derivative of the magnetization with respect to h at
fixed K. Show that this susceptibility diverges as K goes to infinity. Shows that it is
proportional to a sum of fluctuations in the magnetization.

The three-state Potts model is just like the Ising model except that its “spin” variable o
can take on three values =-1,0,1. It has w(o, oj+1) =K if the two variables are the

same and zero otherwise. Find the partition function and coherence length of the one
dimensional model. How does the renormalization work for ?

What is the critical temperature of the three-state Potts model on the square lattice in
two dimensions’
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Solution to Diffusion Equation Cannot be Carried
Backward in Time

The wave equation is (d:2 -dx2 )F =0

Its general solution is F(x,t)=G(x-ct)+H(x+ct)

This is a global solution. It enables you to look forward or back infinitely far in the future
or the past without losing accuracy. Find solution from F(x,0) =dx F(x,0) =1 for 0<x<1
and F(x,0) =dx F(x,0) =0 otherwise. Use ¢=2

A global solution to the diffusion equation is p(x,t)= J.dk exp[ikx-Ak?t] g(k)

with g(k)=jdx exp[-ikx] p(x,0)/(2rm) as initial data.

Small rapidly varying errors at t=0 will produce small errors for positive t and
huge errors for negative t. You cannot extrapolate backward in time. Information
gets lost as time goes forward.

Solve for p(x,0)=1 for 0<x<1 and p(x,0) =0 otherwise. Use A=2.Plot
solution for t=0,2,4. What happens for t= -2?

Boltzmann noted that equations of classical mechanics make sense if tis
replaced by —t. (In fact, it just replaces momenta, p, by -p.) But diffusion
equation has a solution which does not make sense. Where did we go from
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Higher Dimensions

Reason for putting many different calculations on a '
lattice is that the lattice provides a simplicity and ;

control not available in a continuum system. There g 3 Am—
is no ambiguity about how things very close to one
another behave, because things cannot get very close. Body-centered cubic

They are either at the same point or different points

So now | would like to talk about a random walk in a d-dimensional system by considerin
a system on a simple lattice constructed as in the picture. The lattice sites are given by
X =a(n1,n2,n3,...)/2 . The n's are integers. There are two possible kinds of assignments
for the n’s: Either they are all even e.g. x =2a(0,2,-4,...)/2 or they are all odd, for
example x =a(1,3,-1,...)/2. If all hopping occurs from one site to a nearest neighbor
site, the hops are through one of 29 vectors of the form {.= a(mi,m2, m3, ....)/2, where
each of the m’s have magnitude one, but different signs for example a(1,-1,-1, ...). We
use a lattice constant, a, which is twice as big as the one shown in the picture.

We then choose to describe the system by saying that in each step, the coordinate hops
through one of the nearest neighbor vectors, ¢, , which one being choosen at random.
This particular choice makes the entire coordinate, X, have components which behave

entirely independently of one another, and exactly the same as the one-dimensional
Prsa 091002 oordinate we have treated up to now. e
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Gaussian Properties
Generating Function
A probability

Discrete
A generating Function
A probability
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Hopping: From Discrete to Continuous

We are going to be spending some time talking about the physics of a particle moving
in a solid. Often this motion occurs as a set of discrete hops. The particle gets stuck
someplace, sits for a while, acquires some energy from around it, hops free, gets
caught in some trap, and then sits for a while. I'm going to describe two
mathematical idealizations of this motion: discrete hopping on a lattice and
continuous random motion.

One point is to see the difference between the two different topologies represented
by a continuous and a discrete system. One often approximates one by the other and
lots of modern physics and math is devoted to figuring out what is gained and lost by
going up and back.

There is a fine tradition to this. Boltzmann, one of the inventors of statistical
mechanics, liked to do discrete calculations. So he often represented things which are
quite continuous, like the energy of a classical particle by discrete approximations,

A little later, Planck and Einstein had to figure out the quantum theory of radiation,
which had been thought to be continuous, in terms of discrete photons. So we shall
compare continuous and discrete theories of hopping.
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Hopping On a Lattice

A lattice is a group of sites arranged in a * & & @ & & o
regular pattern. One way of doing this can be e o o o o o o o
labeled by giving the position r=(n1,nz,....)a
where the n’s are integers. If we include all
possible values of these integers, the
particular lattice generated is called is called ® o o o o o o o
the simple hypercubic lattice.We show a e e e e
picture of this lattice in two dimensions.

This section is devoted to developing the concept of a random walk.We could do
this in any number of dimensions. However, we shall approach it is the simplest
possible way by first working it all out in one dimension and then stating results
for higher dimensions A random walk is a stepping through space in which the
successive steps occur at times t=M 1. At any given time, the position is X(t),
which lies on one of the a lattice sites, x=an, where n is an integer. In one step of
motion one progress from X(t) to X(t+ 1) = X(t)+ aoj, where o;j is picked at
random from among the two possible nearest neighbor hops along the lattice, 0
=1 or 0;= -1. Thus, < g; >=0, but of course the average its square is non-zero and
is given by < ;2> =1. We assume that we start at zero, so that our times t =j T.
It is not accidental that we express the random walk in the same language as the

P2 098fi9g model. We do this to emphasize that geometric problems can often be  Pee 3
oxnrecced in aleebhraic farm and vice verca












From one step to many steps

We start from the two statements that <g; >=0 and that <g; Ok >=9x

On the average, on each step the walker goes left as much as right. and thus as a result ti
average displacement of the entire walk is zero

M
< X(t) >= 32«: a, >= ()

px iv.1

However, of course the mean squared displacement is not zero, since

M M
< X(t)? >=a° Z < 0,0, >= a 2 O, = a‘Mm iv.2

J.k=1 J k=1

Our statement is the same that in a zero field uncoupled Ising system, the maximum
magnetization is proportional to the number of spins, but the typical magnetization is

only proportional to the square root of that number. Typical fluctuations are much,
much smaller than maximum deviations.

We can see this fact by noting that the root mean square average of X?is a VM,
which is the typical end-to-end distance of this random walk. This distance is is
much smaller than the maximum distance which would be covered were all the

prsaosiorzs  SLEPS tO go in the same direction. In that case we would have had a distapge.gM.
Thus, a random walk does not, in net, cover much ground.









Gaussian Properties of Continuous Random Walk

In the continuous case, X(t) is composed of a sum, or rather integral, of
many pieces which are uncorrelated with one another. According to the
central limit theorem, such a sum or integral is a Gaussian random
variable. Hence, we know everything there is to know about it. Its average
is zero and its variance is a’t/t . Consequently, it has a probability

distribution
/2

e—.t'rr’le’l'“ |V-9

< p(X(t) = x) >=

2na‘t

Now we have said everything there is to say about the continuous random walk.
As an extra we can exhibit the generating function for this walk:

< expligX(t)] >= g9 at/(21)
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Higher Dimensions

Reason for putting many different calculations on a |

lattice is that the lattice provides a simplicity and i =
control not available in a continuum system. There o amm—

is no ambiguity about how things very close to one

another behave, because things cannot get very close. Body-centered cubic

They are either at the same point or different points

So now | would like to talk about a random walk in a d-dimensional system by considerin
a system on a simple lattice constructed as in the picture. The lattice sites are given by

= a(n1,n2, n3,....)/2 . The n’s are integers. There are two possible kinds of assignments
for the n’s: Either they are all even e.g. x =2a(0,2,-4,....)/2 or they are all odd, for
example x =a(1,3,-1,...)/2. If all hopping occurs from one site to a nearest neighbor
site, the hops are through one of 29 vectors of the form {.= a(m1,m2, m3, ....)/2, where
each of the m’s have magnitude one, but different signs for example a(1,-1,-1, ...). We
use a lattice constant, a, which is twice as big as the one shown in the picture.

We then choose to describe the system by saying that in each step, the coordinate hops
through one of the nearest neighbor vectors, ¢, , which one being choosen at random.
This particular choice makes the entire coordinate, X, have components which behave
entirely independently of one another, and exactly the same as the one-dimensional

Prea 091002 oordinate we have treated up to now. fle
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Higher Dimensions.....continued

We denote the probability density of this d-dimensional case by a superscript d and
the one for the previous one-dimensional case of by a superscript 1. As an additional
difference, the d-dimensional object will be a function of space and time rather than n
and M. After a while, we shall focus entirely upon the higher dimensional case and
therefore drop the superscripts. We have

Pan M+ — H l”n

(l—l
However, we can jump directly to the answer for the continuum case, If the

probability distribution for the discrete case is simply the product of the one-
dimensional distributions so must be the continuum distribution. The one-dimension:
equation answer in eq iv.9 was
1/2 iv9

e—x“}'r,o‘(?_a:t}
2ra‘t

< p(X(t) = x) >= (

so that the answer in d dimensions must be

d/2
T e_r*'rf{z.;-’r)
2ra‘t

Here the bold faced auantities are vectors viz P2 = x2 4y +

< p(R(t) =r) >=
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Diffusion Process

Diffusion here is a result of a conservation law: a global statement that the total
amount of something is unchanged by the time development of the system. dQ/dt=0. In
our case the Q in question is the total probability of finding the diffusing particle
someplace. Diffusion has a second element: locality. The local amount of Q, called p,
changes because things flow into and out of a region of space. The flow is called a
current, j, and the conservation law is written as

ap : conservation law
pinst) . J(r,t)=0
d
The time derivative of the density is produced by a divergence of the curent flowing into :
point. On a one dimension lattice, the rule takes the simpler form:

Pama = Pam = "n—VZ,M B "m]fZ.M conservation law

This equation says that the change of probability over one time step is produced by the
flow of probability in from the left minus the flow out to the right.

Here, I'm going to visualize a situation once more in which we have a discrete time
coordinate M and a discrete space coordinate, n. | shall assume that the initial
probabilities is sufficiently smooth so that even and odd n-values have rather similar
occupation probabilities so that we can get away with statement like

= cssos PrMal = Py = 0P p / oM The conservation law then takes the form
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dt
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)
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Diffusion Process

Diffusion here is a result of a conservation law: a global statement that the total
amount of something is unchanged by the time development of the system. dQ/dt=0.In
our case the Q in question is the total probability of finding the diffusing particle
someplace. Diffusion has a second element: locality. The local amount of Q, called p,
changes because things flow into and out of a region of space. The flow is called a
current, j, and the conservation law is written as

: conservation law
PG v j(r,t)=0
dt
The time derivative of the density is produced by a divergence of the curent flowing into :

point. On a one dimension lattice, the rule takes the simpler form:
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This equation says that the change of probability over one time step is produced by the
flow of probability in from the left minus the flow out to the right.

Here, I'm going to visualize a situation once more in which we have a discrete time
coordinate M and a discrete space coordinate, n. | shall assume that the initial
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The Current

We do not have a full statement of the of what is happening until we can specify the
current. An approximate definition of a current in a conservation law is called a
constitutive equation. We now write this down.

Our hopping model says that a l,+12.m is given a contribution +1 when the site at n is
occupied at time M, and on is equal to +1. On the other hand it is given a

contribution -1 when the site at n +1 is occupied at time M, and On., is equal to -1.
Since there is a probability 1/2 for each of the o—-events the value of | is

/

heiitom = P ~ P} £ 2 constitutive equation

Once again, we write the difference in terms of a derivative, getting

bom =00 m / dN) / 2 constitutive equation
This can then be combined with the conservation law to give the diffusion equation

o/ M =0p,/dN°/2
which can be written in dimensional form as
9 78 e .
ol A B diffusion equation
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Diffusion Equation

This equation is one of several equations describing the slow transport of physical
quantities from one part of the system to another. When there is slow variation is
space, the conservation law guarantees that the rate of change in time will also be
slow. In fact this is part of a general principle which permits only slow changes as a
result of a conservation law. This general principle is much used in the context of
quantum field theory and condensed matter physics. The idea is connected with the
construction of the kind of particle known as a Nambu-Goldstone boson, named for
two contemporary physicists, my Chicago colleague Yoichiro Nambu and the MIT
theorist Jeffrey Goldstone.
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Solution to Diffusion Equation Cannot be Carried
Backward in Time

The wave equation is (3.2 -dx* )F = 0
Its general solution is F(x,t)=G(x-ct)+H(x+ct)
This is a global solution. It enables you to look forward or back infinitely far in the future

or the past without losing accuracy. Find solution from F(x,0) =dx F(x,0) =1 for 0<x<1
and F(x,0) =dx F(x,0) =0 otherwise. Use ¢=2

A global solution to the diffusion equation is p(x,t)= J.dk exp[ikx-Ak?*t] g(k)

with g(k)=J‘dx exp[-ikx] p(x,0)/(2mm) as initial data.

Small rapidly varying errors at t=0 will produce small errors for positive t and
huge errors for negative t. You cannot extrapolate backward in time. Information
gets lost as time goes forward.

Solve for p(x,0)=1 for 0<x<1 and p(x,0) =0 otherwise. Use A=2.Plot
solution for t=0,2,4. What happens for t= -2?

Boltzmann noted that equations of classical mechanics make sense if t is
replaced by —t. (In fact, it just replaces momenta, p, by -p.) But diffusion
equation has a solution which does not make sense. Where did we go from
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