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Nearest neighbor structure

High Temperature Expansion

Bonds=exp(KOO") connect nearest neighbors
Bond=cosh K +00" sinh K =cosh K[1+ 00" tanh K]

Z=(2 cosh K cosh K)N < products of [1+ 00" tanh K] >
= (2 cosh K cosh K)¥ sum < products of (tanh K)™ >

LU

]
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for nonzero terms, when there are N sites

To get a non-zero value each spin must
appear on a even number of bonds.You then
get the lattice covered by closed polygons.

With a lot of hard work one can calculate a
series up to ten or even twenty terms long
and estimate behavior of thermodynamic
functions from these seres
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Low Temperature Expansion

Nearest neighbor structure
Bonds=exp(KOO") =€ 050" +e*00.-0"
Bond =eX[dg.0° "'E_IKBU.—U']

We draw these bonds differently from 4 "l"

the high T bonds. We draw them

T..

rotated 90 degrees in comparison to

the other bonds.

note e-2K

Z=2(eX)N < products of [0g,0" +e-*dq.-o] > = tanh K
= 2e’NK sum < products of (e-Z)M >
for nonzero terms

e[v]e o[ [e]e]e
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To get a non-zero term, assign a value to one
spin. Then every time you cross a red line,
change the spin-value to the opposite. Your
valid pictures become a series of closed red
polygons.

With a lot of hard work one can calculate a
series up to ten or even twenty terms long
and estimate behavior of thermodynamic
functions from these seres
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High Temperature Expansion

Nearest neighbor structure
Bonds=exp(KOO") connect nearest neighbors
Bond=cosh K +00” sinh K =cosh K[1+ 00" tanh K]

Z=(2 cosh K cosh K)N < products of [1+ 00" tanh K] >
= (2 cosh K cosh K)N sum < products of (tanh K)M >
for nonzero terms, when there are N sites

S O B O Gl To get a non-zero value each spin must
appear on a even number of bonds.You then

o E e o T—T 1 get the lattice covered by closed polygons.

¢ *7T 9 With a lot of hard work one can calculate a

e o o o 0 @ o 0o series up to ten or even twenty terms long
and estimate behavior of thermodynamic

e o o 0 0—0—0—0

functions from these seres
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Low Temperature Expansion

Nearest neighbor structure
Bonds=exp(KoO") =e 800" +e 00,0
Bond =EK[60_U‘ +E'1‘K60’,_U']

We draw these bonds differently from 4 "l"

the high T bonds. We draw them

T..

rotated 90 degrees in comparison to

the other bonds.

note e 2K

Z=2(eX)N < products of [dg,0" +e-*V¢.-o] > = tanh K
= 2e’NK sum < products of (e-Z)M >
for nonzero terms

.B. ® .ITl. L
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To get a non-zero term, assign a value to one
spin. Then every time you cross a red line,
change the spin-value to the opposite. Your
valid pictures become a series of closed red
polygons.

With a lot of hard work one can calculate a
series up to ten or even twenty terms long
and estimate behavior of thermodynamic
functions from these seres
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Low Temperature Expansion

Nearest neighbor structure
Bonds=exp(KOO") =€ d¢.0" +e 00,0
Bond =e*[dg.0- +e-*dg.-07]

We draw these bonds differently from
the high T bonds. We draw them
rotated 90 degrees in comparison to
the other bonds.

By

note e 2K
Z=2(eX)N < products of [0g,0" +e-Hdg.-o7] > = tanh K
= 2e’NK sum < products of (e-Z)M >
for nonzero terms
o © © ole o ole To get a non-zero term, assign a value to one
— spin. Then every time you cross a red line,
® ‘ ® \ ¢ o 0 I ® \ e change the spin-value to the opposite. Your
e valid pictures become a series of closed red
® o o o0 o oo
polygons.
e o o oo o oo With a lot of hard work one can calculate a
series up to ten or even twenty terms long
® o o o o o o o

and estimate behavior of thermodynamic

functions from these seres
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Dual |ty Hendrik Kramers and Gregory Wannier

Since the two expressions both give Z we get a relationship beteen a high
temperature theory of Z and a low temperature one. We write our sum of
products as exp[Nf(.)] where the . can be either exp(-2K) or tanh K depending
on which expansion we are going to use. We then have

In Z = N[K] +N fl[exp(-2K)] = N In [ 2 cosh K cosh K] +N f[tanh K]

Let us assume that there is only one singularity in In Z as K goes through the
interval between zero and infinity. Since tanh K is an increasing function of K and
exp(-2K) is a decreasing function of K, the singularity must be at the point
where the two things are equal

tanh K. = exp(-2K.).

After a little algebra we get sinh 2K.=1

which is the criticality condition for two-dimensional Ising model. This
criticality condition was later verified by Onsager’s exact solution of the 2d
ising model.

Further we might notice that In Z must have a form of singularity in which the
singular part of the partition function is even about this point.
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Specific Heat = d? In Z /d T?

Further we might notice that in two dimensions In Z must have a form of singularity
which is even about the critical value of the coupling.

LE I
Rb, CoF,
: T, 710097 K
&
3
©

TiK)

Figure 7. Variation of the magnetic specific heat, as a function
of temperature for Rb_CoF . The solid points (-) are

experimental results of optical birefringence measurements
shown previously to be proportional to the magnetic specific
heat. The solid line is the exact Onsager sclution for the
two-dimensional Ising model with amplitude and critical
temperature adjusted to fit the data, and a small constant
background term subtracted. After Ref. 22.
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22.P.Nordblad, D.P. Belanger. A.R. King,V. Jaccarino and H. lkeda., Phys. Rev. B 28.278 (1983).
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Duality Behavior

The structure of duality behavior depends upon both the lattice structure and th
symmetry group of the interactions on that lattice. Many of the deepest results ¢
string theory, gauge theories, and modern mathematics similarly deal with the
simultaneous effect of internal symmetries, and the symmetries of space, or of
space-time. Once again the condensed matter gives us a chance to work out
things which show up in a more complicated form in other situations.

For example one can consider interactions on plaquettes like
1

4 3

Here the basic variables live on the bonds connecting nearest neighbor lattice
sites, as for example, Ising variables 023 034 and the basic interaction is on a
look which goes around a unit square K 02 023 034 04 . On a three dimensional
lattice a set of interactions like this
a. has a fundamental gauge symmetry (symmetry operation at every point) of the
form O34 goes into U3 O34 Y4 This is a symmetry operation since the W's cancel in
each plaquette interaction.

Page 26/49
b. has a phase transition at sufficiently high value of K in three dimensions






Pirsa: 09100127

Duality Behavior

The structure of duality behavior depends upon both the lattice structure and th
symmetry group of the interactions on that lattice. Many of the deepest results ¢
string theory, gauge theories, and modern mathematics similarly deal with the
simultaneous effect of internal symmetries, and the symmetries of space, or of
space-time. Once again the condensed matter gives us a chance to work out
things which show up in a more complicated form in other situations.

For example one can consider interactions on plaquettes like
1

4 3

Here the basic variables live on the bonds connecting nearest neighbor lattice
sites, as for example, Ising variables 023 034 and the basic interaction is on a
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b. has a phase transition at sufficiently high value of K in three dimensions
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Duality Behavior

The structure of duality behavior depends upon both the lattice structure and th
symmetry group of the interactions on that lattice. Many of the deepest results ¢
string theory, gauge theories, and modern mathematics similarly deal with the
simultaneous effect of internal symmetries, and the symmetries of space, or of
space-time. Once again the condensed matter gives us a chance to work out
things which show up in a more complicated form in other situations.

For example one can consider interactions on plaquettes like
1

4 3

Here the basic variables live on the bonds connecting nearest neighbor lattice
sites, as for example, Ising variables 023 034 and the basic interaction is on a
look which goes around a unit square K 02 023 034 O41 . On a three dimensional
lattice a set of interactions like this
a. has a fundamental gauge symmetry (symmetry operation at every point) of the
form O34 goes into 3 O34 M4 This is a symmetry operation since the Y's cancel in
each plaquette interaction.
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b. has a phase transition at sufficiently high value of K in three dimensions
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How does one know!?

Because this plaquette model is dual to the three dimensional Ising model an
has a critical coupling, K. = D(Kc"").

The plaquette construction and gauge symmetry is due to K. Wilson.

The duality argument is due to . Wegner

electromagnetic argument: basic variable is link =exp [ie ,[ dxuyAy ] where
the integral goes from one lattice site to its neighbor. Then, a gauge
transform

gives A, goes into Ay + dy/A and link goes into exp[-ie/A]link exp[ie/A] where
the two A’s are evaluated at the two ends of the t=link. As in the case
described above, A product of four link varaibles has a gauge symmetry, in this
case the gauge symmetry of electromagnetism.

But let’s get back to the Ising model.




Renormalization for d-2 Ising model

A. Pokrovskii & A. Patashinskii, Ben Widom, myself, Kenneth Wilson.

Z=Trace(q} exp(Wk{0})

nagine that each box in the picture has inita

ariable called UR, where the R’s are a set of new
ttice sites with nearest neighbor separation 3a. Each
ew variable is tied to an old ones via a
snormalization matrix G{l, 0}= [] g(Ur.{0})

there g couples the Pgr to the

I's in the corresponding box. We take each g to
e 1 and define g so that,

2, g(u{s}) =1. For example, u might be fewer degrees of freedom

lefined to be an Ising variable with the “ o sy
. . produces “block renormalization
ame sign as the sum of O’s in its box.

Now we are ready. Define

exp(W'{u})=Trace(o) G{H, 0} exp(Wk{T})

Z=Traceyy) exp(W'{H})

f we could ask our fairy god-mother what we wished for now it would be that we

Pirsa: (BlOOl

:ameé Back to the same problem as we had at the beginning:W " {u}=Wg-{u}
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Renormalization for d-2 Ising model
A. Pokrovskii & A. Patashinskii, Ben Widom, myself, Kenneth Wilson.

Z=Trace(q} exp(Wk{0})

nagine that each box in the picture has inita

wriable called Hgr, where the R’s are a set of new
ttice sites with nearest neighbor separation 3a. Each
ew variable is tied to an old ones via a

anormalization matrix G{, 0}= [ g(Ur.{0})
there g couples the Ugr to the

I's in the corresponding box. We take each Ugr to
e 1 and define g so that,

Ep g(u.{s}) =1. For example, 4 might be
lefined to be an Ising variable with the

ame sign as the sum of O’s in its box.
Now we are ready. Define

exp(W{u})=Trace(s) G{H, O} exp(Wk{T})

Z=Tracey,) exp(W'{H})

f we could ask our fairy god-mother what we wished for now it would be that we
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:ameé Back to the same problem as we had at the beginning:W {u}=Wx{u}

fewer degrees of freedom
produces “block renormalization™
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Renormalization: a —-> 3a =a”~ Wi{o} >Wi{u} Z ' =Z K =R(K)

Scale Invariance at the critical point: —=> K. =R(K)

Temperature Deviation: K=K+t K'=Kc+t”

if t=0 then t"=0

ordered region (t>0) goes into ordered region (t™>0)

disordered region goes into disordered region

if tis small,t"=bt.  b=(a"/a)* defines x. b can be found through a numerical calculation.

coherence length: £€=&patV 2d Ising has v=1; 3d has v=0.64....
&=¢ Saty = Eoa ()

so V=1/x

number of lattice sites: N =Q/a¢ N”=Q/a"™
N°/N=ad4/a™@ =(a’/a)™

Free energy: F = non-singular terms +Nf(t)= F"= non-singular terms +Nf(t’)

) = fO e
Specific heat:  C=d*F/dt’~ t*? form of singularity determined by x

One can do many more roughly analogous calculations and compare with experiment and
numerical simulation. Everything works!

e "However notice that this is not a complete theory. It is a phenomenological theo¥§.*V¥e have
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Renormalization for d-2 Ising model

A. Pokrovskii & A. Patashinskii, Ben Widom, myself, Kenneth Wilson.
Z=Trace(q} exp(Wk{0})

nagine that each box in the picture has in it a

ariable called UR, where the R's are a set of new
ttice sites with nearest neighbor separation 3a. Each
ew variable is tied to an old ones via a
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e 1 and define g so that,
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:amé Back to the same problem as we had at the beginning:W {u}=Wx{u}
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Renormalization: @ —=> 3a =a”~ Wi{0o} >Wi{u} Z"=Z K =R(K)

Scale Invariance at the critical point: > K. =R(K,)

Temperature Deviation: K=K+t K=K+t~

if t=0 then t'=0

ordered region (t>0) goes into ordered region (t>0)

disordered region goes into disordered region

if tis small,t"=bt.  b=(a"/a)* defines x. b can be found through a numerical calculation.

coherence length: £€=&patV 2d Ising has v=1; 3d has v=0.64....
&=¢ Soat¥ = Eoa ()

so V=1/x

number of lattice sites: N =Q/a¢ N”=Q/a™
N"/N=ad4/a™@ =(a’/a)™

Free energy: F = non-singular terms +Nf(t)= F'= non-singular terms +Nf(t’)

(Y =0 o
Specific heat:  C=d?F/dt’~ t*? form of singularity determined by x

One can do many more roughly analogous calculations and compare with experiment and
numerical simulation. Everything works!

P 2" However notice that this is not a complete theory. It is a phenomenological theot§."¥We have
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