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More is the Same

Phase Transitions and Mean Field Theories
Leo P Kadanoff

email:leop@UChicago.edu

Abstract

This talk summarizes concepts derived from the study of phase
transitions mostly within condensed matter physics. In its
original form, the talk was aimed equally at condensed matter
physicists and philosophers of science. The latter group are
particularly interested in the logical structure of science. This
talk bears some traces of its history. The key technical ideas
go under the names of 'singularity”, "order parameter”,
""mean field theory"”, " variational method", and ""correlation
length”. The key ideas here go under the names of “mean field
theory”,“phase transitions”,“universality”, “variational
smczNethod”, and “scaling”. page 2



Issues

Matter exists in different
phases, different states of
matter with qualitatively
different properties: These
phases are interesting in
modern physics and
provocative to modern
philosophy. For example, no
phase transition can ever
occur in a finite system.
Thus, in some sense phase
transitions are not products
of the finite world but of the
human imagination.
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Phase Diagram for Water
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Dual Couplings

—H — Rl}l + RTZ

(4.22)

The quantity x is said to be the dual of K. For a simpler notation, we
call this function by another name so that the dual of K is D(K) This
name implies in part that the function D(K) has the property that if it
is applied twice that you get precisely the same thing once more:

D(D(K))=K  or D(K)=D(K)
How would | find the function D(K)?

K= D(K)=-[In (tanh K)]/2  Ko= [In( sinh 2K)]/2

This function has the property that when K
is strong its dual is weak and vice versa. This
property has proven to be very important in
both statistical physics and particle physics.
Often we know both a basic model and its
dual. Often models are hard to solve in
strong coupling. But the dual models have
weak coupling when the basic model has
strong coupling. So then we get an indirect
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Solution of the one-dimensional Ising model

From equation 4.20, we find that the partition function of the one-dimensional Ising model is

Z = trace (eX1 + e %¥n)®

But the trace is a sum over eigenvalues and the eigenvalues of 7,
are plus or minus one. Thus, the answer is:

Z = (2cosh K)" + (2sinh K)V (4.25)

If N is very large, the first term is much larger than the second
and thus in this limit of large system size:

-8F =InZ = N In(2 cosh K) (4.26)

What quantum mechanics problem have we solved?
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More about quantum from the Long Chain

We should be able to say more about quantum problems based upon the analysis of
the long chain. For example let us imagine that we wish to calculate the average of
some quantum operator, X(g), which happens to be diagonal in the g-representation.
The text book goes through a long song and dance to prove a rather obvious result.
You have seen that the trace in equation 4.10 pushes us into a sum over energy

states, and if N is very large that sum reduces to a projection onto the ground state

of the system. Specifically,

N
Z = trace, trace,, ... trace, erpgn'qu,q_l__ 1)) (4.10)
I

becomes Z=exp(-T€p)

So if we insert an X, for any any operator X, in that sum the result should give what happen
to that X in the ground state, specifically

(1/Z) Trace (g exp[W{g}] X= <0| X(q) |0>

In this way, we can use statistical mechanics to calculate the average of any operator in the
ground state. If we do not take N to infinity, we can do the corresponding calculation to
calculate the average of any operator at a inverse temperature (53— value) equal to N .

B)( playing with the times in an appropriate fashion, we can even calculate time-dependent
3
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correlation functions in the ground state or in a finite-temperature state.



Statistical Correlations in a Long Chain

We should be able lots about the statistical mechanics of a the long chain with Ising
style interactions. For example, let us calculate the average of the jth spin on a long
chain or the correlations among the spins in the chain. Start from

N
Z =Trexp[ EM Ko,.0,]
N
<o, >=(1/2)Tro, exp[ 2J_1Kcrj”aj]
<0,0,.,>=1/2Z)Tro,0o,., exp| EL Koj,0o,]

Here Tr means “sum over all the N spin-values”. We use periodic boundary conditions. In
this equation all the O’s are numbers, and they commute with each other.

We can make the calculation easier by replacing all the couplings by their expressions in
terms of Pauli spins matrices giving these three calculations as, first,

N
Z=tracer I_I exp (Eo * -Ii'n) = tracer exp[N (E}, - RT1)]
=1
= (2 cosh K)N+(2 sinh K)N = (2 cosh K)N

The = is an approximate equality which holds for large N. Note that in this limit the
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term with eigenvalue of T1 =1 dominates because the dual coupling is positive.
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Statistical Correlations in a Long Chain

We should be able lots about the statistical mechanics of a the long chain with Ising
style interactions. For example, let us calculate the average of the jth spin on a long
chain or the correlations among the spins in the chain. Start from

N
Z = Tr exp[ 21-1 Ko ,.0)]
N
<o, >=(1/2)Tro, exp[ 21=1K()'J+TOJ]
<o,0,., >=(/2)Tro,0,., exp| EL Ko,.0,]

Here Tr means “sum over all the N spin-values”. We use periodic boundary conditions. In
this equation all the 0’s are numbers, and they commute with each other.

We can make the calculation easier by replacing all the couplings by their expressions in
terms of Pauli spins matrices giving these three calculations as, first,

N
Z=tracer I_I exp (Ea ¥ RT1) = tracer exp[N (iZo + —Ii'n)]
=1
= (2 cosh K)N+(2 sinh K)N = (2 cosh K)N

The = is an approximate equality which holds for large N. Note that in this limit the
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term with eigenvalue of T1 =1 dominates because the dual coupling is positive.



Average magnetization in a Long Chain

We know the answer: the system has full symmetry between spin up and spin

down so that the average magnetization must be zero. Nonetheless, let’s
calculate

Z<0> = tracer {exp [-H T(-7)] T3 exp [-H T(N-j+17)] }
Since we can rearrange terms under a trace, as trace (ab)=trace (ba), this
expression simplifies to

= tracer { T3 exp [-H TN] }= tracer { T3 exp [-(Ko+K T1N] }

To evaluate the last expression we must take diagonal matrix elements of t: between

eigenstates of 1.. Both such matrix elements are zero. why? Because T3 acts to change the
value of T1so that T3 |[T1=1> = |T1=—1> so that <T1=1| T3 |T1=1> = <Ty=1| |T1=—1>=0.
Therefore the entire result is zero and the average has the value zero, as expected.

<07 =0

At zero magnetic field, the magnetization of the one-dimensional Ising model is zero.
Thus, this Ising model has no ordered state. In fact no one-dimensional system with

finite interactions has one. This model is always in the disordered phase at all finite
temperatures.
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Correlations in Large N limit

Let N be large. Z simplifies to Z = exp(NK, +NK) since the T1=1 term dominates the trace
We start from™

Z <0i0j+>= tracer {e V"M 13 13 e™MIH}  for large N
* Note how the ordering in space converts into an ordering in time.
Since we can rearrange terms under a trace, as trace (ab)=trace (ba), this expression simplifies to

(tracer ™) <0|0+>= tracer {e™H T3e™ T3}, so that

The Ko term is the same on both sides of the equation. It cancels.

For large N, the T1 =1 term dominates both traces. Since the effect of
T. is to change the eigenvalue of T, this result is

exp[EN] <00+ >= {exp[EN] exp[-2 Er] }, forlarge N Consequently

<00j+r>= exp[-2 Er] , forlarge N iii. 7

The result is that correlations fall off exponentially with distance, with the
typical falloff distance, denoted as § . being the distance between lattice
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Correlations in Large N limit

Let N be large. Z simplifies to Z = exp(NK;, +NK) since the T1=1 term dominates the trace
We start from™

Z <0i0j+>= tracer {e ¥ 13e™ 13 e™*H}  for large N
* Note how the ordering in space converts into an ordering in time.
Since we can rearrange terms under a trace, as trace (ab)=trace (ba), this expression simplifies to

(tracer e™) <0;0j+~>= tracer {e™" T3 ™ T3}, so that

The Ko term is the same on both sides of the equation. It cancels.

For large N, the T1 =1 term dominates both traces. Since the effect of
T: is to change the eigenvalue of 1, this result is

exp[RN] <O0j+>= {exp[EN] exp[-2 Er] }, forlargeN Consequently

<0i0j+r>= exp[-2 Er] , forlarge N iii. 7

The result is that correlations fall off exponentially with distance, with the
typical falloff distance, denoted as § . being the distance between lattice
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Correlation Length

<00, >=expl| -2rK) =exp (—arlg)
Here ar is distance between the sites of the two spins.

The result is that correlations fall off exponentially with distance,
with the typical falloff distance, denoted as &, being the distance
between lattice points (usually called a) times 1!(2D(K))=1!(2T().
This falloff distance is very important in field theory, particle
physics, and phase transition theory. In the latter context it is
called the coherence length. It is also called the Yukawa distance
because it first came up in Hideki Yukjawa's description of
mesons. Here, in the one dimensional Ising model, we have a
very large coherence length for large K. Specifically

1/(2K) =&/a — exp(2K)/2 as K — oo

while is very small in the opposite limit of small K.

(/a— 1/(—In(2K))as K — 0 Hideki Yukawa

Large correlation lengths, or equivalently small masses, play an important role in statistical
and particle physics since they indicate a near-by phase transition or change in behavior.

"2 correlation length= a/[2D(K)] =a/(2K)









Correlation Length

<66, >=exp(—2rK)  =exp (-arft)
Here ar is distance between the sites of the two spins.

The result is that correlations fall off exponentially with distance,
with the typical falloff distance, denoted as &, being the distance
between lattice points (usually called a) times 1/(2D(K))=1!(2R).
This falloff distance is very important in field theory, particle
physics, and phase transition theory. In the latter context it is
called the coherence length. It is also called the Yukawa distance
because it first came up in Hideki Yukjawa's description of
mesons. Here, in the one dimensional Ising model, we have a
very large coherence length for large K. Specifically

1/(2K) =&/a — exp(2K)/2 as K — oo

while is very small in the opposite limit of small K.

E/a—1/(—In(2K))as K — 0 Hideki Yukawa

Large correlation lengths, or equivalently small masses, play an important role in statistical
and particle physics since they indicate a near-by phase transition or change in behavior.

"2 correlation length= a/[2D(K)] =a/(2K)



BlochWallsin 1 d

In the Ising model at large values of the coupling, K, the spins tend to line up.

RRRRRRARARRRRARARARARRANAY

However, with a cost in probability exp(-2K) a whole region might flip its
spins, producing a defect called a Bloch wall

et NN

This kind of defect produces the decay of correlations in the
Ising model at low temperatures. In any long Ising chain, many
such defects will be randomly placed and ruin any possibility
of correlations over infinitely long distances.

This is the simplest example of what is called a topological excitation, a defect
which breaks the ordering in the system by separating two regions with

different kinds of order. Since ordering is crucial in many situations, so are
topological excitations.

Notice that, at low temperatures, this kind of excitation is much more likely than a
rirsa: oencorzs Simple flip of a single spin. The wall costs a factor of exp(-K); the flip costs exp(2K).
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Renormalization for 1D ising,

following ideas of Kenneth Wilson, this calculation is due to David Nelson and myself

Z = Z exp(Wk{o}) = Z exp(Koy02 + Kosog + - -+)
01,09, .09,
Rearrange calculation: Rename spins separated by two lattice sites: let H1=071; H2=073,
H3=0s, ....; and sum over every other spin, 02, 04......

= Z Z exp(Kpo2 + Koapz +---) = Z exp(w'{p})

Hi:H2. " 02,04, Hy-H2. "
Note that sum over 07, O4.... generates only nearest neighbor interactions for
the Y’s
w{u}=const + K" Yy g2+ K" p2 g3 + ...

K™ describes same system as before, with a new separation between lattice sites,
which is twice as big as the old separation. Since the physical system is the

same, physical quantities like the correlation length and the entropy are
unchanged, but their description in terms of couplings and lattice constants has
changed. In particular, the new lattice spacing is a° =2a, but the correlation length
is exactly the same §” = €. Since we know that the correlation length is given by

£ = a/[2D(K)], we know that the new coupling obeys a/[2D(K)] = a”/[2D(K")]
we find that the new coupling obeys D(K") = 2 D(K) before we do any detailed

rrsa: e@A@rmMalization calculations. Since D is a decreasing function of K we know that rage ezes
the new, renormalized, coupling is smaller than the old one.









Ising Model in d=2

H”-l} = K Z g,.0«+ h Z o, nn indicates a sum over

rri

Or=%1 , ,
r nearest neighboirs

square lattice

e B e Onsager calculated
partition function and

. S e eesne phase transition for this
situation

If“\. '.?\I If’ :

_ o / Nearest neighbor structure
. . . s's are nearest neighbors to r
\8) P, \3) Bonds=exp(KOO ") connect

nearest neighbors
() i?) ()
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