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Abstract: Physicists have been working for banks and hedge funds on applied problems in finance for more than two decades, and recently have
doing academic research as well. This talk will survey academic research by physicists and contrast it with mainstream economics. | will argue that
the difference comes not from the application of aternative techniques or new mathematics, but rather from fundamental differences in what
guestions are considered interesting and how one should go about solving them. Thiswill be illustrated with a simple model for how systemic risks
and extreme price movements are generated by the use of leverage (buying with credit). The current financial crisis illustrates that the economy is
indeed a complex system, and that new approaches are needed that properly take this into account.
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Outline

A few remarks about complex systems

Motivation for why and how physicists can
contribute to economics.

[llustration with a simple model of leverage
(relevant to current crisis)

Agent-based model of the economy?




(Adaptive) complex systems

Discipline of complex systems 1s motivated by
beliet 1n two principles:
* Complex behaviors emerge from simpler rules
operating at a lower level, e.g.
— living organism
— brain
— Society
* There are similarities between such examples that
justify studying them together

— “strong” vs. “weak” belief




Economy as evolving complex system

e Adam Smith’s invisible hand (1776)

 Economy should be best understood based
on evolutionary principles (Marshall)

* System of prices 1s self-organizing means of
parallel processing imformation (Hayek)

* Contrast to most modern literature

* Empirically usetul science?




Neoclassical economics

* Agents selfishly maximize utility
 Market clearing (supply = demand)
* Price taking (negligible impact of individual)
o Rationality
— abihity to calculate anything

— complete information (states of nature)

Last 30 years of economics devoted to
generalizing or modifying these assumptions




Problems with neoclassical economics

» Utility

Measure of expected states of nature

More realistic behavioral assumptions’

Rationality makes models too intractable
— too much simplification

— must model an evolving complex system!

Math over reality
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Opportunities and dangers

* Economics, particularly finance, 1s fertile
ground for a physics-style approach
— new perspective
— low hanging fruit
— different vision of scientific method
— laws of social systems!
— laboratory to study social evolution
e Downside

— narrow-mindedness of disciplinary boundaries




MARKET LAWS

¢ Pareto’s Law for personal income

“ Long-memory of supply and demand

* Power law for trading volume

* Relation between exponents of volume, S&D fluct.
* Anomalous scaling of growth fluctuations of firms
- Laws of market impact

¢ Volatihity = average market impact = spread/2

* Power law for price fluctuations

* Equation of state of price statistics and order flow
< Distribution of mutual fund sizes

¢ Scahing of impact with market capitalization

o (_perhaps one more page)

104




Opportunities and dangers

* Economics, particularly finance, 1s fertile
eround for a physics-style approach
— New perspective
— low hanging fruit
— different vision of scientific method
— laws of social systems!
— laboratory to study social evolution
* Downside

— narrow-mindedness of disciplinary boundaries




MARKET LAWS

¢ Pareto’s Law for personal income

- Long-memory of supply and demand

* Power law for trading volume

“ Relation between exponents of volume, S&D fluct.
* Anomalous scaling of growth fluctuations of firms
< Laws of market impact

¢ Volatihty = average market impact = spread/2

- Power law for price fluctuations

- Equation of state of price statistics and order tlow
< Distribution of mutual fund sizes

“ Scaling of impact with market capitalization

o (perh&ps one more page)

104




Opportunities and dangers

* Economics, particularly finance, 1s fertile
ground for a physics-style approach
— New perspective
— low hanging fruit
— different vision of scientific method
— laws of social systems!
— laboratory to study social evolution
* Downside

— narrow-mindedness of disciplinary boundaries




MARKET LAWS

¢ Pareto’s Law for personal income

< Long-memory of supply and demand

* Power law for trading volume

- Relation between exponents of volume, S&D fluct.
¢ Anomalous scaling of growth fluctuations of firms
< Laws of market impact

¢ Volatihity = average market impact = spread/2

< Power law for price fluctuations

* Equation of state of price statistics and order flow
< Distribution of mutual fund sizes

* Scaling of impact with market capitaization

. (_perhaps one more page)

104




Financial markets provide a perfect
laboratory 1n which to study social evolution

* Define “evolution™ as any process with
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Financial markets provide a perfect
laboratory 1n which to study social evolution

* Define “evolution™ as any process with

* Social evolution differs from biology in
detail, but has the same three elements.
 Comparison should not be taken literally:
Important to understand both similarities

and differences.




What 1s biggest difference between
social and biological evolution?




What 1s biggest ditference between
social and biological evolution?

* In this respect, biology 1s easier: Accurately
modeling thinking humans is difficult.
— Innovation
— Strategic anticipation

* Limiting cases (tractable but often far-fetched):
— Perfect rationality
— Zero Intelligence (ZI)

* Biology 1s ZI (if one includes rules of thumb).




Advantages of financial markets
as laboratory of study

* Rapid timescale of evolution
— Market force, ecology and evolution

— Conjectured law for evolution to efficiency
(Reality game, Cherkashin, Farmer, Lloyd)

* Huge data sets
* Highly constrained decision-making
environment




D X PREDICTION

cComMmPANY

Market efficiency?

Strength of twe proprietary predictive signais (1975 - 1998), (measured as smoothed
average % correlation between signal and future weekly return)
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Strength of twe proprietary predictive signals (1975 - 1998), (measured as smosthed
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STATISTICAL MECHANICS
OF HUMAN SYSTEMS

< Many human systems exhibit emergent
phenomena generated b}-‘ low level interactions of

many individuals.

¢ In constrained setfings these exhibit consistent

laws, like ph}-'sical systems
3 C-haﬂenge to make MICTOSCOPIC models of actors

< Two strategies:
~ Find situations where institutional constraints
dominate human choice.
~ Find situations where we can use simple

hE‘llI'iStiCS to Ch&f&CtE‘ﬂZE human reasoning.
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Hedge fund/leverage model

o With Stefan Thurner and John Geanakoplos
* Agents
— funds (long only value investors)
— noise traders reverting to a fundamental value
— 1nvestors choosing between fund and cash; base
decisions on trailing performance of funds

— bank lending to funds
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mispricmg M=V —p
: Funds can use [c'rﬂmye. defined as ratio of value of
hﬂldings to wealth. Max. leve rage 1s key parameter

< Funds differ in their aggression, Le. how much they
buy for a given MISpricing {Slope)
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< When MISPrICINg 1S small, funds lower ‘.’Dlatﬂit}’
¢ At maximum leverage they amplify vo[atﬂity
< Extreme events caused b}' attempt to control risk.

. OthE‘I' E‘KELHIP[E‘SI SIO[J-lOSS OFdE['S, CELH DpﬁOﬂE.
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< Extreme events caused b}' attempt to control risk.
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StUCk returns vs. tImE
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: When k > 0, banks lower maximum [everage
when historical volati]ity IS higher

< Results in more defaults.
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< Conjecture: Evolutionary pressure drives funds

toward leverage above the social optimum.
increased detaults, extreme events, lower returns
¢ Goldilocks principle: What leverage 1s “just nght™?
, = ] 2
[\eﬂy criterion suggests [L/ 0

< Need for regulation'.’
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< Let the bank leverage too

< Network of banks and hedge funds

< Multiple assets, derivatives, stop-loss

< Optimal control of risk by banks and hedge funds

- Evolution of strategies
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< How do we reduce risks’

< Two basic approaches
Distribute risks: Decentralize, decouple
Keynes: Manage the economy macroscopically

Not mutuaﬂ}f exclusive
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¢ Current macro models are much too simple

¢ Current financial models take macro as given

¢ Lucas critique, falsification of Phillips curve
resulting devolution of macroeconomics

< Need to model interacting nstitutions
obvious approach: agent-based simulation model

Need to explain Macroeconomy from

microeconomic arguments (Axtell)

caution: much less data
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STATISTICAL MECHANICS
OF HUMAN SYSTEMS

« Many human systems exhibit emergent
phenomena generated b}-‘ low level interactions of

many individuals.

¢ In constrained setfings these exhibit consistent

laws, like ph}.-'sical systems
3 C-haﬂenge to make MICTOSCOPIC models of actors

< Two strategies:
~ Find situations where institutional constraints
dominate human choice.
~ Find situations where we can use simple

hE‘UIiStiCS to Ch&f&lCi'E‘leE human reasoning.
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MARKET LAWS

Pareto’s Law for persona] Income

i

LDHg—IﬂEHlOI'}-’ Df suppl}f El.[ld dEHlH.Ild

Power law for ‘rrading volume

Relation between exponents of volume, S&D fluct.

0

Anomalous scaling of grmﬁh fluctuations of firms

Laws of market impact

\frolaﬁliqf = average market impact = spread/ 2

Power law for price fluctuations

* Equation of state of price statistics and order flow
< Distribution of mutual fund sizes

¢ Scaling of impact with market capitahization

" (perh&ps one more page)
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