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Abstract: Abstract: Efforts to extrapolate non-relativistic (NR) quantum mechanics to a covariant framework encounter well-known problems,
implying that an aternate view of quantum states might be more compatible with relativity. This talk will reverse the usua extrapolation, and
examine the NR limit of areal, classical scalar field. A complex scalar \psi that obeys the Schrodinger equation naturally falls out of the analysis.
One can also replace the usual operator-based measurement theory with classical measurement theory on the scalar field, and examine the NR limit
of thisaswell. In this limit, the local energy density of the field scales as |\psi|*2, adding credibility to this approach. With the added postul ate that
& quot;all measurements correspond to boundary conditions that extremize the classical action& quot; (see arXiv:0906.5409), additional quantitative
comparisons emerge between this \ps and the standard quantum wavefunction. Uncertainty can then be introduced (along with a

& quot;collapse& quot; due to Bayesian updating) by simply giving the classical scalar field two components instead of one, leading to an intriguing
\psi-epistemic model.
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There's no such thing as a
non-relativistic ontic state.

The Problem:
- Standard interpretations don’t easily extrapolate to the
relativistic regime, so the standard quantum state can’t be ontic!

Instead of first ignoring relativity, and later trying to *fit it in”,
why not instead explore NR-limits of GR-friendly models?

Plan of attack:
- Strip away complications (charge, spin, potentials)
- Start with classical field equations, measurements
- Take flat-space, NR limits, search for links to NRQN"
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Candidate ontic structure: the
real, classical, scalar field ¢(x.?)

» Considered correct starting point for neutral
spinless particles in relativistic QM + QFT.

» Easily extrapolatable to curved spacetime

1 et .
L= (g#"’f)“oc‘)u@ - mh; O')

» Euler-Lagrange equation in Minkowski
spacetime is Klein-Gordon Equation (KGE);

2 2 2¢72 2. 4
> il C — |
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Dispelling some myths
(or, why ¢ isn't complex)

Define: w(k) = \/r72k2 + rr.'.?r_"*'*_,-"'hé wp = w(0) = mcz/ﬁ

Solutions to complex KGE:
oz, t) = / [a(k)e"“"*—*'” + b(k)e”"'z‘“"'”] dk

Solutions to real KGE: o(z.t) = / a(k)eik=—et) ﬂ-{'.c.] dk




Dispelling some myths
(or, why ¢ isn’'t complex)

Define: w(k) = \/c2k2 + m2ct /h2 wo = w(0) = mc2/h

Solutions to complex KGE:
s 1) = / [a(k)ei®E=—=0) 1 p(k)eie=+0)] dk

Solutions to real KGE: o(z.t) = / a(k)eik=—et) +c.c.] dk

Single particle Schr. Egn:v¥(=,t) = /FtF(k_]e‘"""""‘""""-"‘7}dk
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A straightforward map...
... with new implications
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In Minkowski spacetime, NR limit, one easily sees

. _ l
@ & ¢e—zwgt X L_;"‘elu}gt ’

« Map from @ to ¥ only unique in flat spacetime with
a preferred foliation ( ¥ isn’t generally ontic!)

« Different phases of 1 are significant for © on
timescales ~ w,
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A straightforward map...
... with new implications

In Minkowski spacetime, NR limit, one easily sees

@ & e ot 4 qp* ot |

« Map from @ to ¥ only unique in flat spacetime with
a preferred foliation ( ¥ isn’t generally ontic!)

« Different phases of 1 are significant for © on
timescales ~ w

» Adding scalar potential can be done without adding
a new term; just adjust 9.+~ in weak-field limit.
(WKB solutions match S.E.’s in NR limit)
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I,,,: Classical Stress-Energy Tensor of Field

o* A(Vo)? .
3 T 3 T9

Field Energy Density; 7,0 = A
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More cool results from
classical field measurements

I,,,. Classical Stress-Energy Tensor of Field

=

12 2 (7 4)2 |
: L o c“(Vo) .
Field Energy Density; Tpo = A | — + ——— + ¢
|.-...-i..-«D n.uD
¢ = Re(ye*0t)
CE) ~ RB(_EJUL:G i_._;'ﬁt) — _,;_:GI”I ( e !-l.:l-ilt)

Too = |1|* in NR Limit! |




More cool results from
classical field measurements

1, Classical Stress-Energy Tensor of Field

Field Energy Density; 7, = A z PR (V;o) + ¢*

¢ = Re(ye*“ot)

— .‘iu.;nt )

) = wolm(e *°*)

& ~ Re(—iwqte

Too = [L}‘ in NR limit!

.Not quite the Born rule, but promising in >C-particle limit,_

IIIII
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to standard “probability current”

. O
Igs = A {oaxl o]
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Momentum density corresponds
to standard “probability current”

. Yvr = Re(v) 9
Ioi = A |0 —09 i
' { ox? ] vy = Im(¥) -

ﬁ : _ . 2 _ . . : . ‘
To: = (V10;¥R)cos“(w,t) — (YRro;¥ )sin“(w, t) — 2Re(vo;v)sin(2wet)
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to standard “probability current”

: () UR = RE"{L ) i - 9
Ioi=A (o= ort
ox vy = Im(v)
To: = (V18:¥Rr)cos*(wot) — (VRO )sin®(w,t) — 2Re(v ) sin(2wot)

Average over timescales >> w;

00000




Momentum density corresponds
to standard “probability current”

. O vr=Re(v¥) 9 _ ,
T{Ji = 4‘1 Oﬁo N ort
ox vy = Im(v)
To: = | l.',rf),L‘H:It"”.ﬁzf...,',,f} — (VRO v sin-(w.t) — 2Re(vd.¢)sin(2wot)

Average over timescales >> w; ;

< Toi >= Y10;¥r — VROV = Im(YOiv™) = J;




Momentum density corresponds
to standard “probability current”

. - 8 UR = RE(L‘) 7 3
Toi =A|0 1.(‘D oL ‘
oz U = Im(v)
To: =~ (V18:¥r)cos* (wot) — (Y ROy )sin(w,t) — 2Re(v;v)sin(2wot)

. -1
Average over timescales >> v, ;

. TD! P~ U’Ia:wR = 'IL'RaiL'I — Im(ba;L") — -]-1‘

Lack of a conserved 4-current for the real KGE
does not mean that it can’'t contain NRQM.
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Conjecture: Boundary conditions (measurements) inconsistent
with an extremized action are not physically realizable.

Y (closed hypersurface)

timeT
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What if action extremization
constrains measurements?

Conjecture: Boundary conditions (measurements) inconsistent
with an extremized action are not physically realizable.

X (closed hypersurface)

ﬁmeT

38 = f;:+rnzcz/h2]oéod'!1—fc')“odod“ﬂ

%
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What if action extremization
constrains measurements?

Conjecture: Boundary conditions (measurements) inconsistent
with an extremized action are not physically realizable.

_.Z (closed hypersurface)

ime |

4S = /i:- m?c® /h*|odo d*Q + f 0,000d"X

5 a—— p—

One of these must be zero on .
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What if action extremization
constrains measurements?

Conjecture: Boundary conditions (measurements) inconsistent
with an extremized action are not physically realizable.

2 (closed hypersurface)

ﬁmeT

4S = /: +m?c® /h*|odo d*Q + f 9,000d"E

One of these must be zero on .

Unlike QFT, constraints on © can’t be expressed via ©
o] @3ds t0 @ global constraint on most measurements. o
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Action-induced quantization
(for “non-relativistic” scalar fields)

2 " i | i Component
Define “non-relativistic” field Toi v < 1 of “local group

via stress energy tensor: Ton € velocity” g




Action-induced quantization
(for “non-relativistic” scalar fields)
Component

Define “non-relativistic” field | g
via stress energy t : - =—<1 o oy
gy tensor: o & velocity” Vg
Implies dominant-frequency mc-
Q=) =—

wave behavior near w,: %
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Action-induced quantization
(for “non-relativistic” scalar fields)

Define “non-relativistic” field Ta: &~ :u..”'m"em
_ _ — " &1 of “local group
via stress energy tensor: Too c velocity” Vg
Implies dominant-frequency mc-
wave behavior near w,: T

amplitude of @
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Action-induced quantization
(for “non-relativistic” scalar fields)

Define “non-relativistic” field To: < :E..”'po"em
: _ — ' & 1 oflocal group
via stress energy tensor: Too c velocity” Vg
Implies dominant-frequency mc”
wave behavior near w,: o

amplitude of @ Hypersurface requirements:
Very near crest or trough of @
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Action-induced quantization
(for “non-relativistic” scalar fields)

Component

@ o o . " . '.‘_,_,..a-""'
Deﬁne non-relativistic ﬁs',nld To; _ U < 1 of “local group
via stress energy tensor: Too c velocity” Vg
Implies dominant-frequency mc”
wave behavior near w,: RTR T s

amplitude of @ Hypersurface requirements:
Very near crest or trough of @

-
. > mfvg~d£::nh

~ Bohr-Sommerfeld-like quantization,
space but only upon measurement.

arXiv: 0906 5409 ; pirsa.org/09060031 P
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Fourier transforms of field gives Heisenberg U.P.
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» Constraint on hypersurface shape allows determination
of Cauchy data; little uncertainty in field values.

» Indeterminacy comes for free:
Fourier transforms of field gives Heisenberg U.P.

« Represents infinite-identical-particle limit:

How to “whittle down™ acceptable boundary
conditions for the case of only a few particles?

Pirsa: 09100093 Page 51/96




Still not looking like QM...

« Constraint on hypersurface shape allows determination
of Cauchy data; little uncertainty in field values.

* Indeterminacy comes for free:
Fourier transforms of field gives Heisenberg U.P.

« Represents infinite-identical-particle limit:
How to “whittle down”™ acceptable boundary
conditions for the case of only a few particles?

« Whence Probabilistic Measurement Outcomes?

(not to mention apparent collapse, contextuality,
Bell-inequality violations, etc., etfc.)
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Simplest Possible Extension:
Two-component scalar field

Motivation: Rob Spekkens's Toy Field Theory
(Make fields indistinguishable!)

¢1 < Re(re™'“°f) 1, Y2 both
b2 < Re(ge "0F) solve the S.E.

But if indistiguishable, our “measured wavefunction” is:

|¢mea5‘2 — \";U1|2 i 2 |7..-*’1’2|2
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Simplest Possible Extension:
Two-component scalar field

Motivation: Rob Spekkens's Toy Field Theory
(Make fields indistinguishable!)

01 & Re(wle#m”t) . Y1, Y2 both
b2 < Re(ge *ot) | solve the S.E.

But if indistiguishable, our "measured wavefunction” is:

|¢mea3‘2 = |'¢’1|2 3 |’¢2|2

Im(YmeasVVUneas) = IMm(¥1VYT) + Im(¢2VY3)

TH‘.EEIS
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Simplest Possible Extension:
Two-component scalar field

Motivation: Rob Spekkens's Toy Field Theory
(Make fields indistinguishable!)

09 < Re(ge ™0t) | solve the S.E.

But if indistiguishable, our “measured wavefunction” is:

|¢meas‘2 = |'¢'1|2 T |¢2|2
Im(u)mEﬂSVL’meas) - Im(LIVL l) + Im(LZVLQ)

= | Due to nonlinearity, ¥meas doesn’t solve the S.E.! I
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What type of problem can’t be solved without
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Action Extremization! :

Newtonian Schema “Lagrangian Schema”
N "
F=ma time 3S=0
IBCs: x(f,).,k(t,) BC: x(1,)
FBC: X(ff)

These pictures are not equivalent! (Same laws, different BCs)
BCs of physical systems must be physical constraints.
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F=ma time 3S=0
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IBCs: x(t[))':j:(tn) .I IBC: x(tu)
FBC: x(¢,)

These pictures are not equivalent! (Same laws, different BCs)

BCs of physical systems must be physical constraints.
—oule€. Boundary Conditions <=> Interaction/Measurement




What type of problem can’t be solved without
insufficient initial boundary conditions?

Action Extremization! l

Newtonian Schema “Lagrangian Schema”
F=ma time 3S=0
|BCS: x(to)ai(_tg) |BC x(tu)

BCs are ontic! ,FBC: x(t,)

These pictures are not equivalent! (Same laws, different BCs)
BCs of physical systems must be physical constraints.

—oule€. Boundary Conditions <=> Interaction/Measurement
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Boundary condition options for two-
time-constrained fields (a very short history)

time

”491:7702
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Boundary condition options for two-
time-constrained fields (a very short history)

Umeas = V2 1) Aharanov/Vaidman (1991)

time

’091:1,02

Ymeas = V1
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Boundary condition options for two-
time-constrained fields (a very short history)

A

time

00000000

'wmeas = U1 — ?.D?

¢1:¢’2

wmeas = Y1 + 74;'2

1) Aharanov/Vaidman (1991)

2) Wharton, Found. Phys.
v37, p.159 (2007)




Boundary condition options for two-
time-constrained fields (a very short history)

Same rule as below 1) Aharanov/Vaidman (1991)

(Dcompl CL 2) Wharton, Found. Phys.

t
= M v37, p.159 (2007)

3) Wharton, arXiv:0706.4075

Time-even measurements:
Vmeas = Qcomplex

Time-odd measurements:

Umeas < Ocomple:r




Boundary condition options for two-
time-constrained fields (a very short history)

Same rule as below 1) Aharanov/Vaidman (1991)

- qpfiomif‘ ex 2) Wharton, Found. Phys.
01 . o v37, p.159 (2007)

3) Wharton, arXiv:0706.4075

Pirsa: 09100093




Candidate Psi-Epistemic Theory

(Single particle wave mechanics)

ONTIC:
W1, Vo
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Candidate Psi-Epistemic Theory

(Single particle wave mechanics)

Time s
l J° = 1P|°

ONTIC: J' = Im(vo;v™)

U1, W2
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Candidate Psi-Epistemic Theory

(Single particle wave mechanics)

Time 2
| J° = |p)?
J' = Im(vd;0™)

ONTIC:
V1, Y2
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Candidate Psi-Epistemic Theory

(Single particle wave mechanics)

Time 5
| J° = |y)?

At; |
J' = Im(¥o;¥")

EPISTEMIC: ONTIC:
L-'comp vV1,WV2

Jﬁteaa(t(}) — ]{i(tﬂ) i 3 ]g(t{]]
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Candidate Psi-Epistemic Theory

(Single particle wave mechanics)

Time 70

At = }L-'|2
Lf

J' = Im(vo;v™)

EPISTEMIC: ONTIC:
Yecomp Vi, W2

Jomp(t) # J1 (t) + J5 ()

]#lea,s( ) m— J{l(tﬂ) i e }‘Ej(t(})

to




Candidate Psi-Epistemic Theory

(Single particle wave mechanics)

MM Theaslts) = () +IEH) g0 = |y
EPISTEMIC:  ONTIC. J' = Im(¥0:y7)
Uc()-rrzp V1,V2
i
LUTHP(t) 7(: ] ( ) + J;(t)
to

]#IE(IS( ) ]{l(tU)‘*—];(tU)
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Candidate Psi-Epistemic Theory

(Single particle wave mechanics)

Time  ju  (t;) = Jl(ts) +Je(ty) 0

meas — lL'|2
A tf

Ji = Im(u‘:?;-u")

EPISTEMIC: ONTIC:
Yeomp V1, V2

Jeomp(t) # J1 (t) + J5 (1)

]rﬁ:leas( ) o ]{L(to) + ];(t[))

Type of measurement at ¢ = ¢, (and resuit) determine:
- parameters that are constrained in action extremization...
- in turn determine ontic field values. (Natural contextuality!) ~e>~




Candidate Psi-Epistemic Theory

(Single particle wave mechanics)

-I:n:f JI‘:IE&S tf) = ']{‘(tf) * J';(tf) .]0 = |Lf'|2
EPISTEMIC:  ONTIC: i o o
Yecomp V1, W2 Open guestion:

I
What algorithm can
cump(t) 7& Ip(t) ik ]p(t) one use to reconstruct

t[] | ©1.U9 from

’]rﬁ:leas(t(]) — ']{l(tO) + ']g(t[)) i 'I?‘:ll'f‘adir”:l"I::?.fﬂ.:i(tf}?

Type of measurement at ¢ = ¢, (and result) determine:
- parameters that are constrained in action extremization...
Pexooss - jn turn determine ontic field values. (Natural contextuality!) ™=




Outlook for this model
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Outlook for this model

« Still need a probability rule
- Should be joint probability distribution
P[t-'meas(t[])- L-'meas(tf }'
- Candidates:
=) P = [AF(¢1,%2)]?
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Outlook for this model

« Still need a probability rule
- Should be joint probability distribution
P[meﬂs(tU)? wmeas(tf)J
- Candidates:
P= |2 P = [AF(¥1,%2)]?

* Need other (identical) particles
- Don’t expand into configuration space (Ontic state

needn’t bother encoding unperformed measurements)
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Outlook for this model

« Still need a probability rule
- Should be joint probability distribution
P['ﬂf’meas(tﬂ)e Umeas(tf)]
- Candidates:
P = |e*°|? P = [AF(¢1, %))

» Need other (identical) particles
- Don’t expand into configuration space (Ontic state

needn’t bother encoding unperformed measurements)

» Testable Experimental Conseguences?

- Key parameter: accurate time duration between
preparation, measurement.
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2) Varnational principles are also trying to tell us something.
(HV and v-epistemic models neatly mesh with extremization.)
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1) GR 1s a valuable clue: we should consider it!

2) Vanational principles are also trying to tell us something.
(HV and v-epistemic models neatly mesh with extremization.)

3) 1 -epistemic models have a natural path to Bell-type violations.

4) We need a consistent, spacetime view of measurements and
boundary conditions. (Ideally without operators!)
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