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Abstract: It's been suggested that & quot;decoherence explains the emergence of a classical world&quot;. That is, if we believe our world is
guantum, then decoherence can explain why it LOOKS classical. Logically, this implies that without decoherence, the world would not ook
classical. But... what on earth WOULD it look like? Human beings seem incapable of directly observing anything & quot;nonclassical& quot;. I'll
show you how a hypothetical quantum critter could interact with, and learn about, its world. A quantum agent can use coherent measurements to
gain quantum knowledge about its surroundings. They can use that quantum knowledge to accomplish tasks. Moreover, clumsy classical critters
(like me!) could identify quantum agents (and prove that they are using quantum knowledge), because they outperform al classical agents. I'll
explain the remarkable new perspective on quantum states that comes from thinking about quantum knowledge, and I'll argue that it's a useful
perspective by showing you two concrete applications derived from it.
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® | have a problem with
quantum mechanics.
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® | have a problem with ® | have a problem with
quantum mechanics. decoherence.

® Could “events” be contingent rather than necessary?’

i.e., do measurements have to have definite outcomes’
Or is the experience of definite events a product of how we
are designed -- rather than a universal truth about every observer?’
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rule to make a very
successful but ugly theory.

Events (definite outcomes)
necessary to fit experience &
make predictions...

...but now our fundamental
theory is formulated in terms
of our own experience.
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My Second Problem

A Dgcoherence ® | have a problem with
e and the decoherence.
Appearance

of a Classical World e If our world is quantum,
in Quantum why does it look classical?
Theory

® “Decoherence”

® So... without decoherence
...what would it look like?

® “We'd see the wavefunction!”

® “Nothing. The same mechanisms
cause decoherence & observation™

® “Very dark, but still classical”
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Resolving My Problems

® |et’s seriously investigate what the world would
“look like” in the absence of decoherence.

® Some obstacles to asking this question:

|. You and | are very badly adapted to such a world
Solution: Consider perceptions of well-adapted alien critters

2. How can we know what an alien critter “perceives” or knows!’
Solution: Behaviorism -- infer knowledge from actions

3. But how can we observe them, or trust our own observation’
Solution: Fall back on events + Born's rule eventuaily.
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Resolving My Problems

® |et’s seriously investigate what the world would
“look like” in the absence of decoherence.

® Some obstacles to asking this question:

|. You and | are very badly adapted to such a world
Solution: Consider perceptions of well-adapted alien critters

2. How can we know what an alien critter “perceives” or knows/’
Solution: Behaviorism -- infer knowledge from actions

3. But how can we observe them, or trust our own observation’
Solution: Fall back on events + Born’s rule eventudlly.

> Interesting Stuff!
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Conclusions

|. Do “measurements’ or “observations’ have
to yield definite outcomes (events)’

2. Or could a different -- possibly better --
kind of critter learn about its surroundings

without perceiving any events!’
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Conclusions

|. Do “measurements’ or “observations’ have
to yield definite outcomes (events)’

2. Or could a different -- possibly better --
kind of critter learn about its surroundings

without perceiving any events’

1. No 2. Yes

3. Let me summarize this using popular culture...
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This is me.

You
are in
The Matrix.
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What would it take...

...to convince you that you're in the Matrix?

|. Seeing the wavefunction directly!
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What would it take...

...to convince you that you're in the Matrix?

Don’t be ridiculous.

2. Realizing you have superpowers!
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Sorry. You're not Neo.




What would it take...

...to convince you that you're in the Matrix?

Don’t be ridiculous.

g 3
No. Sorry.

3. Seeing somebody else with superpowers!









What would it take...

...to convince you that you're in the Matrix?

Don’t be ridiculous.

2.
No. Sorry.

3

Nope. Wrong universe.

4. Proof that, in a gedanken-universe much like ours,
there are agents with superpowers. Hmm...
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So, | am going to show you
that in a decoherence-free universe,
agents that interact with their surroundings coherently
-- in ways inconsistent with the experience of collapse --
outperform classical agents.

mANd | Will conclude that our experience of events.....
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Three Examples

|. A device that learns about its surroundings without
definite outcomes: coherent measurement.

2. A device that wins bets using a quantum
reference frame: quantum knowledge.

3. A device for adaptive data compression -- that learns
about its surroundings and decides how to deal with
them, without events: 2 quantum agent.
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Preemptive Clarifications

(in case you are angry, confused, or disagreeable)

® A measurement is an interaction between an agent and a system
that results in the agent gaining knowledge.

® Knowledge is a resource (with units of information) that an agent
can use to make good decisions w/r.t. some system.

® An agent is a simple math model of a critter that captures some
essential feature of human experience and/or behavior.

® An agent’s decision w/r.t. a system is an interaction between the
agent and the system -- intended to accomplish some task.

® A good decision is one that accomplishes the task with relatively
high probability, or gains relatively high [expected] utility.

® “Expected utility” and “high probability” refer to an observation
that | (clunky, classical me) will make in the distant future.
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=> the best guess requires a joint measurement on all N.
=> ridiculously difficult to do!
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State Discrimination

Were these N qubits were prepared in (¢’) or|0)? W@

ALY

® Observation: if we had a quantum computer, we could
solve the problem with one-at-a-time interactions.
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e Observation: if we had a quantum computer, we could
solve the problem with one-at-a-time interactions.
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® Observation: if we had a quantum computer, we could
solve the problem with one-at-a-time interactions.
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® Observation: if we had a quantum computer, we could
solve the problem with one-at-a-time interactions.

® __ but this is cheating, and not really easier at all.
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Coherent Measurements

Could we do this with a smaller quantum computer? W @
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® Yes! Just one qubit of memory is sufficient.
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® Yes! Just one qubit of memory is sufficient.

® Why? Span (|vve...) . |ooo...)) is 2-dimensional.
So at the nth steP, our QC (agent) performs a
U, that rotates Sp: m( )< . |o) ) INnto memory.
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® Yes! Just one qubit of memory is sufficient.

® Why? Span (jvvw...) . |ooo...)) is 2-dimensional.
So at the nth step, our QC (agent) performs a
U, that rotates Span (|v) " .|0) " ) into memory.

Pirsa: 09100089



13

Coherent Measurements

Could we do this with a sm antum computer? W @

LI ELLL

® Yes! Just one qubit of memory is sufficient.

° Why? Span (|[vvw...) . |looo...)) is 2-dimensional.
So at the nth step, our QC (agent) performs a
U, that rotates Span ([v)"".|0)"" ) into memory.

Pirsa: 09100089



23

Coherent Measurements

Could we do this with a small tum computer? wn @

000 uuu

® Yes! Just one qubit of memory is sufficient.

® Why? Span (|vvwe |ooo . ..)) is 2-dimensional.
So at the nth steP our QC (agent) performs a
U, that rotates Sp: m( )" L | ) INto memaory.

Pirsa: 09100089



13

Coherent Measurements

Could we do this with a smaller

o000

® Yes! Just one qubit of memory is sufficient.

computer? W @

® Why? Span (v .. ). |ooo...)) is 2-dimensional.
So at the nth step, our QC (agent) performs a
U, that rotates Span (/v)"".|0)"" ) into memory.

Pirsa: 09100089



Coherent Measurements

Could we do this with a smaller qua@omputer? ™

XYY

® Yes! Just one qubit of memory is sufficient.

® Why? Span (|vve...) . |ooo...)) is 2-dimensional.
So at the nth steP, our QC (agent) performs a
U, that rotates Sp: m( )" L | ) into memory.

Pirsa: 09100089

13



13

Coherent Measurements

Could we do this with a smaller qua omputer? w @

000000 ° 4§

® Yes! Just one qubit of memory is sufficient.

® Why? Span (|vvw |looo . ..)) is 2-dimensional.
So at the nth SteP, our QC (agent) performs a
U, that rotates Span ([v)"". [0 ") into memory.

Pirsa: 09100089



13

Coherent Measurements

Could we do this with a smaller quantu

0000000

® Yes! Just one qubit of memory is sufficient.

puter! @@

® Why? Span (|vvw ooo...)) is 2-dimensional.
So at the nth SteP our QC (agent) performs a
U, that rotates Span (|v)"".|0)"" ) into memory.

Pirsa: 09100089



13

Coherent Measurements
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® Yes! Just one qubit of memory is sufficient.

® Why? Span(|vve...).|ooo...)) is 2-dimensional.
So at the nth Step, our QC (agent) performs a
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Coherent Measurements

Could we do this with a smaller quantu puter! wm @

0000000

® Yes! Just one qubit of memory is sufficient.

@ Why? Span (|[vvw...) . |looo...)) is 2-dimensional.
So at the nth step, our QC (agent) performs a
U, that rotates Span ([v)"".|0)"" ) into memory.

® Quantum measurement = unitary interaction,
followed by amplification/decoherence/collapse.
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Coherent Measurements

Could we do this with a smaller quantu puter! wm @

irsa: 09100089 .

0000000

Yes! Just one qubit of memory is sufficient.

Why? Span (|vve .. ). |ooo...)) is 2-dimensional.
So at the nth step, our QC (agent) performs a
U, that rotates Span (|v)"".|0) " ) into memory.

Quantum measurement = unitary interaction,
followed by amplification/decoherence/collapse.

Coherent measurement = same, but skip collapse:=



Quantum Knowledge
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Betting & Knowledge

® The whole point of a measurement is to
improve my knowledge -- “gather information”.

® But what is the use of knowledge?’

® Knowledge
==> prediction
==> winning bets.

® So a better measurement...
...should yield better knowledge...
...which will let you win more bets.
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A Simple Game
g

BET
| have a bag of spins, all prepared in

the same (unknown to you) pure state.

| pluck one out.
You pick a 2-outcome projective measurement.

We bet on the outcome, at even odds.
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A Simple Game
g

BET
| have a bag of spins, all prepared in

the same (unknown to you) pure state.

| pluck one out.
You pick a 2-outcome projective measurement.
We bet on the outcome, at even odds.

How often can you win this bet?
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A Simple Game
g

BET
| have a bag of spins, all prepared in

the same (unknown to you) pure state.

| pluck one out.

You pick a 2-outcome projective measurement.
We bet on the outcome, at even odds.

How often can you win this bet?

® 50% of the time.
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A Simple Game (ii
& > o

® Okay, same game. -

® [|I'm going to pluck one out. R =
® You pick a 2-outcome projective measurement.
® We bet on the outcome, at even odds.
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BET
® Okay, same game.

® |I'm going to pluck one out.
® You pick a 2-outcome projective measurement.
® We bet on the outcome, at even odds.
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BET
® Okay, same game.

® |I'm going to pluck one out.
® You pick a 2-outcome projective measurement.
® We bet on the outcome, at even odds.

® But this time, | give you a test sample
that you can measure -- to gain knowledge.
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A Simple Game (ii)
6 g

TEST BET
® Okay, same game.

® |I'm going to pluck one out.
® You pick a 2-outcome projective measurement.
® We bet on the outcome, at even odds.

® But this time, | give you a test sample
that you can measure -- to gain knowledge.
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A Simple Game (ii)
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TEST BET
® Okay, same game.

® |I'm going to pluck one out.
® You pick a 2-outcome projective measurement.
® We bet on the outcome, at even odds.

® But this time, | give you a test sample
that you can measure -- to gain knowledge.

® Wlo l.og., you measure 0. and get “up”.

® Now, how often can you win!?
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A Simple Game (ii)
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TEST BET
® Okay, same game.

® |I'm going to pluck one out.
® You pick a 2-outcome projective measurement.
® We bet on the outcome, at even odds.

® But this time, | give you a test sample
that you can measure -- to gain knowledge.

® Wlo l.og., you measure 0. and get “up’.

® Now, how often can you win!?

® 67/% of the time.
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® Can you win this game more often?

® Can you win it every time?
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® Can you win this game more often?

® Can you win it every time?

® Sure. When | ask “Along which axis shall we
measure?!”, you say:
“Along this axis,’
and you hand me the test sample.
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® Can you win this game more often?

® Can you win it every time?

® Sure. When | ask “Along which axis shall we
measure?!”, you say:
“Along this axis,’
and you hand me the test sample.

® i.e,you bet that they will have total J=I, rather
than J=0.
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Quantum Knowledge
g ¢

~ TEST  BET
® Can you win this game more often?

® Can you win it every time?

® Sure. When | ask “Along which axis shall we
measure?!”, you say:
“Along this axis,’
and you hand me the test sample.

® i.e,you bet that they will have total J=I, rather
than J=0.

® and vou alwavs win this bet.
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TEST BET

® Test sample contains useful
information -- i.e., knowledge.

19



irsa: 09100089

& @

TEST BET

® Test sample contains useful
information -- i.e., knowledge.

® You could observe it, store the result

in your brain, and then act on it.
=> conversion to classical info introduces error

Page 108/171
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TEST BET
® Test sample contains useful
information -- i.e., knowledge.

® Or, you could store & use it directly!
..if you had a Faraday cage in your brain

Pirsa: 09100089 Page 109/171
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TEST  BET
® Test sample contains useful

information -- i.e., knowledge.

® Or, you could store & use it directly!
..if you had a Faraday cage in your brain
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® Test sample contains useful

information -- i.e., knowledge.

® Or, you could store & use it directly!
...if you had a Faraday cage in your brain
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Quantum I(nowledge
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TEST BET
® Test sample contains useful
information -- i.e, knowledge.

® Or, you could store & use it directly!
...if you had a Faraday cage in your brain

P orcns ® Quantum knowledge is not shareable. Poge 7



Adaptive Quantum
Data Compression
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Why Data Compression?

Pirsa: 09100089

First of all, the previous examples are toys
- #| has no real task
-- #2 has no real information-gathering.

| want an example of an quantum agent that gathers
knowledge and acts on it in a meaningful way.

Data compression is related to a bunch of stuff:
- prediction

-- learning

-- error correction

-- refrigeration

Page 114/171

Compression = pumping entropy around.
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Classical
Data Compressmn

00000000000000000000000000010 t 01010101111000001010110100011
00000010010010010000000000000 11000101010111010100000000000
00000110000000000000000000000 F 20000000000000000000000000000
0100100000000 0000000000000
: - (9 -~ B -
N =100 P:(l) N =4 F:(_)
s

® Basic idea: common symbols => short codewords
uncommon symbols => long codewords

® Compressed data looks random (unpredictable),
whereas freed-up space is pure (usefully predictable)

® Optimal compression maps V — VN H(p) bits.

® Achieving this “Shannon bound” w/ textbook codes

requires knowing the source distribution P. S—

Pirsa: 09100089
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Streaming, Adaptive
Compression

e So what do you do if you don’t know P?

® You build a machine that learns the
probabilities as it reads in the data...
...and simultaneously compresses
based on its best guess so far.

34
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® So what do you do if yc;u don’t know P?

® You build a machine that learns the
probabilities as it reads in the data...
...and simultaneously compresses
based on its best guess so far.
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Streaming, Adaptive
Compression

)000000000000000000000001000000010010010010000¢ & f
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e So what do you do if you don’t know P?

® You build a machine that learns the
probabilities as it reads in the data...
...and simultaneously compresses
based on its best guess so far.

Pirsa: 09100089 Page 119/171
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® So what do you do if yc;u don’t know P?

® You build a machine that learns the
probabilities as it reads in the data...
...and simultaneously compresses
based on its best guess so far.
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Streaming, Adaptive
Compression

£.0101010111100000101011010001111000}

So what do you do if you don’t know P?

You build a machine that learns the

probabilities as it reads in the data...
...and simultaneously compresses
based on its best guess so far.

Better machines get closer to the Shannon bound!
The optimal algorithm achieves N — N H(p) + 5 log,(N)

This is the basic model for machine learning! Page 12117



Quantum
Data Compression

® Quantum compression works much the same way:
® Bits => qubits. Sets of strings => Hilbert spaces.
Source probability distribution => source density matrix.
® Transformations are done w/unitary operations.
Superposition of input strings => superpaosition of output

IE"gEhS! 1 ( 1010001111000101010111010100000000000000000 )

ﬁ

=> streaming quantum compression relatively unexplored.

0101010111100000101011010000000000000000000 |

® But we™ recently worked S
: JERE PURITY
out how to do streaming _
: —_— 040 TR 840
adaptive quantum e 5;“
data compression. i
Pirsa: 09100089 T T T e |=i>age 1221171 DATA
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Schur’s Representation

AN

We usually describe N qubits (spin-3) with H = (C?) .

There is another -- very useful -- decomposition of H.

ddaddadane

Total angular momentum (J?) is invariant under permutations..
..its direction is also invariant w/r.t. the permutation group (S ).

Conversely, there is a relational degree of freedom that is
invariant under collective (SI7(2)) rotations...as is J-!

Apply the theory of group representations, stir well, and...

H@ sex;) 1.

=4

The Quantum Schur Transform page 1271

~hanacac +~ thic Rhacic
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Schur’s Representation

AN

We usually describe N qubits (spin-3) with H = (C*) .

There is another -- very useful -- decomposition of H.
sdassadane

Total angular momentum (J?) is invariant under permutations..
..its direction is also invariant w/r.t. the permutation group (S ).

Conversely, there is a relational degree of freedom that is
invariant under collective (S{7(2)) rotations...as is J*!

Apply the theory of group representations, stir well, and...

Small. Represents direction — invariant under permutations.
"= (i ;) T
1=t} = - = 2
The Quantum Schur Transform page 12471 -

~hanacac +~ thic Rhacic
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Our Algorithm (agent)

® Reads the input I YoJoJo o] PURITY
qu“:.'.S one > | 0X0| & 00| @ 0X0l ...
at a time: ST7(2
0 T |0 0 1 =S =
. it
_ 0 T |0 LA : DATA

® Transforms input qubits into 1 0) [t 0\ (30
3 registers: {|j). |SU(2);). |S(N);)} > 4 : -

® Uses the j) and s77(2) registers to compress the S(V)
register, then pushes it out as compressed data.

® The J) and |ST7(2) registers are an estimate of the source p
-- contain all available information about the source.
-- allow the algorithm to compress the outgoing data.

Pirsa: 09100089 Page 125/171
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Conclusions
Implications
= = il
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A New Perspective
on Quantum States

C*-algebraists: “State = linear function on observables.”

Translation: “A state is a mathematical device for
assigning probabilities to future events.”

More radical (RBK, Fuchs): “A quantum state for system
S is a [mathematical] device that an agent uses to make
good decisions w/r.t. future interactions with S.”

Our quantum states are classical information -- |v'). p. v(r)
extrapolated from classical data (tomography).

An optimal quantum agent (algorithm) uses a totally
different state, obtained in a totally different way.

Page 127/171
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So... what about the
measurement problem?

® | do not have an interpretation for you!

® Just because you experience events

doesn’t mean theyre real (objective).
=> probability is a shaky foundation for interpretations’

® Strongest implications are for the role of
decoherence in many-worlds.

® Question: What the h™** does this look like
from a Bohmian/ontic perspective?.....

Pirsa: 09100089



Adaptive Quantum
Data Compression
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Quantum Knowledge

= & ¢
: TEST BET

® Test sample contains useful
information -- i.e., knowledge.

® Or, you could store & use it directly!
...if you had a Faraday cage in your brain

Pirsa: 09100089 Page 130/171
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Quantum Knowledge
6 &

TEST BET

® Test sample contains useful
information -- i.e., knowledge.
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Quantum Knowledge
6 ¢ i

~ TEST  BET
® Can you win this game more often?
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A Simple Garme (i

® Okay, same game.

® |I'm going to pluck one out.
® You pick a 2-outcome projective measurement.
® We bet on the outcome, at even odds.

Page 134/171
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A Simple Game

® | have a bag of spins, all prepared in
the same (unknown to you) pure state.
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® | have a bag of spins, all prepared in
the same (unknown to you) pure state.
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A Simple Game
g

BET
| have a bag of spins, all prepared in

the same (unknown to you) pure state.

| pluck one out.
You pick a 2-outcome projective measurement.

We bet on the outcome, at even odds.

Page 138/171
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A Simple Game
g

BET
| have a bag of spins, all prepared in

the same (unknown to you) pure state.

| pluck one out.

You pick a 2-outcome projective measurement.
We bet on the outcome, at even odds.

How often can you win this bet?

® 50% of the time.

Page 139/171
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A Simple Game
g

BET
| have a bag of spins, all prepared in

the same (unknown to you) pure state.

| pluck one out.

You pick a 2-outcome projective measurement.
We bet on the outcome, at even odds.

How often can you win this bet?

® 50% of the time.

Page 144/171
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A Simple Game (ii

_d

® Okay, same game.

® |'m going to pluck one out.
® You pick a 2-outcome projective measurement.
® We bet on the outcome, at even odds.

Page 145/171
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A Simple Game (i
® g

BET
® Okay, same game.

® |'m going to pluck one out.
® You pick a 2-outcome projective measurement.
® We bet on the outcome, at even odds.

® But this time, | give you a test sample

that you can measure -- to gain knowledge.

Page 146/171
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A Simple Game (ii)
6

TEST BET
® Okay, same game.

® |I'm going to pluck one out.
® You pick a 2-outcome projective measurement.
® We bet on the outcome, at even odds.

® But this time, | give you a test sample
that you can measure -- to gain knowledge.

Page 147/171
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A Simple Game (ii)
g &

TEST BET
® Okay, same game.

® |'m going to pluck one out.
® You pick a 2-outcome projective measurement.
® We bet on the outcome, at even odds.

® But this time, | give you a test sample
that you can measure -- to gain knowledge.

® Wlo l.o.g., you measure 0. and get “up’’.

Page 148/171
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A Simple Game (ii)
g &

TEST BET
® Okay, same game.

® |'m going to pluck one out.
® You pick a 2-outcome projective measurement.
® We bet on the outcome, at even odds.

® But this time, | give you a test sample
that you can measure -- to gain knowledge.

® Wlo l.og., you measure 0. and get “up’.

® Now, how often can you win!?

® 67/% of the time.
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® Can you win this game more often?
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TEST BET

® Test sample contains useful
information -- i.e,, knowledge.

® You could observe it, store the result

in your brain, and then act on it.
=> conversion to classical info introduces error

Page 151/171
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~ Quantum Knowledge
( ,,_,f-" d é

" TEST BET

® Test sample contains useful
information -- i.e., knowledge.

® You could observe it, store the result

in your brain, and then act onit.
=> conversion to classical info introduces error

Pirsa: 09100089 Page 152/171
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uantum Knowledge
i

TESE BET é

® Test sample contains useful
information -- i.e., knowledge.

® You could observe it, store the result

*—a B in your brain, and then act on it.
b " => conversion to classical info introduces error
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Classical
Data Compression

Pirsa: 09100089

00000000000000000000000000010 0101010111100000101011010001L1 §
000000100L0010010000000000000 r 11000101010111010100000000000
00000110000000000000000000000 Q0000000000000000000000000000
0L00100000000 0000000000000
7 9\ .. = fB)
N = 100 [—’:('l) N-—47 F:( _)
-l

b

® Basic idea: common symbols => short codewords
uncommon symbols => long codewords

® Compressed data looks random (unpredictable),
whereas freed-up space is pure (usefully predictable)

® Optimal compression maps V — N H(p) bits.

® Achieving this “Shannon bound” w/ textbook codes

requires knowing the source distribution F. -



Coherent Measurements

Could we do this with a smaller quantum computer? W @

PPPTTIT %
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® Yes! Just one qubit of memory is sufficient.
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® Yes! Just one qubit of memory is sufficient.
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Coherent Measurements

Could we do this

maller quantum computer? W @

ReeEeee

® Yes! Just one qubit of memory is sufficient.

A Why? Span (|[vvw...) . |looo...)) is 2-dimensional.
So at the nth step, our QC (agent) performs a
U, that rotates Span (|v)“".|0)" * ) into memory.
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Coherent Measurements

Could we do this wi

ler quantum computer? W @

LIl

P

® Yes! Just one qubit of memory is sufficient.

® Why? Span (|vvwe...).|ooo...)) is 2-dimensional.
So at the nth SteP, our QC (agent) performs a
U, that rotates Span ([v) ™" . [0} ") into memory.
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Coherent Measurements

Could we do this with a quantum computer? wm @

IXLETLY

® Yes! Just one qubit of memory is sufficient.

® Why? Span (|vvwe looo . ..)) is 2-dimensional.
So at the nth steP, our QC (agent) performs a
U, that rotates Sp: m( )<, |o ) INnto memaory.
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Coherent Measurements

Could we do this with a sm antum computer? W @

o0 i

® Yes! Just one qubit of memory is sufficient.

® Why? Span (|vvw looo . ..)) is 2-dimensional.
So at the nth SteP, our QC (agent) performs a
U, that rotates Sp: m( v)=" | |o) ) INto memaory.
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Coherent Measurements

Could we do this with a small tum computer? W @

o000 uuu

® Yes! Just one qubit of memory is sufficient.

@ Why? Span (|vvwe...) . |looo...)) is 2-dimensional.
So at the nth step, our QC (agent) performs a
U, that rotates Span ([v)"".|0)"" ) into memory.
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Coherent Measurements

Could we do this with a smaller

o000

® Yes! Just one qubit of memory is sufficient.

computer? W @&

® Why? Span (|vve .. ). looo...)) is 2-dimensional.
So at the nth Step our QC (agent) performs a
U, that rotates Sp: m( )<, |@ ) INnto memaory.
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Coherent Measurements

Could we do this with a smaller qua

000000

® Yes! Just one qubit of memory is sufficient.

omputer? W @

® Why? Span (|vvwe looo...))is 2-dimensional.
So at the nth steP, our QC (agent) performs a
U, that rotates Sp: m( 1) B 1) ) INto memaory.
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Coherent Measurements

Could we do this with a smaller quantu

0000000

® Yes! Just one qubit of memory is sufficient.

puter’ wa g

® Why? Span (|vvw looo..)) is 2-dimensional.
So at the nth SteP, our QC (agent) performs a
U, that rotates Sp: m( )=" | | ) INnto memory.

Pirsa: 09100089
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Coherent Measurements

Could we do this with a smaller quantu puter? wm ¢

e000000

® Yes! Just one qubit of memory is sufficient.

® Why? Span (|vvwe |ooo . ..)) is 2-dimensional.
So at the nth SteP, our QC (agent) performs a
U, that rotates Span (|v)*".|0)” ") into memory.
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Coherent Measurements

Could we do this with a smaller quantu puter? wm ¢

0000000

® Yes! Just one qubit of memory is sufficient.

® Why? Span (|vve...) . |ooo...)) is 2-dimensional.
So at the nth step, our QC (agent) performs a

U, that rotates Span (|v) " .|0) " ) into memory.

e Quantum measurement = unitary interaction,
followed by amplification/decoherence/collapse.

Pirsa: 09100089 Page 167/171
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- Coherent Measurements

Could we do this with a smaller quantu

mputer? >

sgesesee

. R ® Yes! Just one qubit of memory is sufficient.

" —1 B ® Why’ Span (jvvwe...).|looo...)) is 2-dimensional.
- - 8 So at the nth step, our QC (agent) performs a

!

U, that rotates Span (/) "./0)"" ) into memory.

e ® Quantum measurement = unitary interaction,
4 U followed by amplification/decoherence/collapse.

* pirsa 09100089 ® (Coherent measurement = same, but skip collapseu
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[= Coherent Measurements

Could we do this with a smaller quantun'ﬂmputer? >

38333338 ¢

e ® Yes! Just one qubit of memory is sufficient.

® Why? Span(lvvwe...) . 000...)) is 2-dimensional.
g So at the nth step our QC (agent) performs a
S U, that rotates Span(/v)""./0)"" | into memory.

e — ® Quantum measurement = unitary interaction,
== B followed by amplification/decoherence/collapse.

® (Coherent measurement = same, but skip collapse:~
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