Title: Statistical Mechanics (PHY S 602) - Lecture 3
Date: Sep 30, 2009 10:30 AM

URL: http://pirsa.org/09090113
Abstract:

Pirsa: 09090113 Page 1/56



Sums and Averages in Classical Mechanics
"he probability distribution for a single particle in a weakly interacting gas as is given by
p(p,r) =(1/ z)exp(-pH)
H=[p, +p, +p, 1/2m+U(r)

{ere, the potential holds the particles in a box of volume €2, so that U is zero inside a box
f this volume and infinite outside of it. The partition function, is

Z - Q[f dp exp(-pp? / (2m)) T = Q(2am / B)*'? B

'he average of any function of p and r is given by

g(p,r)> = | dp dr p(psr) g(Pr)

iince there are N particles in the system N dp dr p(p,r) is the number of particles which have
»osition and momentum within dp dr about the phase space point p,r. The quantity

N p(p,r)=f(P,r) is called the distribution function. The total amount of the quantity represented b
'(p,r) is given in terms of the distribution function as

total amount of g = I dp dr f(p,r) g(p,r)
Example: We calculated the average energy < p?/(2m) >=3 kT/2= j dp dr p(p,r) p*/(2m

Pirsa: 09090113

The total eneregy in the system is J dp dr fio.r) 2/(2m)= 3N kT/2.
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More sums and averages
The normalization condition for the probability is j dp dr p(p,r) =<1>=1

The normalization for the distribution function is_[ dp dr f(p,r) =N

The pressure, P, is defined as the total momentum transfer to a wall per unit of area and unit
time. Call these dA and dt. Since a low density gas is the same all over, the number hitting is
the number within the distance p,/m dt of the area, for px >0, and hence the number within th

volume p./m dt dA which is j dp f(p,r) p/m dt dA with the integral covering all p’s with the

condition that px >0. If a particle hits the wall and bounces back it transfers momentum 2p..
do we need specular reflection condition??

Therefore the total momentum transferred is j dp f(p,r) p/m dt dA 2p. once again with th

condition that px>0. An integral over all momenta would give a result twice as large. In the
end we get that the pressure is

P= I dp f(p,r) px*/m
which is then NkT as we knew it would be.
The partition function is the sum over all variables of exp(-BH). For large N, it can be

interpreted as W exp(-B<H>) , where W is the number of configuration which enter.

Boltzmann got W in terms of the entropy as In W=5/k. We put together previous results and
find

v o EXP(-3N/2)= 2N = QN (2m m kT)*N2s0 that S/k= N [In Q +3 (In (2me m kT))/2 ]
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The normalization condition for the probability is j dp dr p(p,r) =<1>=1

The normalization for the distribution function is,[ dp dr f(p,r) =N
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More sums and averages
The normalization condition for the probability is j dp dr p(p,r) =<1>=1

The normalization for the distribution function is _[ dp dr f(p,r) =N

The pressure, P. is defined as the total momentum transfer to a wall per unit of area and unit
time. Call these dA and dt. Since a low density gas is the same all over, the number hitting is
the number within the distance p,/m dt of the area, for p, >0, and hence the number within th

volume p,/m dt dA which is _[ dp f(p,r) px/m dt dA with the integral covering all p’s with the

condition that px >0. If a particle hits the wall and bounces back it transfers momentum 2px.
do we need specular reflection condition??

Therefore the total momentum transferred is j dp f(p,r) px/m dt dA 2px once again with th

condition that px>0. An integral over all momenta would give a result twice as large. In the
end we get that the pressure is

p=] dp f(p,r) pim
which is then NkT as we knew it would be.

The partition function is the sum over all variables of exp(-BH). For large N, it can be

Prafifedtpreted as W exp(-B<H>) , where W is the number of configuration which erfeg?=

- BRaltsrmann amt VWA in farme ~f tha antrearmse ae ln \ W =C/l; \Ala mniir tamarhar mroviesiie raciilee anA



From Classical Stat Mech to Quantum to RG

All of quantum mechanics on one slide

To do gquantum mechanics, one starts with a complete set of states |g) and
(pl which have the ortho-normality property (¢ q¢’) = 4, ., and a completeness

re.ation
Y lg)gl =1 (4.1)
q

and a trace operation
trace P = Z(q Plg) (4.2)

Heisenberg representation P(t)=e "t Peft,  Let T(t) =e

Partition Function Z(B) = trace T(—iB)=§ exp(—P€x)

Average <Q> =[trace T(—if) QI Z( B)

Two Times <Q(s) P(t)> =[trace T(—iP) Q(s) P(t) }/ Z( B)

For grand canonical ensemble use T(t)= exp[—i(H-UN)t]

Pirsa:
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Nearest Neighbor Interactions in Stat Mech on a One-
Dimensional Lattice

Imagine that we wished to understand a problem involving nearest neighbor
interactions one a one dimensional lattice which looks like

» * » *—o E L]

1 2 3 4 S N

The variables at the different lattice sites are q1, g2, ......,qn. The statistical weight is a product of
terms depending on variables at the nearest neighboring lattice sites of the form w(qg;,qj+1) so that
the entire calculation of the partition function is™

Z= Y explw(ge)+wlga)+-+wlgv-1,q8) +wgn, )] il
91,92, 9N
Notice that we have tied the two ends of the lattice to one another via a coupling
w(gn,q1). We have essentially used periodic boundary conditions. This calculation
can be converted into a quantum mechanics calculation using a quantum
mechanical operator, T, defined by its matrix elements

<q|Tlp>= exp[w(q.p)]

Now substitute this expression into the partition function calculation. We then have,

Pirsa: 09090113
We shall not describe the nearest neighbor problem in terms of a statistical mechanical Hamiltonian since we are saving the wor
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Imagine that we wished to understand a problem involving nearest neighbor
interactions one a one dimensional lattice which looks like

# ¥ R *—o ® »

1 2 3 4 S N

The variables at the different lattice sites are q1, g2, ......,qn. The statistical weight is a product of
terms depending on variables at the nearest neighboring lattice sites of the form w(qg;,qj+1) so that
the entire calculation of the partition function is”

Z = Z explw(qi, ¢2) + w(q2,q3) +--- + w(gn-1,9n) + w(gn, q1)] ii. 1
q91:92,""" 4N
Notice that we have tied the two ends of the lattice to one another via a coupling
w(gn,q1). We have essentially used periodic boundary conditions. This calculation
can be converted into a quantum mechanics calculation using a quantum
mechanical operator, T, defined by its matrix elements

<q|Tlp>= exp[w(q.p)]

Now substitute this expression into the partition function calculation. We then have,
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From Classical to Quantum:

o = Z <q1|T|g2 >< q2|T|g3 > --- < gn-1|T|gn >< gn|T|q1 > jii.2

gy .92." 4N

If you recall the definition for matrix multiplication,

< q1|TS|q3 >= Z < q1|T|q2 >< ¢2|S|q3 >

q2

you will see at once that the partition functionis 7 = Z < q|T|q >

q1
so that Z= trace TV

In order to get something familiar, imagine that T is an exponential of a Hamiltonian,
specifically T=exp(-TH)), where H is a Hamiltonian defined in terms of w. In terms of
matrix elements

<q|T|p>= exp[w(q,p)]= <qlexp(-TH)|p>

In fact, T is what we called before T(—iT). If we write the trace in terms of the eigenvalues, €q,
of H we have

rss@othat Z= trace T(-iT)N =trace e NTH= % exp(—NTE€q) i3,






From Classical to Quantum:
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qy .92, 4N

If you recall the definition for matrix multiplication,

< q1|TS|q3 >= Z < q1|T|g2 >< q2|S|q3 >

q2

you will see at once that the partition functionis 7 = Z <q|TV|q >

q1
so that Z= trace TV

In order to get something familiar, imagine that T is an exponential of a Hamiltonian,
specifically T=exp(-TH)), where H is a Hamiltonian defined in terms of w. In terms of
matrix elements

<q|T|p>= exp[w(q,p)]= <g|exp(-TH)|p>

In fact, T is what we called before T(-iT). If we write the trace in terms of the eigenvalues, €q,
of H we have

rss@othat Z= trace T(-iT)Y =trace e NTH= % exp(—NTEq) i3,
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Summary
:
Z = trace, trace,, ...trace,, | | exp(w(g;,q;-1)) (4.10)

=1

or in a more compact notation
Z=Trace(q exp[W{q}] = trace exp[-HTN] iii.4

Note that we use the word “trace” to represent both a quantum and a
statistical mechanical sum.The trace in equation 4.10 is a statistical sum.
The first Trace in equation iii.4 is a statistical mechanical sum, the second is
a quantum mechanical trace.We use a capital “T"” when we sum over many
variables and a lower case one when we sum over only one or a few.

The point of the argument is that they have a direct translation into one
another: Every quantum mechanical trace can be converted into a one-
dimensional statistical mechanics summation and vice versa.
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Feynman showed how to convert problem of quantum mechanics into a path integral. Ve have
essentially put his path on a one-dimensional lattice.

Every quantum mechanical trace can be converted into a one-dimensional statistical
mechanics problem and vice versa. More generally, d dimensional quantum
mechanics converts to d+1 dimensional stat mech. (Here, 0 dimensions of
quantum becomes 1 of statistical mechanics ).

The basic idea about going up and back
between the two disciplines is due to
Feynman, and his invention of the path integral.
As far as | know, Feynman never quite said the
sentence written in blue. The point was
pursued and made explicitly by Kenneth
Wilson, and used in his invention of the
modern renormalization group. I'll come back
with more about that later.

Richard Feynman
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Feynman’s case: particle mechanics

The simplest and most fundamental problem in quantum theory is a particle in a one-
dimensional potential, H=p?/(2m) +U(q), where p and q obey [p,q]=-i h. However, we
shall stick with units in which h=1.

We assert, without proof, that the exponential of this operator has the matrix element

<q|T(-iT)|q'>=<qglexp[-TH]|q"> = exp[-m(q-q" )¥(2T)-TU(q)] ii.5

for small values of T. Because Tt is small, q and q" are necessarily close to one another. For
that reason, we can replace U(q) by U(q’) or by [U(q)+ U(q')])/2 in the analysis that follows.

(These choices are close to equivalent, but they are not the same because p and q do not
commute.)

Calculate the matrix element of exp[-Tp?/(2m)] between position eigenstates.

Imagine that we wished to know the eigenvalues of the Hamiltonian, H. We could, for
example, numerically calculate the integral of products of matrix elements as given above.
As the number of steps times T goes to infinity we would pick out the lowest eigenavlue as
the leading term in

trace T(it)" = trace e™* = 2 e Ne. .
Pirsa: 09090113 = Page 43/56

This approach provides a powerful method for both numerical and analytic approaches to
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Calculate the matrix element of exp[-Tp?/(2m)] between position eigenstates.
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The Ising Linear Chain

We calculate the partition function in the simplest case of this kind.
Take an Ising model with spins o; at sites j = 1,2,..., N. Take
the magnetic field to be zero and arrange the couplings so that
immediately neighboring sites (; and (; + 1) have a coupling K.
The statistical weight for two neighboring sites having spin-values
o and ¢’ is then defined to be

" = (a|T o) (4.17)

inear chain TTlTTlllTTTT

This kind of two by two system is generaliy analyzed in terms of the Pauli
matrices which are the four basic matrices that we can use to span this two by

two space. They are

1= (3 8)on= (2 )omm( F)omm (3 5).
0 1 1 0 - t 0 ' 0 -1

(4.18)
In going up and back between the notation of equations (4.17)
and (4.18) we have to think a little. In (4.17), we interpret O and
0’ as eigenvalues of the matrix T3. Any two by two matrix, M,
can be written in terms of the eigenstates corresponding to these

eigenvalues:

o (1M =1) (~1]M]1) )
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The transfer Matrix

A useful form for these Pauli matrices is

:ojl!a'jl = O, . (olrlo’) =4, ., (4.19b)

(olmle’) = iod, . (olrsle’) = 0d, ,

these matrices have a very direct physical meaning.

The matrix T3 is diagonal in the O-representation and represents
the spin. Conversely, T1 has only off-diagonal elements. It is an
operator whose effect is to change the O-value.

The matrix element of the transfer matrix, T, is equal to
e when 0 = 0’ and equal to e " otherwise. In
symbols,

. l « o0 l - oo _
(e|Tlo’) = - ™ 4 : =" (4.20)

)
A “

=ek1+ e KTy

Here the matrices in bold are the ones defined in eq.4.19b. We can
also write the result as an exponential, T=exp(-H) where
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Dual Couplings

-H = Hij-l {- ETZ |i1‘22}

The quantity £ is said to be the dual of K. For a simpler notation, we
call this function by another name so that the dual of K is D(K) This
name implies in part that the function D(K) has the property that if it
is applied twice that you get precisely the same thing once more:

D(D(K))=K  or D(K)=D(K)
How would | find the function D(K)?
K= D(K)=[In (tanh K)]/2 Ko= [In( sinh 2K)]/2

This function has the property that when K mf,‘;ﬁ'ng AT T T T T T T TR

is strong its dual is weak and vice versa. This PN T T T T T T T LR
property has proven to be very important in 1 E i~~~ diagon
both statistical physics and particle physics. HEINCT T T T -
Often we know both a basic model and its TELNL LA LT YL

dual. Often models are hard to solve in o o - g :

strong coupling. But the dual models have 025 |

weak coupling when the basic model has o

strong coupling. So then we get an indirect

Pirsa: 090
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Dual Couplings

H = Kol + K1 (4.22)
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Solution of the one-dimensional Ising model

From equation 4.20, we find that the partition function of the one-dimensional Ising model is

Z = trace (e®*1 + e %)V

But the trace is a sum over eigenvalues and the eigenvalues of 7,
are plus or minus one. Thus, the answer is:

Z = (2cosh K)" + (2sinh K)V (4.25)

LY

If N is very large, the first term is much larger than the second
and thus in this limit of large system size:

8F =InZ = N In(2 cosh K) (4.26)

What quantum mechanics problem have we solved’
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More about quantum from the Long Chain

We should be able to say more about quantum problems based upon the analysis of
the long chain. For example let us imagine that we wish to calculate the average of
some quantum operator, X(q), which happens to be diagonal in the g-representation.
The text book goes through a long song and dance to prove a rather obvious result.
You have seen that the trace in equation 4.10 pushes us into a sum over energy
states, and if N is very large that sum reduces to a projection onto the ground state
of the system. Specifically,

N

Z = trace, trace,, ... trace, l_[f‘xpl:. w{(q;,q;<1)) (4.10)

i
i

becomes Z=exp(-T€o)

So if we insert an X, for any any operator X, in that sum the result should give what happen:
to that X in the ground state, specifically

(1/Z) Trace (p exp[W{g}] X= <0| X(q) |0>

In this way, we can use statistical mechanics to calculate the average of any operator in the
ground state. If we do not take N to infinity, we can do the corresponding calculation to
calculate the average of any operator at a inverse temperature (- value) equal to N t.

By playing with the times in an appropriate fashion, we can even calculate time-dependent
3
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correlation functions in the ground state or in a finite-temperature state.



