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Abstract: We use black holes to understand some basic properties of theories of quantum gravity. First, we apply ideas from black hole physics to
the physics of accelerated observers to show that the equations of motion of generalized theories of gravity are equivalent to the thermodynamic
relation $\delta Q = T \delta S$. Our proof relies on extending previous arguments by using a more general definition of the Noether charge entropy.
We have thus completed the implementation of Jacobson's proposal to express Einstein's equations as a thermodynamic equation of state.
Additionally, we find that the Noether charge entropy obeys the second law of thermodynamics if the energy momentum tensor obeys the null
energy condition. Our results support the idea that gravitation on a macroscopic scale is a manifestation of the thermodynamics of the vacuum.
Then, we show that the existence of semiclassical black holes of size as small as aminimal length scale |_{ UV} implies a bound on a gravitational
analogue of 't-Hooft's coupling $\lambda_G(I)\equiv N(I) G_N/I"2$ at all scales $l \ge| {UV}$. The proof is valid for any metric theory of gravity
that consistently extends Einstein's gravity and is based on two assumptions about semiclassical black holes: i) that they emit as black bodies, and ii)
that they are perfect quantum emitters. The examples of higher dimensional gravity and of weakly coupled string theory are used to explicitly check
our assumptions and to verify that the proposed bound holds. Finally, we discuss some consequences of the bound for theories of quantum gravity in
genera and for string theory in particular.
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 The Einstein equations for generalized theories of
gravity and the thermodynamic relation 0O=7 0§
are equivalent

* The gravitational analogue of 't Hooft's coupling
ho(1) =N Gy, [ is bounded A(]) <1 for I > 5,




The Einstemn equations & 0oO=70 38
are equivalent
Idea: (Emstein-Hilbert, Jacobson "95)

« Equivalence principle =® free falling observer can
define a local Rindler (acceleration) horizon

» Rindler horizons are associated with
thermodynamics 00, 7, 0§

7 -Unruh temp., 0 O — energy flow across the
horizon, 0§ - entropy (entanglement)



Extension to generalized metric
theories of gravity

Idea: (R.B+Hadad)
* Use semiclassical BHs to define 00, 7, 08

for acceleration horizons 1n generalized theories
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Temperature 1

%- Rindler horizon killing vector
K — Surface gravity

Define temperature as for BHs
(limiting procedure)




Energy measured by an
observer hoovering outside the

: Y — volume element
horizon

.7# Rindler horizon
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Y — volume element
. 7¢# Rindler horizon
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Energy vanation due
to causal boundary

Agrees with Jacobson
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Temperature T

%- Rindler horizon killing vector
K — Surface gravity

Define temperature as for BHs
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Energy measured by an
observer hoovering outside the

. Y — volume clement
horizon
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Energy vanation due
to causal boundary
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Idea: Elizalde+Silva "08
for f (R) differs from
Jacobson '95, Eling,
Guedens, Jacobson '06
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€ 1s the area element
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S = _T / Ve (”P Fm‘*) €d Idea: Elizalde+Silva "08
. ~ Flabed - for f (R) differs from
Another wav: find a quantitv dS such that the equations 6S =1 T 6Q
arc equivalent to Einstein’s egs.
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Equations of motion for generalized
theories of gravity
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Equations of motion for generalized

theories of gravity
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The Einstein equations & & O=
are equivalent
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The Einstemn equations & 0oO=7 0S8
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The Einstein equations & o0 0=
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The Einstein equations & o O=
are equivalent
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Bonus
The NCE obeys the 2nd law




Bonus




The Emsteimn equations & 0oO=7 098
are equivalent

causal barrier entropy behaves
in a similar way to BH entropy.

causal barrier entropy 1s associated with
entanglement with hidden d.o.f

turn the logic around = BH
entropy results entanglement with hidden d.o.f




Bonus
The NCE obeys the 2nd law
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Null Energy Condition




Equations of motion for generalized
theories of gravity
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Bonus
The NCE obeys the 2nd law

Null Energy Condition




The Emstemn equations & oO=7 038
are equivalent

causal barrier entropy behaves
in a similar way to BH entropy.

causal barrier entropy 1s associated with
entanglement with hidden d.o.f

turn the logic around = BH
entropy results entanglement with hidden d.o.f
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The NCE obeys the 2nd law
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The Emstemn equations & 0O=7 038
are equivalent

causal barrier entropy behaves
in a similar way to BH entropy.

causal barrier entropy 1s associated with
entanglement with hidden d.o.f

turn the logic around = BH
entropy results entanglement with hidden d.o.f




The Eimnstein equations & 0O=7 0S8
are equivalent

quantum gravity 1s not
fundamental *only* thermodynamic/macroscopic
description=>» at some scale a microscopic
description without gravity should exists
(Sakharov’s induced gravity ?. gauge-gravity
duality?, ...?)



A bound on the effective gravitational
coupling from semiclassical black holes

As(l)=N Gy [ %is bounded A (! ) <1 for I > .,
N hight species m < Ay, I’ < m, weak coupling
Metric theories =2 the equivalence principle

[ - scale above which exchanges of metric
perturbations processes become strong

* The previous parametrization is not very useful = need another
path to prove bound for generalized theories of gravity



—

Defmltl()ﬂ ] SCBH = ] )2 '*‘k;f*\
- = 9
rho(l)=NGy [~

Proof of the bound ».¢7)<1 for7>17

1. /L;_; ([ ) < lfOf ] = Z\:E_ﬁ

2. lgop 18 an absolute lower bound on the size of
semiclassical BHs in any consistent theory of
gravity.

In any consistent theory of gravity [gq-5, < [
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Assumptions about SCBHSs

M ,Rq,B=U/T




Assumptions about SCBH
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Assumptions about SCBH
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Assumptions about SCBH




A bound on the effective gravitational
coupling for Einstein gravity

Einstein gravity 1/ = M2 R

RsM > N
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A bound on the effective gravitational
coupling for Einstein gravity

Einstein gravity M/ = M2 R

R S M > N
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: dln M
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A though experiment: Assume /, ;<[ 5,
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A though experiment: Assume /, ;<[ 5,
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- though experiment: Assume /[, ;,<l¢ 5
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A though experiment: Assume /, ;<[5

Curvature < 1.-_---"' e T




A though experiment: Assume /,;</g 5,

Curvature <\1,.. - . SRR




A though experiment: Assume /, ;<[ 5,

Curvature <1, | =
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Generalized theories

All coefficients are +ve for ghost/tachyon free theories, mass screening
that reduces the acceleration of the probe not possible!
"ectors urelevant for conserved sources
Previous parametrization as an expansion in powers of curvature tensor
ot useful!
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* Need to assume that hy (r) < 1 for r-Rq
for anv extension of Emstein gravity
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* Need to assume that h(r) < 1 for r-Rq
for anv extension of Eimnstein gravitv
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Examples

* Compactified D=4-+n Einstein Gravity for r < R
 Weakly coupled string theory
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Examples

* Compactified D=4-+n Einstein Gravity for r < R
 Weakly coupled string theory




Examples

» Compactified D=4+n Einstein Gravity for r < R
« Weakly coupled string theory

number of the energetically-available
species in string theory seems to be
exponentially large?!




Examples

» Compactified D=4-+n Einstein Gravity for r < R
« Weakly coupled string theory

number of the energetically-available
species in string theory seems to be
exponentially large?! Yes but

Non-rot.—2 non-rot.




Consequences

B Trlylahty Of QG (__1:}: — {) fOI' [[T' —P U(L/\[T- —>» Q0 )

Not possible to consistently renormalize any
theory of QG with a fimite fixed number of fields

(N=8 SUGRA)




Consequences

The Sakharov induced gravity limit for a finite UV cutoff

(the Tree-level E-H removed)

The renormalized G, remains finite and bounded




Consequences: String Theory

Weak coupling




Consequences: String Theory

Weak coupling

Saturation
w/. N ~ 100s

—_— ‘\'*
- A~ Agur @ GUT scale

Acur = QGuT:\

N ~#bosons > N ~ group rank




Consequences: Entropy bounds

Einstein gravity

more general? proof ?
Saturation 1s very interesting!




Consequences: String Theory

Weak coupling

Saturation
w/. N ~ 100s

e ‘\"
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N ~ #bosons > N ~ group rank




Consequences

The Sakharov induced gravity limit for a fimite UV cutoff

(the Tree-level E-H removed)

The renormalized G, remains finite and bounded




Consequences

v rIagvse . —> Ofor /. — O0(A,,. > x0)

Not possible to consistently renormalize any
theory of QG with a finite fixed number of fields

(N=8 SUGRA)




