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Abstract: The screening of electric charge in plasma with Bose condensate of a charged scalar field is calculated. In all previous calculations before
2009 the effects of Bose condensation have not been considered. Due to the condensate the time-time component of the photon polarization tensor
in addition to the usual terms k-sgquared and Debye mass squared, contains infrared singular terms inversely proportional to k and k-squared. Such
terms lead to power law oscillation behaviour of the screened potential, which is different form Friedel oscillations known for fermions. An
analogue of Friedel oscillationsin bosonic caseis aso considered.
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Similar results, at T' = 0, obtained by
. Gabadadze, R.Rosen:

Phys. Lett. B666 (2008) 277;

JCAP 0810 (2008) 030:

JCAP 0902 (2009) 016.

Effects of charged bosonic condensate
were not considered before 2008.
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Why it may be interesting?
1. He-condenstation in dense stars.

2. Cosmological plasma with large

lepton asymmnzetry.
3. Normal solid state physics?
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Chemical potential is introduced to
describe asymmetry between particles
and antiparticles in thermal equilib-
rium:

[ — )T 1} !

with u = —[.
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Maximum value of bosonic chemical
potential is mp. If charge asymmetry
is so large that © = m pg cannot ensure
1t, bosons woyld condense:

f5 = C6®)(p) + [ E=mD)/T _ 3 E

equilibrium solution of kinetic equa-
tion. if and only if u = mp.
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Well known that electric charge., Q,
in plasma is screened according to the
Debye law:

Qs Q exp(—mpr)

Awr 47T ’
because the time-time component of
the photon polarization tensor, due
to interaction with medium, acquires
the form:

Lir) —

2 2

Hgg(k,w =0) =k° mp .
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Effects of bosonic condensate lead to
infrared singular terms:

4
2 2 2 M my
l_[()():k —I—EZ@ (mo | | ;)> ,

and creates oscillating screening:

exp|—+\/e/2 mor| cos[\/e/2 mar] |

r

Moreover, 1/k term, present only at
T # 0, leads to power law screening.

~
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Effects of bosonic condensate lead to
infrared singular terms:

A
2 2 3, W my
l_[()():k —I—EB@ (mg I | ;)) .

and creates oscillating screening:
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Surprised by such outrageous behaviour
we did not publish the paper for some
time but then found out that simi-
lar, but not exactly the same proper-
ties of screening., are known in purely
fermionic plasma: Friedel oscillations
discovered half a century ago and ob-
served In experiment.
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Theory: electrodynamics with charged
fermions 7 and bosons ¢:

1 .
o= —ZFWFI;V + (8 +ieAy,)d|*—

—mp|* + P (id —eA — mp)i.
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Theory: electrodynamics with charged
fermions v and bosons ¢:

1 .
o= —ZFWF#;” + (8 +ieAy)d|*—

—m% | + P(id — eA — mp)y.
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(29 —m)Y(x) = efP(x),
(80" + m*)p(x) = eJ y(x),
O, FF(x) = eJH(x).

where the currents .J are defined as

ng — —1 [SHA” -+ 2Au3“’} ¢ + eA“A”Cb,

T = —i |(pTore) — (86)0| +
2e AP |p|% — PyHap .
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Solve these operator equations per-
turbatively:

¢:®O+EGB*~70!
Y =vo+eGp*x AP,

substitute the expressions for the cur-
rents into Maxwell equations and av-
erage over medium.

The usual imaginary time (applicable
only for equilibrium case) or real-time
thermal field theories may be used but
with Bose condensate we found it sim-
pler to start from the first principles.:
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The zeroth order fields satisfies the
free equations of motion:
(80" + mB)do(x) = 0.
(¢d = mp)ho(x) =0

and are quantized in the usual way

i dgq —1qx '

3 = |
" \/((i;r):%\/ EF[C(Q)u(q)e_“qur
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Calculate electromagnetic current:

Jp, = JM[A(I? ®0; 77[)0] ’

substitute this quantum current into
Maxwell equa'{lisr?ion for classical electro-
magnatic field, take average over medium,
separating vacuum and particle states:

(@'(q)a(d)) = fB(Eq)d®)(qa — d).
(a(q)a’(d)) = [1+ fB(Ep)]d®) (q— ).
(c'(@)e(d)) = Fr(Ep)d®) (q — d),
(c(a)cT(d)) =[1 — fr(Ep)]d®)(a—d).
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Obtain the well known result, but with
arbitrary occupation numbers:

[k°gH” — KMEY + TIMY (k)] Ap (k) = e JH(k)

where the bosonic part of the photon

polarization tensor has the form:

I, (k) = 62/ i fB(E) + fB(E)]
ESRe (27)3E

(29 — k)u(2qg — K)o

2((q — k)2 — m%)

e k) 9.
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Fermionic part:
d3
I, (k) = 262/( 3E Jr(E) + fr(E)
| gk - @ — aPk sty + Gulk + a)e
(k + q)2 — m%
1 qu(q — k)p + qpkpguv + qM(q — k)u-

| 2 3
(k —q)° —m%




Integrate over angles in istropic plasma:

15 (0, k) = i ‘mdQ¥Wf-+f}
00 ? - 271'2 0 EB =, =
 E2 B9+ k|
1 B 1n 9+
kq 2qg — k
7. O 2
e dq q _
R () — fr+ fF

272 0 EF
AFEZ2 — k2 29 + k

2 . ( F )111 q +
2kq 2qg — k
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Fermionic part:
F > [ d’q
115, (k) = 2% | S [Fr(E) + Fr(E)
gk -+ a)y — 4Pk gy + aulk + @)y
(k + q)? — m¥,
qu(q — k)u + qpkpguv + qM(q — k)u
(k — q)? — m%,




Integrate over angles in istropic plasma:

15 (0, k) = ) ‘mdeWf-+f}
00 ’ . 271'2 0 EB 2 =
 E2 1%+ k|
1 B 1n 9+
kq 2qg — k
2 O 2
e dq q s
N (i) ———— fr+ fF

272 0 EF
AFE2 — k2 29 + k

2 . ( F )ln q +
2kq 2qg — k
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Equilibrium Bose/Fermi distributions:

1

IB.F =

-1’

exp [(E — p)/T] =
If 1 g reaches maximum possi

ble value

m g Bose condenation may take place:

fB = C8%)(q) - !

exp[(E—mp)/T]+1




Integrate over angles in istropic plasma:

B (0, k) = — ‘MdeWf-+f}
00 ’ = 271'2 0 EB 2 =
 E2 1%+ k|
1 B 1n q+
kq 2qg — k
2 O 2
e dq q o
RE (IR — fFr+ fF

272 0 EF
AE2 — k2 29 + k

9 . ( F )ln q +
2kq 2qg — k
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Integrate over angles in istropic plasma:
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Equilibrium Bose/Fermi distributions:

1

IB.F =

-1’

exp [(E — p)/T] =
If i g reaches maximum possi

ble value

m g Bose condenation may take place:

fB = C8®)(q) - 1

exp[(E—mp)/T]+1




In the limit of small k£ the integral can
be taken analytically:

2 2 2 |
B — e2 | b4 mpT I C(1+4myp/k°)
= Y2k (2mw)3mp

where function h(T') is independent of
k and has the limiting values:

h(T) = T?/3, for highT,

h(T) = ¢(3/2)(mpT?)"/?/(27)?/2, lowT.
NB: k! appears only if ©wg = mp.
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Equilibrium Bose/Fermi distributions:
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IB.F =

-1’

exp [(E — p)/T] =
If g reaches inaximum possi

ble value

m g Bose condenation may take place:

fB = C83)(q) - :

exp[(E—mp)/T]+1




In the limit of small k£ the integral can
be taken analytically:
B _ 2|, mET C(1+4m%/k?)

1lon —€e” |+ :
aia T2k (2mw)3mp
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Asymptotics of U (r) is determined by
the singularities of integrand in the
complex k-plane:

Qr / d°k exp(ikr)

(?‘) =

(2w)3 ) k2 +Moo(k)
/x dkk exp(ikr)
Im :
27‘?"’?” k2 + IIgo(k)

If TIgg = m? D we obtain the normal
Debye screening due to the pole of
the integrand at £k = 1mp. Infrared
terms due to Bose condenstate shift
the poles from the imaginary axis and
leads to oscillatorv screenine. g
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Fermionic part:
d3
K, (k) = 282/( )3E Fr(E) + fr(E)
qu(k + Q) p'— aPkpguy + qu(k + q)u
(k + q)2 — m3,
| qv(q — k)u + qpkpguv 3 QM(Q R k)u-

| 2 5
(k —q)* —m%
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Equilibrium Bose/Fermi distributions:
1

exp [(E — p)/T] £ 1
. |, zk Gx)mp

W

IB.F =

where function h(T') is independent of
k and has the limiting values:

h(T) = T?/3, for highT,

h(T) = ¢(3/2)(mpT?)"/?/(27)%/2, lowT.
NB: k—! appears only if wg = mp.




Pirsa:

00000000

Asymptotics of U (r) is determined by
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Fermionic part:
d3
I}, (k) = 2-‘32/( "y Jr(E) + fr(E)
-QV(k + @ p— 9Pkpgur + qu(k + q)v
(k + q)2 — m%
| qv(q — k)u a3 qpkpguv - Q;L(q — k)u-

| 2 5
(k —q)° —m%
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Equilibrium Bose/Fermi distributions:
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In the limit of small k£ the integral can
be taken analytically:

2 2 x|
Hg):eQ - mpT  C(1+ 4mp/k7)
| | 3
. 2k (2Z)°mp
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Fermionic part:
1t (k) = 22 ' f
137 rh /( )3E F( )"‘fF( )
-QV("? + @ us— akpgur + qu(k + q)uv
(k + q)2 — m3
| qv(q — k)u + qpkpguy I QH(Q — k)u-

| % 5
(k —q)° —m%
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Obtain the well known result, but with
arbitrary occupation numbers:

[k°gH” — KFEY + TIMY (k)] Ay (k) = e JH(k)

where the bospnic part of the photon
polarization tensor has the form:

. d> _
g, (k) = e [ i [£6(E) + Fa(E)
(29 — k)pu(2qg — k)u

2((q — k)2 — m%)

===




Integrate over angles in istropic plasma:

' dq q°

2. (0, k) = F
00(0, k) on? Jo Ep fB+ B
i - =
1 B 1n #9 +
kq 2qg — k
2 0 2
e dq q _
IT50(0, k) = — fr+ fF

272 0 EF
AFE2 — k2 2q + k

9 . ( F )111 q +
2kq 2qg — k
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Asymptotics of U (r) is determined by
the singularities of integrand in the
complex k-plane:

Q /d3k exp(ikr)

(?‘) =
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the singularities of integrand in the
complex k-plane:

Ur) — Q /d3k exp(ikr)
(2m)3 J k2 4 IIgo(k)
Q - @/‘C’O dkk exp(ikr)
- :
272y 0 k2 + Hoo(k)

If IIgg = sz, we obtain the normal
Debye screening due to the pole of
the integrand at £k = 1mp. Infrared
terms due to Bose condenstate shift
the poles from the imaginary axis and
leads to oscillatory screening.
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Friedel oscillations in fermionic plasma:
usually precribed to an abrupt cut-off
of the integral over dq for strongly de-
generate plasma at 1T' = 0.

More generally, they are induced by
the singularities of IIgg due to pinch-
ing of the integration contour over dq
by the poles of fg(FE) at:

)

qi = [p £ wT (2n + 1)]2 — mp,

where n runs from 0 to infinity, and
log branch points at q;, = £k /2.
IIgo has singularities at £ = 2qy,.
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In the limit of small k£ the integral can
be taken analytically:
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W

where function h(T') is independent of
k and has the limiting values:

h(T) = T?/3, for highT,
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Integrate over angles in istropic plasma:
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Friedel oscillations in fermionic plasma:
usually precribed to an abrupt cut-off
of the integral over dq for strongly de-
generate plasma at 1T' = 0.

More generally, they are induced by
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Contribution of n-th singularity to U (r)
at large r:

Q ey —yr—+21q,T
Eir) — Im /0 tdy ke “*dn

22y

(—ATlgp)
[k2—|—l_[( ) }[kﬂ—l—ﬂ(m ]

Here k = 2q,, + 1y.

Discontinuity AIlgy = €Ty — can be
found by moving the integration con-
tour in g-plane over n-th pole.




After simple integration:

sin(2ur)e—27(2n+1)TT

dominates.

Pirsa: 09090105




Pirsa: 09090105

For T' — 0 all terms give comparble
contribution and summation over n in
relativistic limit gives:
e’QT sin(2ur) e 271
0 1671_2?,.3“3 1 — e—4nrT
e*Q sin(2ur)
643 rdps

for Tr < 1.
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In non-relativistic case:

where g = \,éQﬁmF.

Qe*mp COS(ZQF‘T‘)
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For T' — 0 all terms give comparble
contribution and summation over n in
relativistic limit gives:
e’QT sin(2ur) e 271
— 16772?3“3 1 — e—4nrT
e*Q sin(2ur)
643 rdps

for Tr< 1.
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In the limit of small k£ the integral can
be taken analytically:

2 2 2 |
H080:e2 " mpT  C(1+ 4mp/k7)
| | 3
. 2k (27)°mp

where function h(T') is independent of
k and has the limiting values:

h(T) = T?/3, for highT,

h(T) = ¢(3/2)(mpT?)"/?/(27)?/2, lowT.
NB: k! appears only if ©wg = mp.
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Integrate over angles in istropic plasma:

.

' dq q-
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Contribution of n-th singularity to U (r)
at large r:

Q < S
alr) = Im/o tdy ke “*dn

2y

(—ATlgo)
[kQ—I—H( ) }[k.z_'_l—[(”) }

Here k£ = 2q,, + 1y.

Discontinuity AIlgy = €Ty — can be
found by moving the integration con-
tour in g-plane over n-th pole.
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After simple integration:

Qe’T _on(2
Unir) = 167T~q3 5 sin(2pur)e SRt

If T'r > 1 the lowest term with n =1
dominates.
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For T' — 0 all terms give comparble
contribution and summation over n in
relativistic limit gives:
e’QT sin(2ur) e 271
N 16@?3“3 1 — e—4nrT
e?Q sin(2ur)
T 64m3 rdps

for Tr< 1.
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In non-relativistic case:

where qp = \£2amp.
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Screening in bosonic plasma.
I. Contributions of the poles:

< 4

;) ;) i m !mi)
k< + e” *méi 1 e =

. k k-

where
9 C (F)2
el — - h(T

m:i’ — m2BT/2,

m?zl — 4mpgC/(27)°.

(T, pF),
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Many different limiting cases. E.g.

for m% <L em%:

4 S s
Q _ m 2
e EMQT 24 e ™M

4Tr |o e2m0

U(r) =

In the opposite limit, e*m 4 < 4e m%

and especially large m»o:

U(r) = %e‘ﬁ (\[m)r) .
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Since IIgg is an odd function of Kk,
the integral over imaginary axis of k&
does not vanish and gives power law
asymptotics. If mo 7% 0 it behaves as

o 3
U(r) = ——ppks.
7T‘€‘T‘6m2
BT A0 pn—mp. but C =0
2Q
Uiir) = ‘ ;
(r) ntesrtme T

So the signal of the condensate forma-
tion is a strong decrease of screening.
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Bosonic analogue of Friedel oscillations.
The same type of singularties due to
pinching of the g-contour by poles of
fp(E) and the branch points of the
logarithm leads to singularities of HOBO
in the complex k-plane.

The difference is that the poles move

to zero if T' — O:

qn = (4i7rnTmB)1/2 (1 + *iwnT/*mB)l/‘z .
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Since IIgg is an odd function of Kk,
the integral over imaginary axis of k&
does not vanish and gives power law
asymptotics. If mo 7% 0 it behaves as

3
U(r) = 12?7”1 8
ﬂ‘&‘rﬁmg
BT A0 n—mp, but C =U;
2Q
Uiir) = ‘ ;
(r) e tme

So the signal of the condensate forma-
tion is a strong decrease of screening.
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Bosonic analogue of Friedel oscillations.
The same type of singularties due to
pinching of the g-contour by poles of
fB(E) and the branch points of the
logarithm leads to singularities of HOBO
in the complex k-plane.

The difference is that the poles move

to zero if T' — O:

qn = (4i7rnT'mB)1/2 (1 + ’ixn'nT/far'irz,B)1/2 ;
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Bosonic analogue of Friedel oscillations.
The same type of singularties due to
pinching of the g-contour by poles of
fB(E) and the branch points of the
logarithm leads to singularities of Hg)
in the complex k-plane.

The difference is that the poles move
to zero if T'— O:

qn = (4i7rnT*mB)1/2 (1 + ’iﬂnT/’mB)l/g :
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At large n and T' # 0 the screened
potential, in relativistic limit, is dom-
inated by n = 1:

w2 Tm?
Uh5(r) = ? B —Z cos Z ,

2e2 :r'~p,F
where Z = 2r/2mmpgT > 1.
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For a small Z the effective number of
the singular terms is ng¢¢ ~ 1/Z= =
1 and summation shold be taken over
them. On the other hand, the singu-
lar terms dominate over k2 term in
Igo if n < 10 3(mp/T)L/3. In this
interval of the parameter values the
potential behaves as

3Q

2e2T2m%r6 Ind (/8mpTr)

U(r) =
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At large n and T' # 0 the screened
potential, in relativistic limit, is dom-
inated by n = 1:
w2 Tm?
Uh(r) = C‘;? B —Z cos Z,
2e2 r2p3 )

where Z = 2r/2mmpgT > 1.







Integrate over angles in istropic plasma:
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