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description of the individual systems leads to
unnatural theoretical interpretations, which
immediately become unnecessary if one
accepts the interpretation th
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"But we er observe macroscopic objects tg he

in
4 superpesition stgge!"

‘How do you know? Havye You ever looked?- S

Suppose the siage 15 a coherent Superposition of twao

non-overlapping wga ¥e¢ packets:

Pl ) = () &

The pesition probability density is

G = joGe) + Plx +3)|°
=190 + |G+ 32

— No interference because the wave packets do not overlap,
— No differenc-e from an incok assical) mixture.

3

The momentum probabilit . density

p

— It contains 3 very fline-grained interference patterm.

— Observable in prnnciple. but very difficulr 1o detect if the

Sepamtion J g niacroscop




The Ensembie i<

the set of aj] Systems that have been Or can be.
pPrepared in the appropriate state.

It may involve S€parate preparations of diffe
copies of the system_or repeated p
single copy of the system.

Tent
reparations of 3

The function of the St

(vector. Operator, or wave function) is
to generate probability
observables.

Ate

d:qtrir:u."::

ons for any and all

It may even be identified it -tion of probability

distributions.




Some mi:-‘m:u:—:preta Hons:

If 1¥) = Z, ¢, IE) then
the ensembie is not an

ensemble of system
eigenstates {|E,)}.

ms in

- The mixed state o= 2, 1®)(D,|e;
1s not an ensemble of systems e

belongs to one of the pure states {le)}.

ach of which

- The state vector 1S not an "element of rcqi_it_'.' 2

freiecf: the extreme ontic position)

- The state vector does not sent knowledge.
(reject the extreme e

e :‘i"‘."itiL}!"l}




Some miﬁm:erpr& tations:

- If 1¥) = 2, ¢, IE)
the ensembie is
eigenstates {|E

then
NOt an ensemble of syst

ems in
3B

- The mixed state o = 2 18 (8,]e;
1S not an ensemble

belongs

of systems each of which
S to one of the pure states {l¢,)}.

- The state vector js not an "element of reality”.

(reject the extreme ontic position)

- The state vector does not sent knowledge.

(reject the extreme ep.




Ehrenfest's Theorem

Let H =p2/2m + V(@) Ther

dg/dt = (i/#A) [H,§] = p/m

db/dt = (i/#A) [H,p] = F(Q) |

vhere F(x) =-VV(x)

Take the 3 erage in some state

d{q)/dt = {(p)/m

d{p)/dt = (F(q))
If (F(Q)) = F({a) {Q 0 3
Classieal orbit




Correcdons to Eherenfest's Theorem
~—=1ESLs | heorem
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Classical Ensemble, Liouville equation:

e = p 2 4 £ ol
St BPLL) = - — —o(q.p. 1) - Tlgq) —p(q,p,t)
gL M aQg ap
{Qc = [[gpta,p,.t) da dp
{Ple = [[p o(a.p,t) dg dp
d{g)c/dt = {p)e/m
d{p)c/dt = fl-{q}:ﬂ:.j,t. dg dp
Expan powers o = —{ok
d 32
L Ple = Fl{@)c) +—((5q)2). ——F{{q)c) +
:|_— 2 ’:(: L:E

The centroid of a classica] ensemble need

not follow a classical rajectory.




respondence

id of 2 QM state ‘Ompared to an jndiy dygal
classical trajectory
as a criterion of classfcaiir_n-':

- Corrections to Ehrenfest's theorem depend only on
the width of the state.

- The corrections have NO systematic dependence on
f. (SonotQM in origin)

- Ehrenfest’s theorem fails when the state-width
grows sufficiently large, which can happen on an
observable time scale for chaotic macroscopic

systems.
(ex.: 20 years for tumbiin Hyperion)
- This conclusion holds fo, th pure and mixed

quantum states, so decolhierernce (which changes
pure states into mixed states) js urrelevant.




Advantages of Liouville Correspondence
————
(compare gquantum probabilities tp classica]
ensemble probabilities)-

- Ensembie quantume-classica] differences are not
sensitive to the width of the initia} state.

- Ensemblie QC differences scale with
(indicating a quantum origin).

- Ensemble QC differences -+ 0 as £ - 0
(decoherence is not essential
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Conciusions:

The classical limit of 4 quantum state is an

lassical trajectories.

The role of the quUantum state is as 5 generator of
Probabilities for an ensemble of simj]

Prepared systems.

ar] \4

But this raises another

What kind of probability is o

au. ntum probabiligy?




(1) Erequrncy and Ensemble theories
frequrncy Ensemble

?rﬂb::b.lii_‘-' identified with a limst frequency ifn an
ordered sequence.

—{early frequency theory)

Probabi]ir}' identified with a Measure on a set
(which need not be ordered).
—(Kolmogorov)

(2) Inferentia] probability
—{E.T. Jaynes, ' Probability Theory: The Logic of
Science”, 2003)

(2.1) Objective version
- Probability as Inductive Inference:
- a logical relation amonge pPTropositions that is
weaker than entailment

(2.2) SH:'.'_'r_'::f:'ru DErsion
- Incomplete knowled_ .
- De_grr':i_-s of reasonable belief,

(3) J"rnljerc-:lr_‘.':

- a form of causality weaker than determinism.
Pop

A -
- L

per)




ne difierences between

Censity I Lrrrerenity

I ] ' Pprobability

P

ropensity:

P(AIS) is the prope

nsity for A to occur
the physical condition S

under

The second argument S must describe the state

4 Sequence of events that
correspond to the preparati

of the system. or

ont of the siagte

i,
Consequently, the applicability of Bayes
theorem is subject to restrictions

Inferential probability:

In P(AIB), the argum

Y and B may be any
pPropositions.
.—.—I—_____‘_

Bayes theorem applies without restriction.
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Juantum i"‘rnj:'._-s!niz;}_' is defined,

' X

‘O purposes of this talk, as that which is
calculated from ftamuiliar expressions such as:

W)~

iy 12 e = =¥ &
Kanl¥)* , where d, 1S an eigenvalue of

sSome observabje




Some a::n’bu;:-._ of Ch lantum Probability-

LIV

always conditional on the Preparation of a state.

- asserts the probability of Occurence of events, such
as individual measurement results.

- These events ar indeterministic and/or
unpredictable,

not merely unknown.

- Since the above characteristics desc cribe the world,

not merely someone's knowlede
probability is objectin

ge of it,

ze rather than subjectioe.

Hence, it is natural to in Pre* Quantum probability
F

dS as propensity.
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d.1) Itis NOT an estimate of the finaj state of the
System after measurement.

(d.2) Itis Bob's final "best estimate” of what

the
initial (objective) sta

te was, in the sense that
e

predictions from it will have ¢

he lowest probable
EITor

(d.3) But it does not represent By

JO's state of belief.
Bob does not believe the init

1al state was ‘:IE' n
rather, he believes it was either ¢ D T 0
- - § o R
(with probabilities S0%. = and 259
respectively).
(d.4) It is not correct to infurpi'- E Dy’ as
3% £ .25 an-"

because Bob knows from the measurement that

the polarization < has zere probability.




Conclusions
~=0Nclusions

(a) There is an wbjective state. determi
Operation of state Preparation.

in the example it is D= |J : :-||

L oo

ned by the

(b) There mav be both objective and subjective
- '—_———__ _-_Iﬂ-l—d___-_
probabilities Information in the same problem
They are both conceptually and quantitatively
different.
(C)

Observers who |

lave ferer

if states of
knowiedge may, nev. - heless, assign the same
(subjective) density matrix
Therefore, it is not correct to say that the density
matrix represents a state of knowled




General Summa ry

- The Quantum State describes an ensemble of
similarly prepared systems.

- The state vector {or dEl‘lHlt‘l.-’ matrix) is 3 generator of
probabilities for all of the observables of the
system.

- The specifically Quantum Pmmabiiih’e: (ike [¥]2)
should be interpreted as pro pensitie
Their connection to frequencies 1r1r';es via the
Law of Large Numbers.

- Inferential probabilities (either objective or
subjective) may be used in o ntum theory, as
elsewhere in science.

ex: Information ther assical or guantum),

cryptography (classical or g juantum),

but they should not be confused with the
specifically quantum probabilities.




