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Abstract: Gamma-ray bursts (GRBS) -- rare flashes of ~ MeV gamma-rays lasting from a fraction of a second to hundreds of seconds -- have long
been among the most enigmatic of astrophysical transients. Observations during the past decade have led to a revolution in our understanding of
these events, associating them with the birth of neutron stars and/ or black holes during either the collapse of a massive star or the merger of two
compact objects (e.g., aneutron star and a black hole). GRBs are particularly interesting since NS-NS and NS-BH mergers are the primary target for
km-scale gravitational wave observatories such as Advanced LIGO; GRBs are aso one of the most promising astrophysical sources of very high-
energy neutrinos and may produce many of the neutron-rich heavy elements in nature. In this talk, |1 will describe the physics of these enigmatic
events and summarize outstanding problems. Combined el ectromagnetic and gravitational-wave observations of these sources in the coming decade
have the potential to produce major advances in both astrophysics and fundamental physics (tests of General Relativity and of the equation of state
of dense nuclear matter).
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The Birth of Neutron Stars and Black
Holes in Gamma-ray Bursts
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Serendipitous Science:
“Gamma-ray Bursts”
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Vela satellites
launched in 1960s

X-ray, gamma-ray, &
neutron detectors to
search for atmospheric
nuclear bombs




GRB #1: July 2 1967
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“Afterglow’: Longer wavelength (x-ray, optical,
radio) & timescale (~ day-yr) counterparts to GRB

[ 08 day D 5 16 days ™ 37 days ®

Faain'g Optical Cou'_ntérpart. (~ day firr;escale)

Afterglows
discovered in 1997:
provided first precise
positions, distances,
and energetics
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Distribution on the Sky
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Flashes of ~ 0.1-10 MeV Y-rays

“Long” (— 30 s) &"“Short” (~ 0.3 s) Events
Isotropic on the Sky

Cosmological Distances: Redshifts ~0-83

Brightest EM sources in the Universe (briefly)

e ~ |05 ergs ~ 10%-10 Myunc? (isotropic)

Rare: ~103/yrigalaxy ~10~ SNe rate
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Flashes of ~ 0.1-10 MeV Y-rays

“Long” (~ 30 s) &“Short” (~ 0.3 s) Events
Isotropic on the Sky

Cosmological Distances: Redshifts ~0 - 8.3
Brightest EM sources in the Universe (briefly)
e ~ 1055 ergs ~ 10%-10 Mync? (isotropic)

Rare: ~103/yrigalaxy ~10~ SNe rate
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Fiashes of ~ 0.1-10 MeV Y-rays

“Long” (— 30 s) &“Short” (~ 0.3 s) Events
Isotropic on the Sky

Cosmological Distances: Redshifts ~0-83

Brightest EM sources in the Universe (briefly)

e ~ |05 ergs ~ 10%-10 Mync? (isotropic)

Rare: ~103/yrigalaxy ~10~ SNe rate



The Most Distant (known) Object in the Universe is a GRB

z~ 8.3

600 Myr after Big Bang

(~ 5% of current age of universe)
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GRBs Require Ultrarelativistic Outflows:
Bulk Lorentz Factors [ = 10%-10°

Spectrum from Fermi
® Huge energy = 511 keV
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(Aside: provides very tight constraints on photon dispersion)
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Distribution on the Sky
2704 BATSE Gamma-Ray Bursts

Flashes of ~ 0.1-10 MeV Y-rays

“Long” (~ 30 s) & “Short” (~ 0.3 s) Events
Isotropic on the Sky

Cosmological Distances: Redshifts ~0 - 83

Brightest EM sources in the Universe (briefly)

e ~ 1055 ergs ~ 105-10 My c? (isotropic)

Rare: ~103/yrigalaxy ~10 SNe rate



GRBs Require Ultrarelativistic Outflows:
Bulk Lorentz Factors I = 10%-10°

Spectrum from Fermi

® Huge energy = 511 keV
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(Aside: provides very tight constraints on photon dispersion)



GRBs Require Ultrarelativistic Outflows:
Bulk Lorentz Factors [ = 10%-10°

Spectrum from Fermi
® Huge energy = 511 keV

. short umescales —* opaque —
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® no pair production problem

. rest frame photon energies <<; size >>

Photon Energy

(Aside: provides very tight constraints on photon dispersion)
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The Physical Origin of Gamma-Ray Bursts

1 Release E ~ 0.0 I M..,c? Oon
ong t ~0.1-100 sec in
I = 10%-10° outflows
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The Physical Origin of Gamma-Ray Bursts

Time (s)

-  F %

Long

Short

Release E ~ 0.0 I M,..c? on
t~0.1-100 secin
I = 10%-10° outflows

Long Bursts

associated w/ death of massive stars (supernovae)
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not associated w/ massive stars or SNe:
(& sometumes outside galaxies)
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Long-Duration GRBs

As afterglow fades, a supernova appears

GHB 030329'SN 2003dh

Associated with massive star formation
and supernovae (stellar explosions)

— Birth of a Neutron
Star or Black Hole

(not the converse; GRB rate ~ 10-? SNe rate)
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Accretion onto a Central BH

Spindown of a Rotating NS
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Simulation of
the impact of
a magnetized
outflow from

a NS (or BH)
on its host star
color is density;
duration ~ 3 s)
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Observe GRB

& then Supernova

Emission beamed
in direction of motion
bec. [ >> |

Observe
Supernova

(not GRB)

Simulation of
the impact of
a magnetized
outflow from

a NS (or BH)
on its host star
color is density;
duration ~ 3 s)

Collimation in a jet
critical to getting energy
out unpolluted by
the surrounding star

(maintaining [ >> |):

reduces energy reqd
& increases rate




Compact Object Mergers

NS-NS Merger (~ 8 ms)

- NS ROy

Temperatime [millons of degre=:

Rosswog
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fEENBcE SbycCe Fienpens

—a BH + Remnant Disk
NS-NS Merger (~ 8 ms) ~ 103-0.1 Maun

A - LA (mostly free neutrons)
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accretion of remnant disk consistent
wi/ short GRB propertes
(\€.£.. Gaccretion ~ 0.1-1 sec)
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BH + Remnant Disk
T ~ 102-0.1 Mau

(mostly free neutrons)
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PSR 1913+16 ] 3 known NS-NS binaries in our

galaxy will merge in a Hubble time
(no BH-NS systems known)

Noooo ~10%—10"5yr!
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~ short GRB rate




lavlor Nobel Prize Lecture

Compact

PSR 1913+16

orbit decays due to
emission of grav. waves

Object Mergers
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Compact Object Mergers

o BH + Remnant Disk
NS-NS Merger (~ 8 ms) ~ 103-0.1 M.
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New Puzzles in short GRBs

Swift Satellite ~ 25% of short Bursts show

Extended Emission ~ 30-100 sec
Flares on yet longer Timescales

Energy up to ~ 10 x Initial Burst

?? tiyn ~ MS; taccretion ~ 0.1-1 sec 22
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Compact Object Mergers

o BH + Remnant Disk
NS-NS Merger (~ 8 ms) ~ 103-0.1 M.
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New Puzzles in short GRBs

Swift Satellite ~ 25% of short Bursts show

Extended Emission ~ 30-100 sec
Flares on yet longer Timescales

Energy up to ~ |0 x Initial Burst
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The Evolution of the Remnant Disk

ang momentum conservation — disk spreads
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(T ~ MeV; p ~ 10'2 g cm3; initially free nucleons)



New Puzzles in short GRBs

Swift Satellite ~ 25% of short Bursts show

Extended Emission ~ 30-100 sec
Flares on yet longer Timescales
Energy up to ~ 10 x Initial Burst
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The Evolution of the Remnant Disk

ang momentum conservation — disk spreads
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The Little Bang
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The Little Bang

- - —— e na S -
of o | S B -— -
N | S e | LS B ) ) s T - — =
et ala -y =] - dalaslaTeldtldlala
- el F Y s o 3 e e '
i - e e
C B C e — -
e o ' i = B e i -
C = - 3 i
']
- — y L
~
e — — e S
- =
e lalats
B LE LS

As disk expands
radiate \

5 45 1



The Little

- - =
- | — —_ —
- 2% = = —- =
= -~ ok, &0 e ..:- e laclal s Ll
e Yo e el e e S i
~ - - "
B § e & 3
Y Ly 'v'-u_. o e

As disk expands and c

"0
O
2
i~
mn
fad

|
)
O
-

ragdiate Vs as emacentay

aided by to He once T = 0.5 MeV

Ejected Mass ~ 102103 M
Neutron-rich:
e fraction (Y.) ~ 0.35
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The Little Bang

efficiently by neutrinos & compeosition
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Compact Object Mergers

NS-NS Merger (~ 8 ms)
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The Little Bang
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Natural Abundance of Elements

Electron Fraction: Y.
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Natural Abundance of Elements

Electron Fraction: Y.

| ~~Hydrog Big Ban ,
T Yeg= 0_888 only ~ few | 0° M., of

Shpmmasens these n-rich elements

— v -85 in the Galaxy

I |0'1 - |0'] Mgun
NS Merger Rate n-rich ejecta
~ 105-10* yr! per merger

Short GRB rate Many of the

~ 10°-107 yr galaxy” | p-rich elements
in nature!
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Future Prospects

® GRBs are unique probes of the high redshift universe
® GRBs very promising high energy v sources (photo-pion)

® Gravitational wave detections probable within ~ 10 yrs

® NS-NS & BH-NS mergers;
e tests of GR & the equation of state of nuclear matter

® constrain the origin of short (and maybe long ...) GRBs

® & the origin of many of the n-rich elements in nature
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The Little Bang

optical transient coincident w/ GRB
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aided by to He once T =< 0.5 MeV
Ejected Mass ~ 10-%-10° M
Neutron-rich

radioactive decay of Ni & fission of n-rich
elements produces >w kind of supernc
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The Physical Origin of Gamma-Ray Bursts

Release E ~ 0.0 I M,..c? on
t~0.1-100 secin
I = 10%-10° outflows

Long Bursts

dSsociated w/ deatn orf massive stars (supernovae)

Time (s) Short BurStS

not associated w/ massive stars or SNe

Tremendous prospects for fundamental physics
(tests of GR, EOS of dense matter, ...) & astrophysics (“first stars”;
origin of n-rich elements, physics of stellar explosions, ...)
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Fashes of ~ 0.1-10 MeV Y-rays

“Long” (~ 30 s) &“Short” (~ 0.3 s) Events
Isotropic on the Sky

Cosmological Distances: Redshifts ~0 - 83

Brightest EM sources in the Universe (briefly)

e ~ |05 ergs ~ 10%-10 Mync? (isotropic)

Rare: ~103/yrigalaxy ~10~ SNe rate



GRBs Require Ultrarelativistic Outflows:
Bulk Lorentz Factors I = 10%-10°

Spectrum from Fermi

® Huge energy = 511 keV

® no mescales — opaque —
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® no pair production problem

. rest frame photon energies <<; size >>

Photon Energy

(Aside: provides very tight constraints on photon dispersion)



Long-Duration GRBs

£

As afterglow fades, a supernova appears

Associated with massive star formation
and supernovae (stellar explosions)

— Birth of a Neutron
Star or Black Hole

(not the converse; GRB rate ~ 10-? SNe rate)




