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Abstract: We present some exact results and new approaches to SUSY breaking theories.

Pirsa: 09090024 Page 1/96



Aspects of SUSY Breaking

— .
B S - R .
ar I = 1
— - e S - o el Tt
=
—
e =k e SR T o
= a A =Tl = e
-— Lied e - - — et - el e e il Tt
= . = e 2
Le PR, R — P A —— —
- = | = — =l - X -
| — - ¥4 — et et | B! e -— r e ot -

Page 2/96

Pirsa: 09090024




I Motivations

Supersymmetry is important for particle physics, string
theory and many other branches of physics and
mathematics.

We do not yet have a good understanding of spontaneous
SUSY breaking. This is important: If we want to make
contact with experiment SUSY has to be broken.
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I Motivations

Breaking of global \ = 1 supersymmetry predicts the
existence of a massless Weyl fermion G,,.

are many open questions.
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I Open Questions

#» What is the connection between the UV physics and
the Goldstinos?

Models of SUSY breaking are sometimes incalculable and
even worse, there is no superpotential description.

Can we say which UV operators are associated to the low
energy Goldstino? |s there a useful superspace description
at low energies?

How do we parameterize SUSY breaking in strongly
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I Open Questions

How is D-term vs. F-term breaking reflected in the
Goldstino _agrangiam
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I Open Questions

» What are the interactions of the Goldstino particle with
tself?

In the 1970’s Akulov and Volkov proposed a Lagrangian:

It was before the discovery of SUSY.

What is the role of this Lagrangian? Why is there a

symmetry G, — G ,? How to describe corrections?
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I Open Questions

» What are the interactions of the Goldstino particle with
light matter particles?

If SUSY is broken in field theory, the Goldstino is out there.

What are its leading interactions with the visible sector?
gluons? matter fermions? Higgs fields?
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I Open Questions

» What are the interactions of the Goldstino particle with
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If SUSY is broken in field theory, the Goldstino is out there.

What are its leading interactions with the visible sector?
gluons? matter fermions? Higgs fields?
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I Outline

We present the tools with which we address these issues.
» Models that Break SUSY

» Broken Symmetries

#» The Supercurrent Multiplet

# Connecting the UV and the IR

» Goldstinos and some Lagrangians

» Matter Fields

Summary
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Basie Examples of SUSY Breaking
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Consider a single chiral field, ©

The vacuum energy is | f|? # 0 and therefore SUSY is
broken.

Since the theory is free the spectrum is supersymmetric,
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Basiec Examples of SUSY Breaking

Now. think of:

There is nice vacuum at © = 0 with vacuum energy | f|°.
The spectrum is m, = 2|f|/M and m,,, =

The fermion «, is massless because it is the Goldstino.
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_More Examples of SUSY Breaking

» Renormalizable models of SUSY breaking. E.g. all the
O’Raifeartaigh-like models and their recent
reincarnation.

#» Calculable dynamical models. For example, 3-2 model
(ADS), deformed quantum moduli space (ITIY),
massive SQCD (ISS).

# [ncalculable models with strong (but indirect) evidence
of SUSY breaking, e.g. SU(5) and SO(10) (ADS).

What are the general principles common to all these
examples?
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I Symmetry Breaking

For a conserved charge () we can associate a conserved
current

Even if the symmetry is spontaneously broken, the

operator equation 9#;, = 0 holds but Q = [ d°xj, diverges
in the IR.
In spite of this,

Lr k_q"-

where O is any local operator is well defined and local.
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I Symmetry Breaking

We conclude that even if a symmetry is spontaneously
broken,

All the operators sit in representations of the
symmetry.
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I The Supercurrent Multiplet

N = 1 supersymmetric theories have a conserved
supercurrent,

|_l_-i. . — |
= 1

We can study the multiplet of the supercurrent, i.e.
calculate {Q. S,.}, {Q".S,.} etc.

In this way we find the conserved energy momentum
tensor 7,,,,, some R-current ;* (which may not be
conserved) and an operator which we will call

They can all be written explicitly in a given microscopic
theory.
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Basiec Examples of SUSY Breaking

Now. think of:

There is nice vacuum at o = 0 with vacuum energy | f|°.
The spectrum is m, = 2| f| /M and m,, = 0.

The fermion «, Is massless because it is the Goldstino.
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I The Supercurrent Multiplet

N = 1 supersymmetric theories have a conserved
supercurrent,

= e —_—

We can study the multiplet of the supercurrent, i.e.
calculate {Q. S,.}, {0Q".S,.} etc.

In this way we find the conserved energy momentum
tensor 7,,,,, some R-current ;* (which may not be
conserved) and an operator which we will call

They can all be written explicitly in a given microscopic
theory.
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I The Supercurrent Multiplet

A nice way to package this multiplet was given by Ferrara
and Zumino. They used a real multiplet 7,,. Its components
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I The Supercurrent Multiplet

A nice way to package this multiplet was given by Ferrara
and Zumino. They used a real multiplet 7,,. Ilts components
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I The Supercurrent Multiplet

We would like to understand this mysterious complex
scalar field
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I The Supercurrent Multiplet

The information encoded in the superfield is equivalent to
the current algebra

This holds even if SUSY is broken. We see that the
mysterious r is a well defined operator in the theory. It can
be obtained by varying the supercurrent.
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I The Supercurrent Multiplet

In the superfield language, the conservation equations
follow from

where X is some chiral field. Solving this in components

we find 7., and X is given by

with
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The operator = is therefore the lowest component of this
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I The Supercurrent Multiplet
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I The Supercurrent Multiplet

In the superfield language, the conservation equations
follow from
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where X is some chiral field. Solving this in components
we find 7., and X is given by

with
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The operator r is therefore the lowest component of this
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I Relation to Goldstino

We need to understand X better. The supercurrent S,
has two different Lorentz representations (1.1/2), (0.1/2).
If supersymmetry is broken the (0.1/2) component is the

Goldstino. (And (1.1/2) decouples.)

Therefore, at very long distances, «» becomes the Goldstino

—r S

The chiral superfield .X must flow at low energies fo a
chiral superfield which contains the Goldstino!
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I The Supercurrent Multiplet
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I Relation to Goldst_ino

We need to understand X better. The supercurrent S,
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I The Supercurrent Multiplet

In the superfield language, the conservation equations
follow from

7 S T
= =} !
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where X is some chiral field. Solving this in components
we find 7., and X is given by
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The operator = is therefore the lowest component of this
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I Relation to Goldst_ino

We need to understand X better. The supercurrent S,
has two different Lorentz representations (1.1/2), (0.1/2).
If supersymmetry is broken the (0.1/2) component is the

Goldstino. (And (1.1/2) decouples.)

Therefore, at very long distances, «» becomes the Goldstino
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The chiral superfield X must flow at low energies fo a
chiral superfield which contains the Goldstino!
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I Relation to Goldstino

This superfield X is expected to be nonlinear at low
energies. What could » flow to?

We know,

J{ a._ r__ ~ T
In addition, the F' component of X is just the vacuum
energy 7*.

There Is not much choice:
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I Relation to Goldstino

This superfield X is expected to be nonlinear at low
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energy 1~
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I Relation to Goldstino

Note the equation
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I Relation to Goldstino

So far we have seen that

#» The Goldstino always sits in a chiral superfield
(regardless of D-terms), which can be defined in the
UV. This makes perfect sense even in incalculable
examples. We can therefore calculate in all theories

r(ry)z(re)z(rs)...) ~ (G*(r1)G*(r2)G*(rs)...
#» X generalizes the SUSY-breaking “spurion.” Therefore,
a chiral spurion superfield exists not only in weakly
coupled examples!
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I Relation to Goldstino

SUSY fixes all the coefficients and we get:

X e —_— \ 3 = - E+
—
| -

Note the equation
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I The Supercurrent Multiplet

In the superfield language, the conservation equations
follow from

where X Iis some chiral field. Solving this in components
we find 7., and X is given by
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I The Supercurrent Multiplet
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I Relation to Goldstino

SUSY fixes all the coefficients and we get:

Note the equation
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I Relation to Goldstino

So far we have seen that

#» The Goldstino always sits in a chiral superfield
(regardless of D-terms), which can be defined in the
UV. This makes perfect sense even in incalculable
examples. We can therefore calculate in all theories

e(ry)z(rs)z(rs)...) ~ (G*(r1)G*(rs)G?(r3)...
#» X generalizes the SUSY-breaking “spurion.” Therefore,
a chiral spurion superfield exists not only in weakly

coupled examples!
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I Relation to Goldstino

So far we have seen that

#» The Goldstino always sits in a chiral superfield
(regardless of D-terms), which can be defined in the
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ELE) | Ev 2 )t Eg)..) - Go(r1)G (ra)G~ )
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coupled examples!

irsa: 09090024 Page 51/96




I Relation to Goldstino

SUSY fixes all the coefficients and we get:

Note the equation




I Relation to Goldst_ino

So far we have seen that

#» The Goldstino always sits in a chiral superfield
(regardless of D-terms), which can be defined in the
UV. This makes perfect sense even in incalculable
examples. We can therefore calculate in all theories

ri)G-(ro)G-(r3)...

(r1)z(ra)z(rs)...

» X generalizes the SUSY-breaking “spurion.” Therefore,
a chiral spurion superfield exists not only in weakly
coupled examples!
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Basiec Examples of SUSY Breaking

Now. think of:

There is nice vacuum at © = 0 with vacuum energy | |°.
The spectrum is m, = 2| f|/M and m,,, =

The fermion «, iIs massless because it is the Goldstino.
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I Open Questions

» What are the interactions of the Goldstino particle with
itself?

In the 1970’s Akulov and Volkov proposed a Lagrangian:

It was before the discovery of SUSY.

What is the role of this Lagrangian? Why is there a
symmetry ¢, — G ,7 How to describe corrections?
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I The Supercurrent Multiplet

We would like to understand this mysterious complex
scalar field .
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I Lagrangians

The low energy theory should be written with X,
remembering the constraint X3, = 0. We can write a “free”
theory

This gives the Akulov-Volkov theory! There is an accidental
R-symmetry. Previous work fro
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Corrections are controlled by scaling under which
S(Xnyz) = —1, S(df) = 1/2. So, all the A-V terms have
S = 0. E.g. we can write [ d*8|0 Xy |* which has S =2

!
—
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I More Examples of SUSY Breaking

» Renormalizable models of SUSY breaking. E.g. all the

O’Raifeartaigh-like models and their recent
reincarnation.

The scalar potential is

There is nice vacuum at o = 0 with vacuum energy | |°.
The spectrum is m, = 2| f|/M and m,, = 0.

The fermion «, is massless because it is the Goldstino.
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I Open Questions

» What are the interactions of the Goldstino particle with
light matter particles?

If SUSY is broken in field theory, the Goldstino is out there.

What are its leading interactions with the visible sector?
gluons? matter fermions? Higgs fields?
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Basiec Examples of SUSY Breaking

Consider a single chiral field, ®

The vacuum energy is | f|? # 0 and therefore SUSY is
broken.

Since the theory is free the spectrum is supersymmetric,
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I Relation to Goldstino

So far we have seen that

#» The Goldstino always sits in a chiral superfield
(regardless of D-terms), which can be defined in the
UV. This makes perfect sense even in incalculable
examples. We can therefore calculate in all theories

r(ry)z(ra)z(rs)...) ~ (G°(r1)G*(ra)G*(r3)...

- wp o

» X generalizes the SUSY-breaking “spurion.” Therefore,
a chiral spurion superfield exists not only in weakly
coupled examples!
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I Lagrangians

The low energy theory should be written with X,

remembering the constraint X, = 0. We can write a “free”
theory

This gives the Akulov-Volkov theory! There is an accidental
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Corrections are controlled by scaling under which

S(Xyz) = —1, S(df) = 1/2. So, all the A-V terms have
] S =0.E.g. wecanwrite [ d9|0Xy; 2 which has S = 2.




I Lagrangians

In components the meaning of this scaling is that the
Goldstino is assigned dimension —1/2. The terms following
from

and we see that they all indeed have S = (0. Can prove that
| d*#| X |? is unique at scaling zero. The accidental
R-symmetry can be broken at higher orders.
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I Lagrangians

et us see how all these ideas work in the simplest

nontrivial example.
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I Lagrangians

In components the meaning of this scaling is that the
Goldstino is assigned dimension —1/2. The terms following

from

are of the form

and we see *hat they all indeed have S = 0. Can prove that
[ d*8| Xz |? is unique at scaling zero. The accidental
Q symmetry can be broken at higher orders.




I Lagrangians

meow eretgy” hrump‘s:*1ouau u*é wnoefrwin Xy, ~
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Corrections are controlled by scaling under which
S(Xnz) = —1, S(df) = . S0, all the A-V terms have
= (. E.g. we can write )" I*0|0 X v |> which has S = 2.
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I Lagrangians

The low energy theory should be written with X,
remembering the constraint X3, = 0. We can write a “free”

theory | |
/ 40| X |2 + I / POFX s +c.c

This gives the Akulov-Volkov theory! There is an accidental
R-symmetry. previous work fro
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Corrections are controlled by scaling under which

S(Xyz) = —1, S(df) = 1/2. So, all the A-V terms have
S =0. Eg. wecanwrite [ d*'#|0Xy.|* which has S = 2.




I Lagrangians

_et us see how all these ideas work in the simplest
nontrivial example.
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— () Is a good vacuum. The vacuum energy is ||~ and
the spectrum iIs

, Is the Goldstino. Our description at low energies should
include only v, as a physical field. We should integrate out
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We integrate out © and get

—_—y

This is independent of the high energy parameter 1/! We
see that we need to use the non-linear superfield

e |
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= 0 is a good vacuum. The vacuum energy is | f|- and
the spectrum is

; Is the Goldstino. Our description at low energies should
include only «', as a physical field. We should integrate out
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This is independent of the high energy parameter 1/! We
see that we need to use the non-linear superfield
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|

= () Is a good vacuum.
the specirum Is

he vacuum energy is | /|- and

, Is the Goldstino. Our description at low energies should
include only ', as a physical field. We should integrate out
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This is independent of the high energy parameter 1/! We
see that we need to use the non-linear superfield
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This is independent of the high energy parameter 1/! We
that we need to use the non-linear superfield
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We should use this field to write the low energy action. At
leading order we just substitute it back to the action. The
term (®®)? vanishes due to X3, = 0. So we remain with

—

the already familiar [ 4*0| Xy |*.

In this model the microscopic operator X from D7, ~ DX

IS given by
j\: - —!E: = = ;1_4-5'1__r’
At low energies, due to ® — X, ®* = 0. Thus,
X — f® — fXyz whichis =xactlythe 'spurion” superfield.




We integrate out © and get

high energy parameter 1/! W

This is independent of the hig
non-linear superfield
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he vacuum energy is | |- and

— () Is a good vacuum.
the spectrum is

, Is the Goldstino. Our description at low energies should
include only v, as a physical field. We should integrate out
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This is independent of the high energy parameter 1/! We
see that we need to use the non-linear superfield
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We should use this field to write the low energy action. At
leading order we just substitute it back to the action. The
term (®®)? vanishes due to X7, = 0. So we remain with

7 2

the already familiar [ d*6| Xy;

In this model the microscopic operator X from D7, ~ DX

IS given by
X = f®+-—9°D*®"
At low energies, due to ® — Xy, ®* = 0. Thus,
X — f® — fXyr whichis ﬁxactlythe ‘spurion” superfield.
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This is independent of the high energy parameter 1/! We
see that we need to use the non-linear superfield

X
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= (0 Is a good vacuum. The vacuum energy is | f|- and
the spectrum is
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We should use this field to write the low energy action. At
leading order we just substitute it back to the action. The
term (®®)? vanishes due to X3, = 0. So we remain with

—

the already familiar [ 4*6| Xy |*.

In this model the microscopic operator X from D7, ~ DX

IS given by
j\: == - % Th-fji_t’
At low energies, due to ® — Xy, > = 0. Thus,
X — f® — X, which is exactly the “spurion” superfield.
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I Connecting the IR and the UV

[he derivation and low energy results are independent of

1\ T Thav
/ 18 .h:}r

are completely general.
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We should use this field to write the low energy action. At
leading order we just substitute it back to the action. The
term (®®)? vanishes due to X?, = 0. So we remain with

the already familiar [ *6| Xy |

In this model the microscopic operator X from D7, ~ DX
IS given by
X = fo+r _—d2D?P?
At low energies, due to ® — Xy, ®* = 0. Thus,
X — f® — fXyr Whichis =><ac+|ythe ‘spurion” superfield.

Pirsa: 09090024
E———— = |



This is independent of the h

high energy parameter 1/! We
see that we need to use the non-linear superfield
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= () Is a good vacuum. The vacuum
the spectrum is

(D
-
(D
H
Q2
<l
=
}
|
)
-
QL

; IS the Goldstino. Our description at low energies should
include only «, as a physical field. W

vV

(D

should integrate out
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We integrate out © and get

A I

This is independent of the high energy parameter 1/! We
see that we need to use the non-linear superfield
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We should use this field to write the low energy action. At
leading order we just substitute it back to the action. The
term (®®)? vanishes due to X2, = 0. So we remain with

the already familiar [ 4*6| Xy |*.

4
-
N

In this model the microscopic operator X from D7, ~ D.
is given by

T\._ = F = ’;'.J_' .7___'.'1*:.'}'.

At low energies, due to ® — Xy, ®* = 0. Thus,

x - A

X — f® — X,y which is exactly the “spurion” superfield.
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I Connecting the IR and the UV

The derivation and low energy results are independent of
\[. They are completely general.
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I Matter kields

With similar technics and ideas we can solve the problem
of including matter fields. In addition to X3, = 0 we have

» Matter fermions (e.g. electrons) Xy Ony =

#» Nonlinear Wess-Zumino Gauge X" = |

» Gauge fields (e.g. photon) Xy W,y =0

» Higgs fields Xy H = ¢/

# Goldstone bosons (e.g. axions) Xz (A — A) =

From this we can calculate all the interesting couplings of
e matter fields to Goldstinos. —













I Conclusions _

» Supersymmetry and superspace are useful even when
SUSY is broken.

» We can follow the supercurrent multiplet 7., and the
associated X along the flow.

#» X flows to the Goldstino multiplet and satisfies X= = |
at long distances.

» We can efficiently find the interesting interactions of
the Goldstino and other particles.

#» The deep low-energy theory is universal.

irsa: 09090024 Page 95/96




We integrate out © and get

This is independent of the high energy parameter 1/! We
see that we need to use the non-linear superfield
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