Title: Minimal areas on AdS_3 and scattering amplitudes at strong coupling

Date: Sep 01, 2009 11:00 AM

URL: http://pirsa.org/09090023

Abstract: By using the AdS/CFT duality, the computation of MSYM scattering amplitudes at strong coupling boils down to the computation of minimal areas on AdS_5 with certain boundary conditions. Unfortunately, this seems to be a hard problem. In this talk we show how one can make progress by restricting to AdS_3.

Pirsa: 09090023 Page 1/99

Minimal areas on AdS₃ and scattering amplitudes at strong coupling

Luis Fernando Alday

IAS

Perimeter Institute- September 2009

arXiv:0903.4707, arXiv:0904.0663, L.F.A & J. Maldacena

Page 2/99

Motivations

We will be interested in gluon scattering amplitudes of planar $\mathcal{N}=4$ super Yang-Mills.

Motivation: It can give non trivial information about more realistic theories but is more tractable.

- Weak coupling: Perturbative computations are easier than in QCD. In the last years a huge technology was developed.
- The strong coupling regime can be studied, by means of the gauge/string duality, through a weakly coupled string sigma model.

rage 3/9

Aim of this project

Learn about scattering amplitudes of planar $\mathcal{N}=4$ super Yang-Mills by means of the AdS/CFT correspondence.

- Background
 - Gauge theory results
 - String theory set up
 - Explicit example
- 2 Special kinematical configurations
 - Regular polygons
 - The octagon
- 3 Conclusions and outlook

rage 4/99

Gauge theory amplitudes (Bern, Dixon and Smirnov)

 Focus in gluon scattering amplitudes of N = 4 SYM, with SU(N_c) gauge group with N_c large, in the color decomposed form

$$A_n^{L,Full} \sim \sum_{\rho} Tr(T^{a_{\rho(1)}}...T^{a_{\rho(n)}})A_n^{(L)}(\rho(1),...,\rho(2))$$

- Leading N_c color ordered n-points amplitude at L loops: $A_n^{(L)}$
- The amplitudes are IR divergent.
- Dimensional regularization $D=4-2\epsilon \to A_n^{(L)}(\epsilon)=1/\epsilon^{2L}+...$
- Focus on MHV amplitudes and scale out the tree amplitude

$$M_n^{(L)}(\epsilon) = A_n^{(L)}/A_n^{(0)}$$

Based on explicit perturbative computations:

BDS proposal for all loops MHV amplitudes

$$\log \mathcal{M}_n = \sum_{i=1}^n \left(-\frac{1}{8\epsilon^2} f^{(-2)} \left(\frac{\lambda \mu^{2\epsilon}}{s_{i,i+1}^\epsilon} \right) - \frac{1}{\epsilon} g^{(-1)} \left(\frac{\lambda \mu^{2\epsilon}}{s_{i,i+1}^\epsilon} \right) \right) + f(\lambda) Fin_n^{(1)}(k)$$

- f(λ), g(λ) → cusp/collinear anomalous dimension.
- Fine for n = 4, 5, not fine for n > 5.

Page 6/99

String theory set up

- Such amplitudes can be computed at strong coupling by considering strings on AdS₅.
- As in the gauge theory, we need to introduce a regulator.
 Place a D-brane at z = z_{IR} ≫ R.

$$ds^2 = R^2 \frac{dx_{3+1}^2 + dz^2}{z^2}$$

- The asymptotic states are open strings ending on the D-brane.
- Consider the scattering of these open strings (representing the gluons)

After going to a dual space: $AdS \rightarrow \tilde{AdS}$ (e.g. $z \rightarrow r = 1/z$), the

problem reduces to a minimal area problem

Based on explicit perturbative computations:

BDS proposal for all loops MHV amplitudes

$$\log \mathcal{M}_n = \sum_{i=1}^n \left(-\frac{1}{8\epsilon^2} f^{(-2)} \left(\frac{\lambda \mu^{2\epsilon}}{s_{i,i+1}^\epsilon} \right) - \frac{1}{\epsilon} g^{(-1)} \left(\frac{\lambda \mu^{2\epsilon}}{s_{i,i+1}^\epsilon} \right) \right) + f(\lambda) Fin_n^{(1)}(k)$$

- f(λ), g(λ) → cusp/collinear anomalous dimension.
- Fine for n = 4, 5, not fine for n > 5.

Page 8/99

String theory set up

- Such amplitudes can be computed at strong coupling by considering strings on AdS₅.
- As in the gauge theory, we need to introduce a regulator.
 Place a D-brane at z = z_{IR} ≫ R.

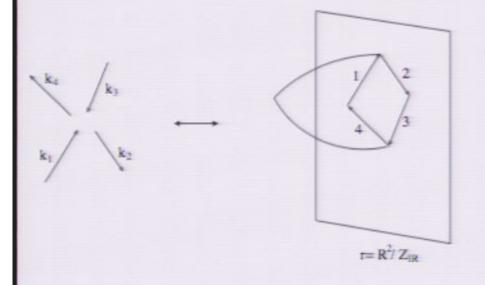
$$ds^2 = R^2 \frac{dx_{3+1}^2 + dz^2}{z^2}$$

- The asymptotic states are open strings ending on the D-brane.
- Consider the scattering of these open strings (representing the gluons)

After going to a dual space: $AdS \rightarrow \tilde{AdS}$ (e.g. $z \rightarrow r = 1/z$), the

problem reduces to a minimal area problem

•
$$ds^2 = \frac{dx_{3+1}^2 + dz^2}{z^2} \rightarrow ds^2 = \frac{dy_{3+1}^2 + dr^2}{r^2}$$
: Minimal surface in AdS



- For each particle with momentum k^{μ} draw a segment $\Delta y^{\mu} = 2\pi k^{\mu}$
- Concatenate the segments according to the particular color ordering.

(0) (8) (3) (3)

- Look for the minimal surface ending in such polygon.
- As we have introduced the regulator, the minimal surface ends at $r = R^2/z_{IR} > 0$.
- As $z_{IR} \to \infty$ the boundary of the world-sheet moves to r = 0.
- Vev of a Wilson-Loop given by a sequence of light-like segments!

String theory set up

- Such amplitudes can be computed at strong coupling by considering strings on AdS₅.
- As in the gauge theory, we need to introduce a regulator.
 Place a D-brane at z = z_{IR} ≫ R.

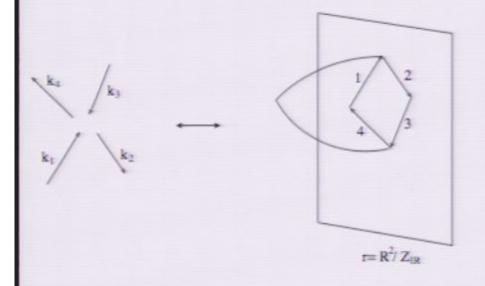
$$ds^2 = R^2 \frac{dx_{3+1}^2 + dz^2}{z^2}$$

- The asymptotic states are open strings ending on the D-brane.
- Consider the scattering of these open strings (representing the gluons)

After going to a dual space: $AdS \rightarrow \tilde{AdS}$ (e.g. $z \rightarrow r = 1/z$), the

problem reduces to a minimal area problem

•
$$ds^2 = \frac{dx_{3+1}^2 + dz^2}{z^2} \rightarrow ds^2 = \frac{dy_{3+1}^2 + dr^2}{r^2}$$
: Minimal surface in AdS



- For each particle with momentum k^{μ} draw a segment $\Delta y^{\mu} = 2\pi k^{\mu}$
- Concatenate the segments according to the particular color ordering.

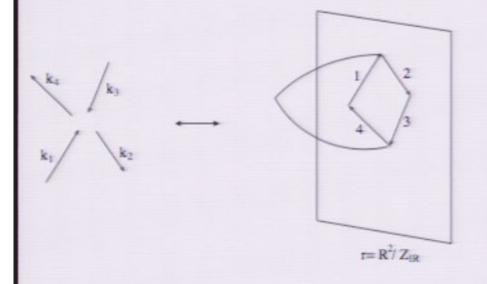
(0) (0) (3) (3)

- Look for the minimal surface ending in such polygon.
- As we have introduced the regulator, the minimal surface ends at $r = R^2/z_{IR} > 0$.
- As $z_{IR} \to \infty$ the boundary of the world-sheet moves to r = 0.
- Vev of a Wilson-Loop given by a sequence of light-like segments!

$$A_n \sim e^{-\frac{\sqrt{\lambda}}{2\pi}A_{min}}$$

- A_n: Leading exponential behavior of the n-point scattering amplitude.
- A_{min}(k₁^μ, k₂^μ, ..., k_n^μ): Area of a minimal surface that ends on a sequence of light-like segments on the boundary.

•
$$ds^2 = \frac{dx_{3+1}^2 + dz^2}{z^2} \rightarrow ds^2 = \frac{dy_{3+1}^2 + dr^2}{r^2}$$
: Minimal surface in AdS

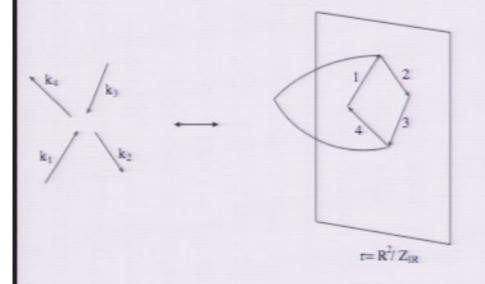


- For each particle with momentum k^{μ} draw a segment $\Delta y^{\mu} = 2\pi k^{\mu}$
- Concatenate the segments according to the particular color ordering.
- Look for the minimal surface ending in such polygon.
- As we have introduced the regulator, the minimal surface ends at $r = R^2/z_{IR} > 0$.
- As $z_{IR} \to \infty$ the boundary of the world-sheet moves to r = 0.
- Vev of a Wilson-Loop given by a sequence of light-like segments!

$$A_n \sim e^{-\frac{\sqrt{\lambda}}{2\pi}A_{min}}$$

- A_n: Leading exponential behavior of the n-point scattering amplitude.
- A_{min}(k₁^μ, k₂^μ, ..., k_n^μ): Area of a minimal surface that ends on a sequence of light-like segments on the boundary.

•
$$ds^2 = \frac{dx_{3+1}^2 + dz^2}{z^2} \rightarrow ds^2 = \frac{dy_{3+1}^2 + dr^2}{r^2}$$
: Minimal surface in AdS

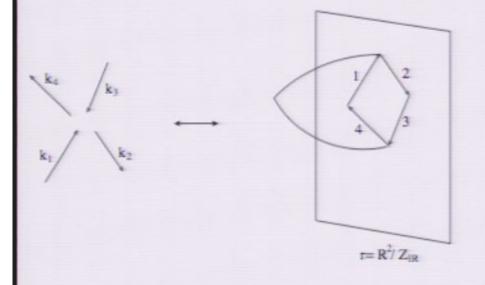


- For each particle with momentum k^{μ} draw a segment $\Delta y^{\mu} = 2\pi k^{\mu}$
- Concatenate the segments according to the particular color ordering.
- Look for the minimal surface ending in such polygon.
- As we have introduced the regulator, the minimal surface ends at $r = R^2/z_{IR} > 0$.
- As $z_{IR} \to \infty$ the boundary of the world-sheet moves to r = 0.
- Vev of a Wilson-Loop given by a sequence of light-like segments!

$$A_n \sim e^{-\frac{\sqrt{\lambda}}{2\pi}A_{min}}$$

- A_n: Leading exponential behavior of the n—point scattering amplitude.
- A_{min}(k₁^μ, k₂^μ, ..., k_n^μ): Area of a minimal surface that ends on a sequence of light-like segments on the boundary.

•
$$ds^2 = \frac{dx_{3+1}^2 + dz^2}{z^2} \rightarrow ds^2 = \frac{dy_{3+1}^2 + dr^2}{r^2}$$
: Minimal surface in AdS



- For each particle with momentum k^{μ} draw a segment $\Delta y^{\mu} = 2\pi k^{\mu}$
- Concatenate the segments according to the particular color ordering.

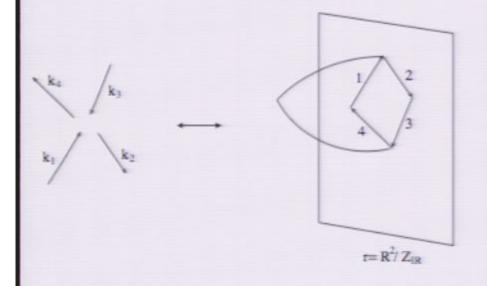
(0) (8) (3) (3)

- Look for the minimal surface ending in such polygon.
- As we have introduced the regulator, the minimal surface ends at $r = R^2/z_{IR} > 0$.
- As $z_{IR} \to \infty$ the boundary of the world-sheet moves to r = 0.
- Vev of a Wilson-Loop given by a sequence of light-like segments!

$$A_n \sim e^{-\frac{\sqrt{\lambda}}{2\pi}A_{min}}$$

- A_n: Leading exponential behavior of the n-point scattering amplitude.
- A_{min}(k₁^μ, k₂^μ, ..., k_n^μ): Area of a minimal surface that ends on a sequence of light-like segments on the boundary.

•
$$ds^2 = \frac{dx_{3+1}^2 + dz^2}{z^2} \rightarrow ds^2 = \frac{dy_{3+1}^2 + dr^2}{r^2}$$
: Minimal surface in AdS



- For each particle with momentum k^{μ} draw a segment $\Delta y^{\mu} = 2\pi k^{\mu}$
- Concatenate the segments according to the particular color ordering.

(0) (8) (3) (3)

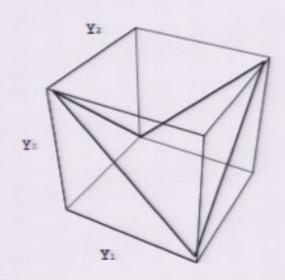
- Look for the minimal surface ending in such polygon.
- As we have introduced the regulator, the minimal surface ends at $r = R^2/z_{IR} > 0$.
- As $z_{IR} \to \infty$ the boundary of the world-sheet moves to r = 0.
- Vev of a Wilson-Loop given by a sequence of light-like segments!

$$A_n \sim e^{-\frac{\sqrt{\lambda}}{2\pi}A_{min}}$$

- A_n: Leading exponential behavior of the n-point scattering amplitude.
- A_{min}(k₁^μ, k₂^μ, ..., k_n^μ): Area of a minimal surface that ends on a sequence of light-like segments on the boundary.

Consider
$$k_1 + k_3 \rightarrow k_2 + k_4$$

The simplest case s = t.



Need to find the minimal surface ending on such sequence of light-like segments

$$r(y_1, y_2) = \sqrt{(1 - y_1^2)(1 - y_2^2)}$$

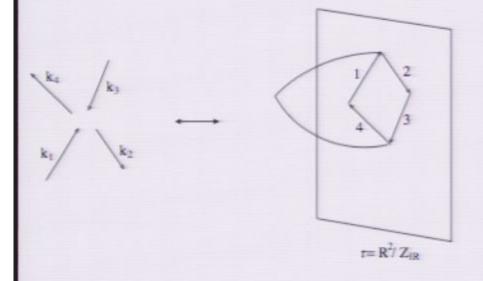
 $y_0 = y_1 y_2$

In embedding coordinates $(-Y_{-1}^2 - Y_0^2 + Y_1^2 + ... + Y_4^2 = -1)$

$$Y_0Y_{-1} = Y_1Y_2, Y_3 = Y_4 = 0$$

Pirsa: 09090023 "Dual" SO(2,4) isometries \rightarrow most general solution ($s \neq_{Pag} 22/99$

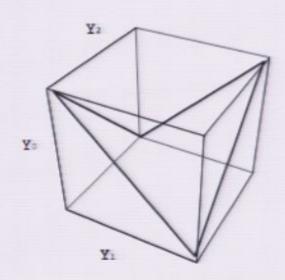
•
$$ds^2 = \frac{dx_{3+1}^2 + dz^2}{z^2} \rightarrow ds^2 = \frac{dy_{3+1}^2 + dr^2}{r^2}$$
: Minimal surface in AdS



- For each particle with momentum k^{μ} draw a segment $\Delta y^{\mu} = 2\pi k^{\mu}$
- Concatenate the segments according to the particular color ordering.
- Look for the minimal surface ending in such polygon.
- As we have introduced the regulator, the minimal surface ends at $r = R^2/z_{IR} > 0$.
- As $z_{IR} \to \infty$ the boundary of the world-sheet moves to r = 0.
- Vev of a Wilson-Loop given by a sequence of light-like segments!

Consider
$$k_1 + k_3 \rightarrow k_2 + k_4$$

The simplest case s = t.



Need to find the minimal surface ending on such sequence of light-like segments

$$r(y_1, y_2) = \sqrt{(1 - y_1^2)(1 - y_2^2)}$$

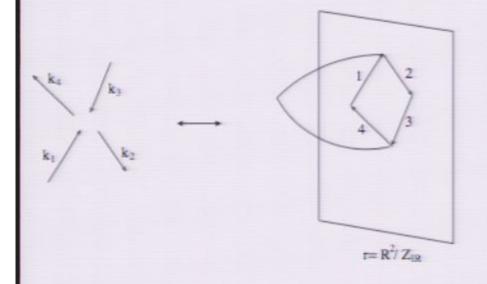
 $y_0 = y_1 y_2$

In embedding coordinates $(-Y_{-1}^2 - Y_0^2 + Y_1^2 + ... + Y_4^2 = -1)$

$$Y_0Y_{-1} = Y_1Y_2, Y_3 = Y_4 = 0$$

Pirsa: 09090023 "Dual" SO(2,4) isometries \rightarrow most general solution ($s \neq_{Pag} 24/99$

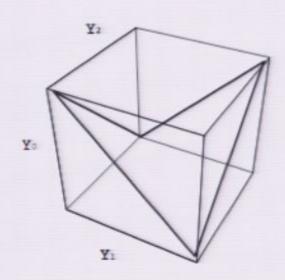
•
$$ds^2 = \frac{dx_{3+1}^2 + dz^2}{z^2} \rightarrow ds^2 = \frac{dy_{3+1}^2 + dr^2}{r^2}$$
: Minimal surface in AdS



- For each particle with momentum k^{μ} draw a segment $\Delta y^{\mu} = 2\pi k^{\mu}$
- Concatenate the segments according to the particular color ordering.
- Look for the minimal surface ending in such polygon.
- As we have introduced the regulator, the minimal surface ends at $r = R^2/z_{IR} > 0$.
- As $z_{IR} \to \infty$ the boundary of the world-sheet moves to r = 0.
- Vev of a Wilson-Loop given by a sequence of light-like segments!

Consider
$$k_1 + k_3 \rightarrow k_2 + k_4$$

The simplest case s = t.



Need to find the minimal surface ending on such sequence of light-like segments

$$r(y_1, y_2) = \sqrt{(1 - y_1^2)(1 - y_2^2)}$$

 $y_0 = y_1 y_2$

In embedding coordinates $(-Y_{-1}^2 - Y_0^2 + Y_1^2 + ... + Y_4^2 = -1)$

$$Y_0Y_{-1} = Y_1Y_2, Y_3 = Y_4 = 0$$

Pirsa: 09090023 "Dual" SO(2,4) isometries \rightarrow most general solution ($s \neq_{Pag} 26/99$

Gauge theory amplitudes (Bern, Dixon and Smirnov)

• Focus in gluon scattering amplitudes of $\mathcal{N}=4$ SYM, with $SU(N_c)$ gauge group with N_c large, in the color decomposed form

$$A_n^{L,Full} \sim \sum_{\rho} Tr(T^{a_{\rho(1)}}...T^{a_{\rho(n)}})A_n^{(L)}(\rho(1),...,\rho(2))$$

- Leading N_c color ordered n-points amplitude at L loops: $A_n^{(L)}$
- The amplitudes are IR divergent.
- Dimensional regularization $D=4-2\epsilon \to A_n^{(L)}(\epsilon)=1/\epsilon^{2L}+...$
- Focus on MHV amplitudes and scale out the tree amplitude

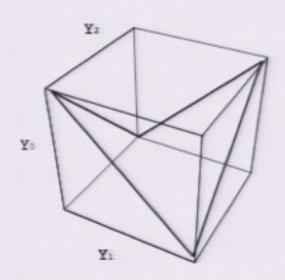
$$M_n^{(L)}(\epsilon) = A_n^{(L)}/A_n^{(0)}$$

$$A_n \sim e^{-\frac{\sqrt{\lambda}}{2\pi}A_{min}}$$

- A_n: Leading exponential behavior of the n-point scattering amplitude.
- A_{min}(k₁^μ, k₂^μ, ..., k_n^μ): Area of a minimal surface that ends on a sequence of light-like segments on the boundary.

Consider
$$k_1 + k_3 \rightarrow k_2 + k_4$$

The simplest case s = t.



Need to find the minimal surface ending on such sequence of light-like segments

$$r(y_1, y_2) = \sqrt{(1 - y_1^2)(1 - y_2^2)}$$

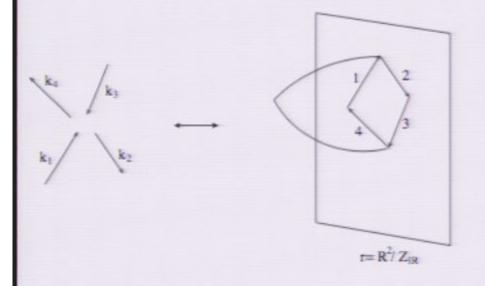
 $y_0 = y_1 y_2$

In embedding coordinates $(-Y_{-1}^2 - Y_0^2 + Y_1^2 + ... + Y_4^2 = -1)$

$$Y_0Y_{-1} = Y_1Y_2, Y_3 = Y_4 = 0$$

Pirsa: 09090023 "Dual" SO(2,4) isometries \rightarrow most general solution ($s \neq_{Pag} 29/99$

•
$$ds^2 = \frac{dx_{3+1}^2 + dz^2}{z^2} \rightarrow ds^2 = \frac{dy_{3+1}^2 + dr^2}{r^2}$$
: Minimal surface in AdS

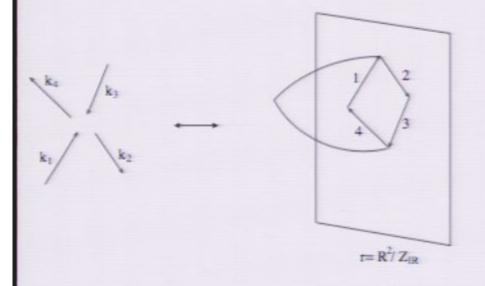


- For each particle with momentum k^{μ} draw a segment $\Delta y^{\mu} = 2\pi k^{\mu}$
- Concatenate the segments according to the particular color ordering.

(0) (8) (3) (3)

- Look for the minimal surface ending in such polygon.
- As we have introduced the regulator, the minimal surface ends at $r = R^2/z_{IR} > 0$.
- As $z_{IR} \to \infty$ the boundary of the world-sheet moves to r = 0.
- Vev of a Wilson-Loop given by a sequence of light-like segments!

•
$$ds^2 = \frac{dx_{3+1}^2 + dz^2}{z^2} \rightarrow ds^2 = \frac{dy_{3+1}^2 + dr^2}{r^2}$$
: Minimal surface in AdS



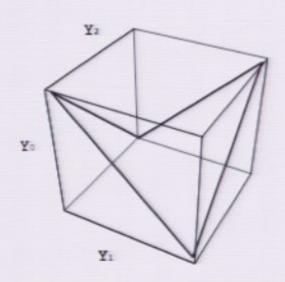
- For each particle with momentum k^{μ} draw a segment $\Delta y^{\mu} = 2\pi k^{\mu}$
- Concatenate the segments according to the particular color ordering.
- Look for the minimal surface ending in such polygon.
- As we have introduced the regulator, the minimal surface ends at $r = R^2/z_{IR} > 0$.
- As $z_{IR} \to \infty$ the boundary of the world-sheet moves to r = 0.
- Vev of a Wilson-Loop given by a sequence of light-like segments!

$$A_n \sim e^{-\frac{\sqrt{\lambda}}{2\pi}A_{min}}$$

- A_n: Leading exponential behavior of the n-point scattering amplitude.
- A_{min}(k₁^μ, k₂^μ, ..., k_n^μ): Area of a minimal surface that ends on a sequence of light-like segments on the boundary.

Consider
$$k_1 + k_3 \rightarrow k_2 + k_4$$

The simplest case s = t.



Need to find the minimal surface ending on such sequence of light-like segments

$$r(y_1, y_2) = \sqrt{(1 - y_1^2)(1 - y_2^2)}$$

 $y_0 = y_1 y_2$

In embedding coordinates $(-Y_{-1}^2 - Y_0^2 + Y_1^2 + ... + Y_4^2 = -1)$

$$Y_0Y_{-1} = Y_1Y_2, Y_3 = Y_4 = 0$$

Pirsa: 09090023 "Dual" SO(2,4) isometries \rightarrow most general solution ($s \neq_{Pag} (33/9)$

Let's compute the area...

- In order for the area to converge we need to introduce a regulator.
- Dimensional reduction scheme: Start with $\mathcal{N}=1$ in D=10 and go down to $D=4-2\epsilon$.
- For integer D this is exactly the low energy theory living on Dp—branes (p = D 1)

Regularized supergravity background

$$ds^2 = \sqrt{\lambda_D c_D} \left(\frac{dy_D^2 + dr^2}{r^{2+\epsilon}} \right) \to S_{\epsilon} = \frac{\sqrt{\lambda_D c_D}}{2\pi} \int \frac{\mathcal{L}_{\epsilon=0}}{r^{\epsilon}}$$

- The regularized area can be computed and it agrees precisely with the BDS ansatz!
- What about other cases with n > 4?
- for all n $SO(2,4) o A_{strong} = A_{1-loop} + F(\frac{x_{ij}x_{kl}}{x_{ik}x_{il}})$ (Drummond et. al., Page 34/9)

Special kinematical configurations Conclusions and outlook

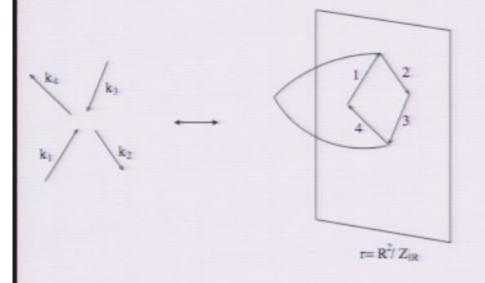
Based on explicit perturbative computations:

BDS proposal for all loops MHV amplitudes

$$\log \mathcal{M}_n = \sum_{i=1}^n \left(-\frac{1}{8\epsilon^2} f^{(-2)} \left(\frac{\lambda \mu^{2\epsilon}}{s_{i,i+1}^\epsilon} \right) - \frac{1}{\epsilon} g^{(-1)} \left(\frac{\lambda \mu^{2\epsilon}}{s_{i,i+1}^\epsilon} \right) \right) + f(\lambda) Fin_n^{(1)}(k)$$

- f(λ), g(λ) → cusp/collinear anomalous dimension.
- Fine for n = 4, 5, not fine for n > 5.

•
$$ds^2 = \frac{dx_{3+1}^2 + dz^2}{z^2} \rightarrow ds^2 = \frac{dy_{3+1}^2 + dr^2}{r^2}$$
: Minimal surface in AdS

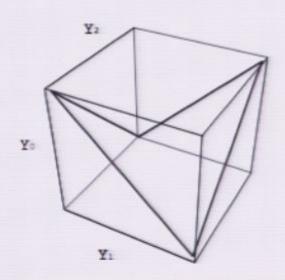


- For each particle with momentum k^{μ} draw a segment $\Delta y^{\mu} = 2\pi k^{\mu}$
- Concatenate the segments according to the particular color ordering.
- Look for the minimal surface ending in such polygon.
- As we have introduced the regulator, the minimal surface ends at $r = R^2/z_{IR} > 0$.
- As $z_{IR} \to \infty$ the boundary of the world-sheet moves to r = 0.
- Vev of a Wilson-Loop given by a sequence of light-like segments!

Four point amplitude at strong coupling

Consider
$$k_1 + k_3 \rightarrow k_2 + k_4$$

The simplest case s = t.



Need to find the minimal surface ending on such sequence of light-like segments

$$r(y_1, y_2) = \sqrt{(1 - y_1^2)(1 - y_2^2)}$$

 $y_0 = y_1 y_2$

In embedding coordinates $(-Y_{-1}^2 - Y_0^2 + Y_1^2 + ... + Y_4^2 = -1)$

$$Y_0Y_{-1} = Y_1Y_2, Y_3 = Y_4 = 0$$

Pirsa: 09090023 "Dual" SO(2,4) isometries \rightarrow most general solution ($s \neq_{Pag} (37/9)$

Let's compute the area...

- In order for the area to converge we need to introduce a regulator.
- Dimensional reduction scheme: Start with $\mathcal{N}=1$ in D=10 and go down to $D=4-2\epsilon$.
- For integer D this is exactly the low energy theory living on Dp—branes (p = D 1)

Regularized supergravity background

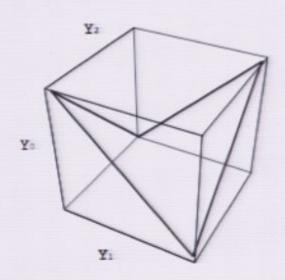
$$ds^2 = \sqrt{\lambda_D c_D} \left(\frac{dy_D^2 + dr^2}{r^{2+\epsilon}} \right) \to S_{\epsilon} = \frac{\sqrt{\lambda_D c_D}}{2\pi} \int \frac{\mathcal{L}_{\epsilon=0}}{r^{\epsilon}}$$

- The regularized area can be computed and it agrees precisely with the BDS ansatz!
- What about other cases with n > 4?
- for all n $SO(2,4) o A_{strong} = A_{1-loop} + F(\frac{x_{ij}x_{kl}}{x_{ik}x_{il}})$ (Drummond et. al., Page 38/9)

Four point amplitude at strong coupling

Consider
$$k_1 + k_3 \rightarrow k_2 + k_4$$

The simplest case s = t.



Need to find the minimal surface ending on such sequence of light-like segments

$$r(y_1, y_2) = \sqrt{(1 - y_1^2)(1 - y_2^2)}$$

 $y_0 = y_1 y_2$

In embedding coordinates $(-Y_{-1}^2 - Y_0^2 + Y_1^2 + ... + Y_4^2 = -1)$

$$Y_0Y_{-1} = Y_1Y_2, Y_3 = Y_4 = 0$$

Pirsa: 09090023 "Dual" SO(2,4) isometries \rightarrow most general solution ($s \neq_{Pag} (39/9)$

Let's compute the area...

- In order for the area to converge we need to introduce a regulator.
- Dimensional reduction scheme: Start with $\mathcal{N}=1$ in D=10 and go down to $D=4-2\epsilon$.
- For integer D this is exactly the low energy theory living on Dp—branes (p = D 1)

Regularized supergravity background

$$ds^2 = \sqrt{\lambda_D c_D} \left(\frac{dy_D^2 + dr^2}{r^{2+\epsilon}} \right) \to S_{\epsilon} = \frac{\sqrt{\lambda_D c_D}}{2\pi} \int \frac{\mathcal{L}_{\epsilon=0}}{r^{\epsilon}}$$

- The regularized area can be computed and it agrees precisely with the BDS ansatz!
- What about other cases with n > 4?
- for all n $SO(2,4) o A_{strong} = A_{1-loop} + F(\frac{x_{ij}x_{kl}}{x_{ik}x_{il}})$ (Drummond et. al. Page 40/9

Based on explicit perturbative computations:

BDS proposal for all loops MHV amplitudes

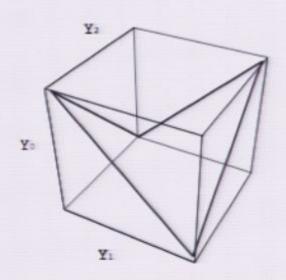
$$\log \mathcal{M}_n = \sum_{i=1}^n \left(-\frac{1}{8\epsilon^2} f^{(-2)} \left(\frac{\lambda \mu^{2\epsilon}}{s_{i,i+1}^\epsilon} \right) - \frac{1}{\epsilon} g^{(-1)} \left(\frac{\lambda \mu^{2\epsilon}}{s_{i,i+1}^\epsilon} \right) \right) + f(\lambda) Fin_n^{(1)}(k)$$

- f(λ), g(λ) → cusp/collinear anomalous dimension.
- Fine for n = 4, 5, not fine for n > 5.

Four point amplitude at strong coupling

Consider
$$k_1 + k_3 \rightarrow k_2 + k_4$$

The simplest case s = t.



Need to find the minimal surface ending on such sequence of light-like segments

$$r(y_1, y_2) = \sqrt{(1 - y_1^2)(1 - y_2^2)}$$

 $y_0 = y_1 y_2$

In embedding coordinates $(-Y_{-1}^2 - Y_0^2 + Y_1^2 + ... + Y_4^2 = -1)$

$$Y_0Y_{-1} = Y_1Y_2, Y_3 = Y_4 = 0$$

Pirsa: 09090023 "Dual" SO(2,4) isometries \rightarrow most general solution ($s \neq_{Pag} t_{42/9}$)

Let's compute the area...

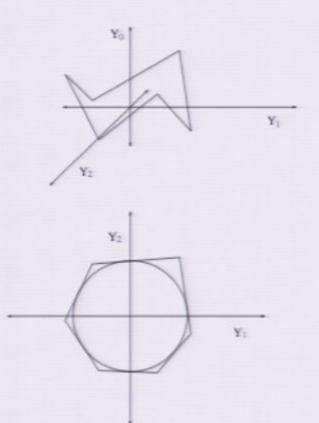
- In order for the area to converge we need to introduce a regulator.
- Dimensional reduction scheme: Start with $\mathcal{N}=1$ in D=10 and go down to $D=4-2\epsilon$.
- For integer D this is exactly the low energy theory living on Dp—branes (p = D 1)

Regularized supergravity background

$$ds^{2} = \sqrt{\lambda_{D}c_{D}} \left(\frac{dy_{D}^{2} + dr^{2}}{r^{2+\epsilon}} \right) \rightarrow S_{\epsilon} = \frac{\sqrt{\lambda_{D}c_{D}}}{2\pi} \int \frac{\mathcal{L}_{\epsilon=0}}{r^{\epsilon}}$$

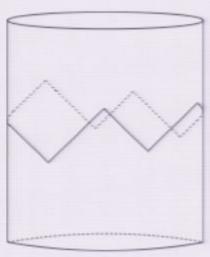
- The regularized area can be computed and it agrees precisely with the BDS ansatz!
- What about other cases with n > 4?
- for all n $SO(2,4) o A_{strong} = A_{1-loop} + F(\frac{x_{ij}x_{kl}}{x_{ik}x_{il}})$ (Drummond et. al. Page 43/9

- Unfortunately its very hard to find classical solutions...
- Consider a special kinematical configuration

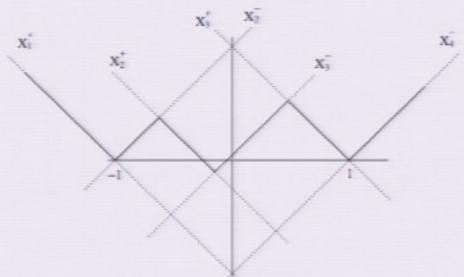


- Projection of the world-sheet to the (y₁, y₂) plane is a polygon which circumscribes the unit circle.
- Eom's and boundary conditions are consistent with Y₃ = Y₄ = 0.

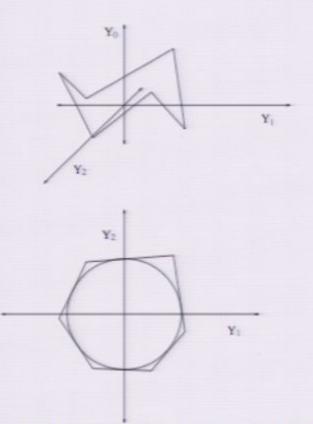
The scattering is equivalent to a 2D scattering, e.g. in the cylinder.



- Consider a zig-zagged Wilson loop of 2n sides
- Parametrized by n X_i⁺ coordinates and n
 X_i⁻ coordinates.
- We can build 2n 6 invariant cross ratios.



- Unfortunately its very hard to find classical solutions...
- Consider a special kinematical configuration

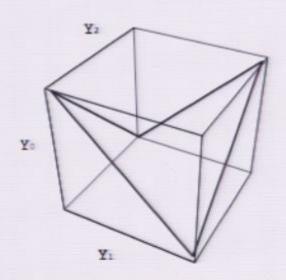


- Projection of the world-sheet to the (y₁, y₂) plane is a polygon which circumscribes the unit circle.
- Eom's and boundary conditions are consistent with Y₃ = Y₄ = 0.

Four point amplitude at strong coupling

Consider
$$k_1 + k_3 \rightarrow k_2 + k_4$$

The simplest case s = t.



Need to find the minimal surface ending on such sequence of light-like segments

$$r(y_1, y_2) = \sqrt{(1 - y_1^2)(1 - y_2^2)}$$

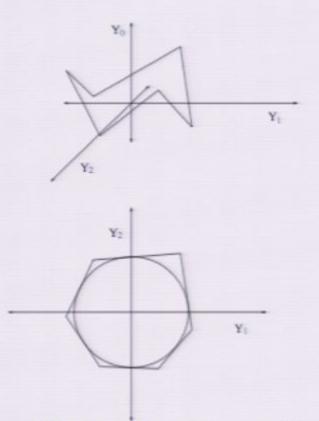
 $y_0 = y_1 y_2$

In embedding coordinates $(-Y_{-1}^2 - Y_0^2 + Y_1^2 + ... + Y_4^2 = -1)$

$$Y_0Y_{-1} = Y_1Y_2, Y_3 = Y_4 = 0$$

Pirsa: 09090023 "Dual" SO(2,4) isometries \rightarrow most general solution ($s \neq_{Pag} 47/99$

- Unfortunately its very hard to find classical solutions...
- Consider a special kinematical configuration

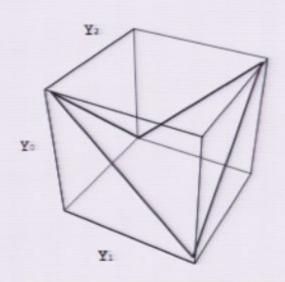


- Projection of the world-sheet to the (y₁, y₂) plane is a polygon which circumscribes the unit circle.
- Eom's and boundary conditions are consistent with Y₃ = Y₄ = 0.

Four point amplitude at strong coupling

Consider
$$k_1 + k_3 \rightarrow k_2 + k_4$$

The simplest case s = t.



Need to find the minimal surface ending on such sequence of light-like segments

$$r(y_1, y_2) = \sqrt{(1 - y_1^2)(1 - y_2^2)}$$

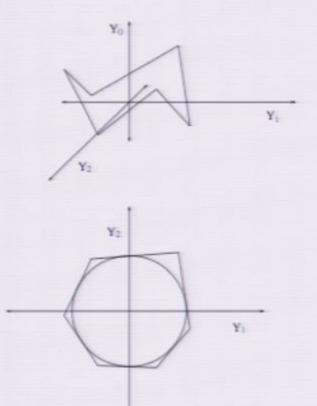
 $y_0 = y_1 y_2$

In embedding coordinates $(-Y_{-1}^2 - Y_0^2 + Y_1^2 + ... + Y_4^2 = -1)$

$$Y_0Y_{-1} = Y_1Y_2, Y_3 = Y_4 = 0$$

Pirsa: 09090023 "Dual" SO(2,4) isometries \rightarrow most general solution ($s \neq_{Pag} t_{49/9}$)

- Unfortunately its very hard to find classical solutions...
- Consider a special kinematical configuration

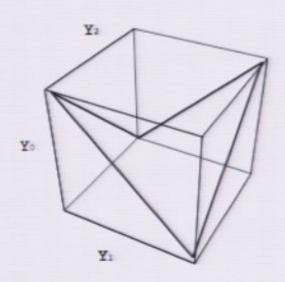


- Projection of the world-sheet to the (y₁, y₂) plane is a polygon which circumscribes the unit circle.
- Eom's and boundary conditions are consistent with Y₃ = Y₄ = 0.

Four point amplitude at strong coupling

Consider
$$k_1 + k_3 \rightarrow k_2 + k_4$$

The simplest case s = t.



Need to find the minimal surface ending on such sequence of light-like segments

$$r(y_1, y_2) = \sqrt{(1 - y_1^2)(1 - y_2^2)}$$

 $y_0 = y_1 y_2$

In embedding coordinates $(-Y_{-1}^2 - Y_0^2 + Y_1^2 + ... + Y_4^2 = -1)$

$$Y_0Y_{-1} = Y_1Y_2, Y_3 = Y_4 = 0$$

Pirsa: 09090023 "Dual" SO(2,4) isometries \rightarrow most general solution ($s \neq_{Pag} t_{51/9}$)

Let's compute the area...

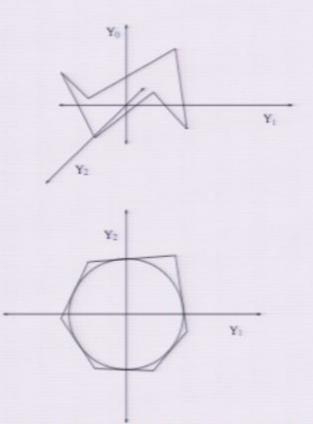
- In order for the area to converge we need to introduce a regulator.
- Dimensional reduction scheme: Start with $\mathcal{N}=1$ in D=10 and go down to $D=4-2\epsilon$.
- For integer D this is exactly the low energy theory living on Dp—branes (p = D 1)

Regularized supergravity background

$$ds^{2} = \sqrt{\lambda_{D}c_{D}} \left(\frac{dy_{D}^{2} + dr^{2}}{r^{2+\epsilon}} \right) \rightarrow S_{\epsilon} = \frac{\sqrt{\lambda_{D}c_{D}}}{2\pi} \int \frac{\mathcal{L}_{\epsilon=0}}{r^{\epsilon}}$$

- The regularized area can be computed and it agrees precisely with the BDS ansatz!
- What about other cases with n > 4?
- for all n $SO(2,4) o A_{strong} = A_{1-loop} + F(\frac{x_{ij}x_{kl}}{x_{ik}x_{il}})$ (Drummond et. al. Page 52/9)

- Unfortunately its very hard to find classical solutions...
- Consider a special kinematical configuration

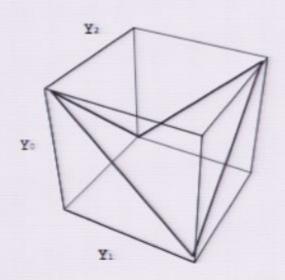


- Projection of the world-sheet to the (y₁, y₂) plane is a polygon which circumscribes the unit circle.
- Eom's and boundary conditions are consistent with Y₃ = Y₄ = 0.

Four point amplitude at strong coupling

Consider
$$k_1 + k_3 \rightarrow k_2 + k_4$$

The simplest case s = t.



Need to find the minimal surface ending on such sequence of light-like segments

$$r(y_1, y_2) = \sqrt{(1 - y_1^2)(1 - y_2^2)}$$

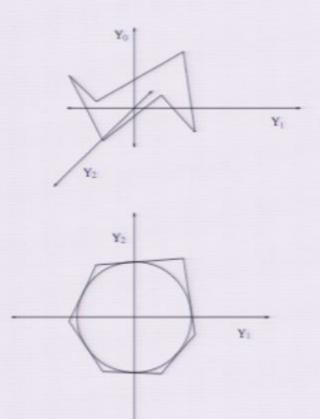
 $y_0 = y_1 y_2$

In embedding coordinates $(-Y_{-1}^2 - Y_0^2 + Y_1^2 + ... + Y_4^2 = -1)$

$$Y_0Y_{-1} = Y_1Y_2, Y_3 = Y_4 = 0$$

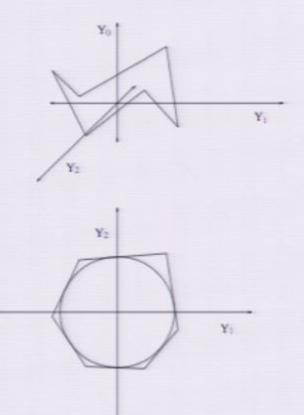
Pirsa: 09090023 "Dual" SO(2,4) isometries \rightarrow most general solution ($s \neq_{Pag} 54/99$

- Unfortunately its very hard to find classical solutions...
- Consider a special kinematical configuration



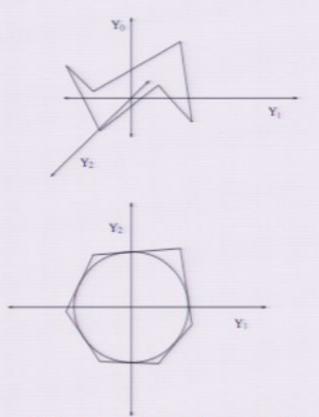
- Projection of the world-sheet to the (y₁, y₂) plane is a polygon which circumscribes the unit circle.
- Eom's and boundary conditions are consistent with Y₃ = Y₄ = 0.

- Unfortunately its very hard to find classical solutions...
- Consider a special kinematical configuration



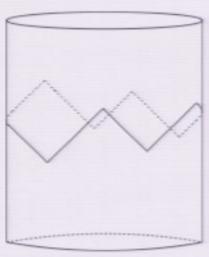
- Projection of the world-sheet to the (y₁, y₂) plane is a polygon which circumscribes the unit circle.
- Eom's and boundary conditions are consistent with Y₃ = Y₄ = 0.

- Unfortunately its very hard to find classical solutions...
- Consider a special kinematical configuration

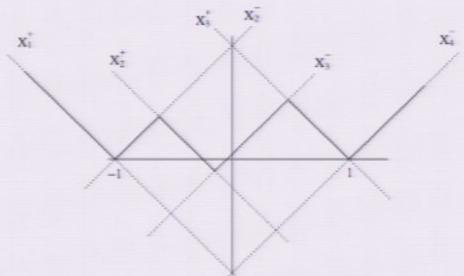


- Projection of the world-sheet to the (y₁, y₂) plane is a polygon which circumscribes the unit circle.
- Eom's and boundary conditions are consistent with Y₃ = Y₄ = 0.

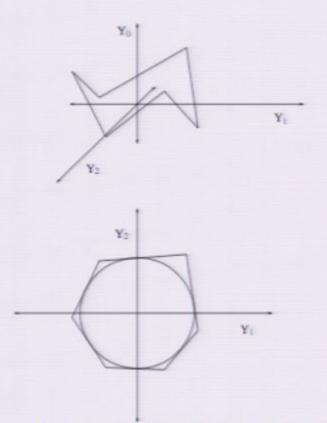
The scattering is equivalent to a 2D scattering, e.g. in the cylinder.



- Consider a zig-zagged Wilson loop of 2n sides
- Parametrized by n X_i⁺ coordinates and n
 X_i⁻ coordinates.
- We can build 2n 6 invariant cross ratios.

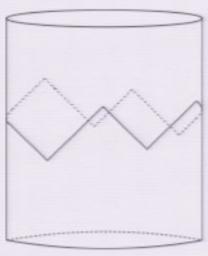


- Unfortunately its very hard to find classical solutions...
- Consider a special kinematical configuration

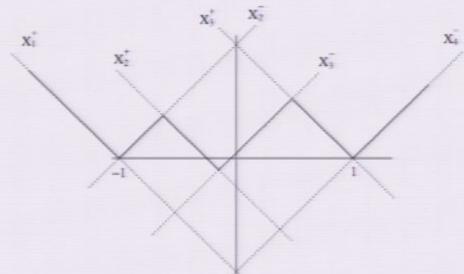


- Projection of the world-sheet to the (y₁, y₂) plane is a polygon which circumscribes the unit circle.
- Eom's and boundary conditions are consistent with Y₃ = Y₄ = 0.

The scattering is equivalent to a 2D scattering, e.g. in the cylinder.



- Consider a zig-zagged Wilson loop of 2n sides
- Parametrized by n X_i⁺ coordinates and n
 X_i⁻ coordinates.
- We can build 2n 6 invariant cross ratios.



Strings on AdS₃

Strings on
$$AdS_3$$
: $\vec{Y} \cdot \vec{Y} = -Y_{-1}^2 - Y_0^2 + Y_1^2 + Y_2^2 = -1$

Eoms:
$$\partial \bar{\partial} \vec{Y} - (\partial \vec{Y} \cdot \bar{\partial} \vec{Y}) \vec{Y} = 0$$
, Virasoro: $\partial \vec{Y} \cdot \partial \vec{Y} = \bar{\partial} \vec{Y} \cdot \bar{\partial} \vec{Y} = 0$

Polhmeyer kind of reduction → generalized Sinh-Gordon

$$\alpha(z,\bar{z}) = \log(\partial \vec{Y}.\bar{\partial} \vec{Y}), \quad p = -e^{-\alpha} \epsilon_{abcd} \partial^2 Y^a Y^b \partial Y^c \bar{\partial} Y^d$$

$$\downarrow$$

$$p = p(z), \quad \partial \bar{\partial} \alpha - e^{2\alpha} + |p(z)|^2 e^{-2\alpha} = 0$$

- $\alpha(z,\bar{z})$ and p(z) invariant under conformal transformations.
- Area of the world sheet: $A = \int e^{2\alpha} d^2z$

Generalized Sinh-Gordon → Strings on AdS₃?

 From α, p construct flat connections B_{L,R} and solve two linear auxiliary problems.

$$(\partial + B^{L})\psi_{a}^{L} = 0 (\partial + B^{R})\psi_{\dot{a}}^{R} = 0$$

$$B_{z}^{L} = \begin{pmatrix} \partial \alpha & e^{\alpha} \\ e^{-\alpha}p(z) & -\partial \alpha \end{pmatrix}$$

Space-time coordinates

$$Y_{a,\dot{a}} = \begin{pmatrix} Y_{-1} + Y_2 & Y_1 - Y_0 \\ Y_1 + Y_0 & Y_{-1} - Y_2 \end{pmatrix} = \psi_a^L M \psi_{\dot{a}}^R$$

One can check that Y constructed that way has all the correct properties.

Strings on AdS₃

Strings on
$$AdS_3$$
: $\vec{Y} \cdot \vec{Y} = -Y_{-1}^2 - Y_0^2 + Y_1^2 + Y_2^2 = -1$

Eoms:
$$\partial \bar{\partial} \vec{Y} - (\partial \vec{Y} \cdot \bar{\partial} \vec{Y}) \vec{Y} = 0$$
, Virasoro: $\partial \vec{Y} \cdot \partial \vec{Y} = \bar{\partial} \vec{Y} \cdot \bar{\partial} \vec{Y} = 0$

Polhmeyer kind of reduction → generalized Sinh-Gordon

$$\alpha(z,\bar{z}) = \log(\partial \vec{Y}.\bar{\partial} \vec{Y}), \quad p = -e^{-\alpha} \epsilon_{abcd} \partial^2 Y^a Y^b \partial Y^c \bar{\partial} Y^d$$

$$\downarrow$$

$$p = p(z), \quad \partial \bar{\partial} \alpha - e^{2\alpha} + |p(z)|^2 e^{-2\alpha} = 0$$

- $\alpha(z,\bar{z})$ and p(z) invariant under conformal transformations.
- Area of the world sheet: $A = \int e^{2\alpha} d^2z$

Page 6

Generalized Sinh-Gordon → Strings on AdS₃?

 From α, p construct flat connections B_{L,R} and solve two linear auxiliary problems.

$$(\partial + B^L)\psi_a^L = 0 (\partial + B^R)\psi_a^R = 0$$

$$B_z^L = \begin{pmatrix} \partial \alpha & e^{\alpha} \\ e^{-\alpha}p(z) & -\partial \alpha \end{pmatrix}$$

Space-time coordinates

$$Y_{a,\dot{a}} = \begin{pmatrix} Y_{-1} + Y_2 & Y_1 - Y_0 \\ Y_1 + Y_0 & Y_{-1} - Y_2 \end{pmatrix} = \psi_a^L M \psi_{\dot{a}}^R$$

One can check that Y constructed that way has all the correct properties.

Strings on AdS₃

Strings on
$$AdS_3$$
: $\vec{Y} \cdot \vec{Y} = -Y_{-1}^2 - Y_0^2 + Y_1^2 + Y_2^2 = -1$

Eoms:
$$\partial \bar{\partial} \vec{Y} - (\partial \vec{Y} \cdot \bar{\partial} \vec{Y}) \vec{Y} = 0$$
, Virasoro: $\partial \vec{Y} \cdot \partial \vec{Y} = \bar{\partial} \vec{Y} \cdot \bar{\partial} \vec{Y} = 0$

Polhmeyer kind of reduction → generalized Sinh-Gordon

$$\alpha(z,\bar{z}) = \log(\partial \vec{Y}.\bar{\partial}\vec{Y}), \quad p = -e^{-\alpha}\epsilon_{abcd}\partial^2 Y^a Y^b \partial Y^c \bar{\partial} Y^d$$

$$\downarrow$$

$$p = p(z), \quad \partial \bar{\partial} \alpha - e^{2\alpha} + |p(z)|^2 e^{-2\alpha} = 0$$

- $\alpha(z,\bar{z})$ and p(z) invariant under conformal transformations.
- Area of the world sheet: $A = \int e^{2\alpha} d^2z$

Generalized Sinh-Gordon → Strings on AdS₃?

 From α, p construct flat connections B_{L,R} and solve two linear auxiliary problems.

$$(\partial + B^L)\psi_a^L = 0 (\partial + B^R)\psi_a^R = 0$$

$$B_z^L = \begin{pmatrix} \partial \alpha & e^{\alpha} \\ e^{-\alpha}p(z) & -\partial \alpha \end{pmatrix}$$

Space-time coordinates

$$Y_{a,\dot{a}} = \begin{pmatrix} Y_{-1} + Y_2 & Y_1 - Y_0 \\ Y_1 + Y_0 & Y_{-1} - Y_2 \end{pmatrix} = \psi_a^L M \psi_{\dot{a}}^R$$

One can check that Y constructed that way has all the correct properties.

Strings on AdS₃

Strings on
$$AdS_3$$
: $\vec{Y} \cdot \vec{Y} = -Y_{-1}^2 - Y_0^2 + Y_1^2 + Y_2^2 = -1$

Eoms:
$$\partial \bar{\partial} \vec{Y} - (\partial \vec{Y} \cdot \bar{\partial} \vec{Y}) \vec{Y} = 0$$
, Virasoro: $\partial \vec{Y} \cdot \partial \vec{Y} = \bar{\partial} \vec{Y} \cdot \bar{\partial} \vec{Y} = 0$

Polhmeyer kind of reduction → generalized Sinh-Gordon

$$\alpha(z,\bar{z}) = \log(\partial \vec{Y}.\bar{\partial}\vec{Y}), \quad p = -e^{-\alpha}\epsilon_{abcd}\partial^2 Y^a Y^b \partial Y^c \bar{\partial} Y^d$$

$$\downarrow$$

$$p = p(z), \quad \partial \bar{\partial} \alpha - e^{2\alpha} + |p(z)|^2 e^{-2\alpha} = 0$$

- $\alpha(z,\bar{z})$ and p(z) invariant under conformal transformations.
- Area of the world sheet: $A = \int e^{2\alpha} d^2z$

Page 67

Generalized Sinh-Gordon → Strings on AdS₃?

 From α, p construct flat connections B_{L,R} and solve two linear auxiliary problems.

$$(\partial + B^L)\psi_a^L = 0 (\partial + B^R)\psi_a^R = 0$$

$$B_z^L = \begin{pmatrix} \partial \alpha & e^{\alpha} \\ e^{-\alpha}p(z) & -\partial \alpha \end{pmatrix}$$

Space-time coordinates

$$Y_{a,\dot{a}} = \begin{pmatrix} Y_{-1} + Y_2 & Y_1 - Y_0 \\ Y_1 + Y_0 & Y_{-1} - Y_2 \end{pmatrix} = \psi_a^L M \psi_{\dot{a}}^R$$

One can check that Y constructed that way has all the correct properties.

Relation to Hitchin equations

Consider self-dual YM in 4d reduced to 2d

• $A_{1,2} \rightarrow A_{1,2}$: 2d gauge field, $A_{3,4} \rightarrow \Phi, \Phi^*$: Higgs field.

Hitchin equations

$$F^{(4)} = *F^{(4)}$$
 $\rightarrow D_{\bar{z}} \Phi = D_z \Phi^* = 0$
 $F_{z\bar{z}} + [\Phi, \Phi^*] = 0$

- We can decompose $B = A + \Phi$.
- $dB + B \wedge B = 0$ implies the Hitchin equations.
- We have a particular solution of the SU(2) Hitchin system.

raye os

Generalized Sinh-Gordon → Strings on AdS₃?

 From α, p construct flat connections B_{L,R} and solve two linear auxiliary problems.

$$(\partial + B^{L})\psi_{a}^{L} = 0 (\partial + B^{R})\psi_{a}^{R} = 0$$

$$B_{z}^{L} = \begin{pmatrix} \partial \alpha & e^{\alpha} \\ e^{-\alpha}p(z) & -\partial \alpha \end{pmatrix}$$

Space-time coordinates

$$Y_{a,\dot{a}} = \begin{pmatrix} Y_{-1} + Y_2 & Y_1 - Y_0 \\ Y_1 + Y_0 & Y_{-1} - Y_2 \end{pmatrix} = \psi_a^L M \psi_{\dot{a}}^R$$

One can check that Y constructed that way has all the correct properties.

Relation to Hitchin equations

Consider self-dual YM in 4d reduced to 2d

• $A_{1,2} \rightarrow A_{1,2}$: 2d gauge field, $A_{3,4} \rightarrow \Phi, \Phi^*$: Higgs field.

Hitchin equations

$$F^{(4)} = *F^{(4)}$$
 $\rightarrow D_{\bar{z}} \Phi = D_z \Phi^* = 0$
 $F_{z\bar{z}} + [\Phi, \Phi^*] = 0$

- We can decompose $B = A + \Phi$.
- $dB + B \wedge B = 0$ implies the Hitchin equations.
- We have a particular solution of the SU(2) Hitchin system.

• Classical solutions on $AdS_3 \rightarrow p(z), \alpha(z, \bar{z})$

$$dw = \sqrt{p(z)}dz, \quad \hat{\alpha} = \alpha - \frac{1}{4}\log p\bar{p} \rightarrow \partial_w\bar{\partial}_{\bar{w}}\hat{\alpha} = \sinh 2\hat{\alpha}$$

 We need to get some intuition for solutions corresponding to scattering amplitudes...

$$n=2$$
 "square" solution: $p(z)=1, \ \hat{\alpha}=0$

• For the solutions relevant to scattering amplitudes we require p(z) to be a polynomial and $\hat{\alpha}$ to decay at infinity.

Generalized Sinh-Gordon → Strings on AdS₃?

 From α, p construct flat connections B_{L,R} and solve two linear auxiliary problems.

$$(\partial + B^L)\psi_a^L = 0 (\partial + B^R)\psi_a^R = 0$$

$$B_z^L = \begin{pmatrix} \partial \alpha & e^{\alpha} \\ e^{-\alpha}p(z) & -\partial \alpha \end{pmatrix}$$

Space-time coordinates

$$Y_{a,\dot{a}} = \begin{pmatrix} Y_{-1} + Y_2 & Y_1 - Y_0 \\ Y_1 + Y_0 & Y_{-1} - Y_2 \end{pmatrix} = \psi_a^L M \psi_{\dot{a}}^R$$

One can check that Y constructed that way has all the correct properties.

Relation to Hitchin equations

Consider self-dual YM in 4d reduced to 2d

• $A_{1,2} \rightarrow A_{1,2}$: 2d gauge field, $A_{3,4} \rightarrow \Phi, \Phi^*$: Higgs field.

Hitchin equations

$$F^{(4)} = *F^{(4)}$$
 $\rightarrow D_{\bar{z}} \Phi = D_z \Phi^* = 0$
 $F_{z\bar{z}} + [\Phi, \Phi^*] = 0$

- We can decompose $B = A + \Phi$.
- $dB + B \wedge B = 0$ implies the Hitchin equations.
- We have a particular solution of the SU(2) Hitchin system.

• Classical solutions on $AdS_3 \rightarrow p(z), \alpha(z, \bar{z})$

$$dw = \sqrt{p(z)}dz, \quad \hat{\alpha} = \alpha - \frac{1}{4}\log p\bar{p} \rightarrow \partial_w\bar{\partial}_{\bar{w}}\hat{\alpha} = \sinh 2\hat{\alpha}$$

 We need to get some intuition for solutions corresponding to scattering amplitudes...

$$n=2$$
 "square" solution: $p(z)=1, \ \hat{\alpha}=0$

• For the solutions relevant to scattering amplitudes we require p(z) to be a polynomial and $\hat{\alpha}$ to decay at infinity.

Consider a generic polynomial of degree n-2

$$p(z) = z^{n-2} + c_{n-4}z^{n-4} + \dots + c_1z + c_0$$

- We have used translations and re-scalings in order to fix the first two coefficients to one and zero.
- For a polynomial of degree n − 2 we are left with 2n − 6 (real) variables.
- This is exactly the number of invariant cross-ratios in two dimensions for the scattering of 2n gluons!

Null Wilsons loops of 2n sides $\Leftrightarrow P^{n-2}(z)$ and $\alpha(z,\bar{z})$

Regular polygons

• Simplest case: $p(z) = z^{n-2} \rightarrow \alpha(z, \bar{z}) = \alpha(\rho)$

Sinh-Gordon → Painleve III

$$\hat{lpha}''(
ho) + rac{\hat{lpha}'(
ho)}{
ho} = rac{1}{2} \sinh(2\hat{lpha}(
ho))$$

 Solved in terms of Painleve transcendentals, well studied in the literature.

Another interesting feature

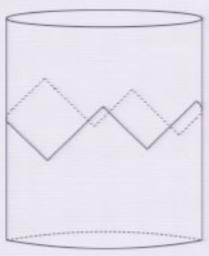
• $w = z^{n/2}$: As we go once around the z-plane, we go around the w-plane n/2 times.

- The inverse map can be solved exactly.
- The solution has a Z_n symmetry and indeed corresponds to the regular polygon! (each quadrant in the w-plane corresponds to a cusp.)
- Question: How do we compute the area?

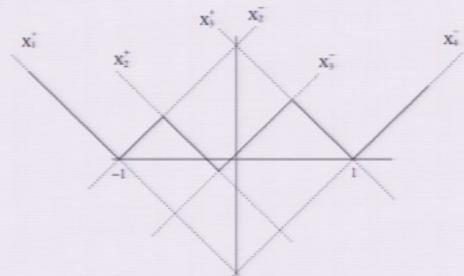
$$A = \int e^{2\hat{\alpha}} d^2 w = \int (e^{2\hat{\alpha}} - 1) d^2 w + \int 1 d^2 w = A_{sinh} + A_{div}$$

- A_{sinh} is finite, we don't need to introduce any regulator.
- A_{div} is divergent, we need to regularize it

The scattering is equivalent to a 2D scattering, e.g. in the cylinder.

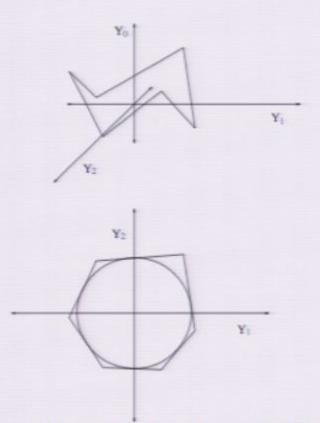


- Consider a zig-zagged Wilson loop of 2n sides
- Parametrized by n X_i⁺ coordinates and n
 X_i⁻ coordinates.
- We can build 2n 6 invariant cross ratios.



Special kinematical configurations

- Unfortunately its very hard to find classical solutions...
- Consider a special kinematical configuration



- Projection of the world-sheet to the (y₁, y₂) plane is a polygon which circumscribes the unit circle.
- Eom's and boundary conditions are consistent with Y₃ = Y₄ = 0.

Strings on AdS₃

Strings on
$$AdS_3$$
: $\vec{Y} \cdot \vec{Y} = -Y_{-1}^2 - Y_0^2 + Y_1^2 + Y_2^2 = -1$

Eoms:
$$\partial \bar{\partial} \vec{Y} - (\partial \vec{Y} \cdot \bar{\partial} \vec{Y}) \vec{Y} = 0$$
, Virasoro: $\partial \vec{Y} \cdot \partial \vec{Y} = \bar{\partial} \vec{Y} \cdot \bar{\partial} \vec{Y} = 0$

Polhmeyer kind of reduction → generalized Sinh-Gordon

$$\alpha(z,\bar{z}) = \log(\partial \vec{Y}.\bar{\partial}\vec{Y}), \quad p = -e^{-\alpha}\epsilon_{abcd}\partial^2 Y^a Y^b \partial Y^c \bar{\partial} Y^d$$

$$\downarrow$$

$$p = p(z), \quad \partial \bar{\partial} \alpha - e^{2\alpha} + |p(z)|^2 e^{-2\alpha} = 0$$

- $\alpha(z,\bar{z})$ and p(z) invariant under conformal transformations.
- Area of the world sheet: $A = \int e^{2\alpha} d^2z$

Consider a generic polynomial of degree n-2

$$p(z) = z^{n-2} + c_{n-4}z^{n-4} + \dots + c_1z + c_0$$

- We have used translations and re-scalings in order to fix the first two coefficients to one and zero.
- For a polynomial of degree n − 2 we are left with 2n − 6 (real) variables.
- This is exactly the number of invariant cross-ratios in two dimensions for the scattering of 2n gluons!

Null Wilsons loops of 2n sides $\Leftrightarrow P^{n-2}(z)$ and $\alpha(z,\bar{z})$

Regular polygons

• Simplest case: $p(z) = z^{n-2} \rightarrow \alpha(z, \bar{z}) = \alpha(\rho)$

Sinh-Gordon → Painleve III

$$\hat{lpha}''(
ho) + rac{\hat{lpha}'(
ho)}{
ho} = rac{1}{2} \sinh(2\hat{lpha}(
ho))$$

 Solved in terms of Painleve transcendentals, well studied in the literature.

Another interesting feature

• $w = z^{n/2}$: As we go once around the z-plane, we go around the w-plane n/2 times.

- The inverse map can be solved exactly.
- The solution has a Z_n symmetry and indeed corresponds to the regular polygon! (each quadrant in the w-plane corresponds to a cusp.)
- Question: How do we compute the area?

$$A=\int e^{2\hat{\alpha}}d^2w=\int (e^{2\hat{\alpha}}-1)d^2w+\int 1d^2w=A_{sinh}+A_{div}$$

- A_{sinh} is finite, we don't need to introduce any regulator.
- A_{div} is divergent, we need to regularize it

In order to compute A_{div} use dimensional regularization...

$$A_{div}(\epsilon) = \int \frac{1}{r^{\epsilon}} d^2 w \approx \frac{n}{(\sin \frac{\pi}{2n})^{\epsilon} \epsilon^2}$$

- It has the expected IR behavior!
- The integrand of A_{sinh} was studied by Zamolodchikov!

$$A_{sinh} = \frac{\pi}{4n}(3n^2 - 8n + 4),$$

- When n → ∞, the regular Wilson loop approaches the circular Wilson loop.
- $A_{sinh} \rightarrow \frac{3}{4}\pi n 2\pi + \mathcal{O}(1/n)$ in agreement with the known result!

- The inverse map can be solved exactly.
- The solution has a Z_n symmetry and indeed corresponds to the regular polygon! (each quadrant in the w-plane corresponds to a cusp.)
- Question: How do we compute the area?

$$A = \int e^{2\hat{\alpha}} d^2 w = \int (e^{2\hat{\alpha}} - 1) d^2 w + \int 1 d^2 w = A_{sinh} + A_{div}$$

- A_{sinh} is finite, we don't need to introduce any regulator.
- A_{div} is divergent, we need to regularize it

In order to compute A_{div} use dimensional regularization...

$$A_{div}(\epsilon) = \int \frac{1}{r^{\epsilon}} d^2 w \approx \frac{n}{(\sin \frac{\pi}{2n})^{\epsilon} \epsilon^2}$$

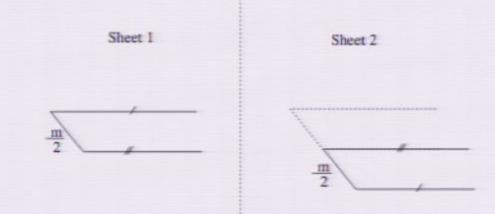
- It has the expected IR behavior!
- The integrand of A_{sinh} was studied by Zamolodchikov!

$$A_{sinh} = \frac{\pi}{4n}(3n^2 - 8n + 4),$$

- When n → ∞, the regular Wilson loop approaches the circular Wilson loop.
- $A_{sinh} \rightarrow \frac{3}{4}\pi n 2\pi + \mathcal{O}(1/n)$ in agreement with the known result!

First non trivial case: $p(z) = z^2 - m$, the "octagon"

- We can split the area again into A_{sinh} and A_{div}, but...
- We don't know explicitly the solution for α ...
- We cannot perform the inverse map...
- The w-plane is complicated...



 The information of m survives at large distances and we can compute cross-ratios vs. m = m_r + im_i.

$$e^{m_r} = \frac{(x_4^+ - x_1^+)(x_3^+ - x_2^+)}{(x_4^+ - x_3^+)(x_2^+ - x_1^+)}, \quad e^{m_i} = \frac{(x_4^- - x_1^-)(x_3^- - x_2^-)}{(x_4^- - x_3^-)(x_2^- - x_1^-)}$$

In order to compute A_{div} use dimensional regularization...

$$A_{div}(\epsilon) = \int \frac{1}{r^{\epsilon}} d^2 w \approx \frac{n}{(\sin \frac{\pi}{2n})^{\epsilon} \epsilon^2}$$

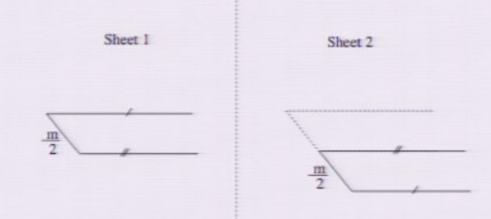
- It has the expected IR behavior!
- The integrand of A_{sinh} was studied by Zamolodchikov!

$$A_{sinh} = \frac{\pi}{4n}(3n^2 - 8n + 4),$$

- When n → ∞, the regular Wilson loop approaches the circular Wilson loop.
- $A_{sinh} \rightarrow \frac{3}{4}\pi n 2\pi + \mathcal{O}(1/n)$ in agreement with the known result!

First non trivial case: $p(z) = z^2 - m$, the "octagon"

- We can split the area again into A_{sinh} and A_{div}, but...
- We don't know explicitly the solution for α ...
- We cannot perform the inverse map...
- The w-plane is complicated...



 The information of m survives at large distances and we can compute cross-ratios vs. m = m_r + im_i.

$$e^{m_r} = \frac{(x_4^+ - x_1^+)(x_3^+ - x_2^+)}{(x_4^+ - x_3^+)(x_2^+ - x_1^+)}, \quad e^{m_i} = \frac{(x_4^- - x_1^-)(x_3^- - x_2^-)}{(x_4^- - x_3^-)(x_2^- - x_1^-)}$$

Gathering all the terms and working a little bit...

Eight sided Wilson loop at strong coupling

$$A_{sinh} + A_{extra} = \frac{1}{2} \int dt \frac{\bar{m}e^t - me^{-t}}{\tanh 2t} \log \left(1 + e^{-\pi(\bar{m}e^t + me^{-t})} \right)$$

- This is the remainder function for the scattering of eight gluons (for this particular configuration)
- Correct limits as $|m| \to 0$ and $|m| \to \infty$.
- Correct analytic structure.

What have we done?

- We have given a further small step towards the computation of classical solutions relevant to scattering amplitudes at strong coupling.
- Explicit solutions for regular polygons.
- We could compute the area for the octagon, even without knowing (fully) the classical solution.

Page 92/99

Gathering all the terms and working a little bit...

Eight sided Wilson loop at strong coupling

$$A_{sinh} + A_{extra} = \frac{1}{2} \int dt \frac{\bar{m}e^t - me^{-t}}{\tanh 2t} \log \left(1 + e^{-\pi(\bar{m}e^t + me^{-t})} \right)$$

- This is the remainder function for the scattering of eight gluons (for this particular configuration)
- Correct limits as $|m| \to 0$ and $|m| \to \infty$.
- Correct analytic structure.

rage 93/99

What have we done?

- We have given a further small step towards the computation of classical solutions relevant to scattering amplitudes at strong coupling.
- Explicit solutions for regular polygons.
- We could compute the area for the octagon, even without knowing (fully) the classical solution.

Page 94/99

- The inverse map can be solved exactly.
- The solution has a Z_n symmetry and indeed corresponds to the regular polygon! (each quadrant in the w-plane corresponds to a cusp.)
- Question: How do we compute the area?

$$A = \int e^{2\hat{\alpha}} d^2 w = \int (e^{2\hat{\alpha}} - 1) d^2 w + \int 1 d^2 w = A_{sinh} + A_{div}$$

- A_{sinh} is finite, we don't need to introduce any regulator.
- A_{div} is divergent, we need to regularize it

Generalized Sinh-Gordon → Strings on AdS₃?

 From α, p construct flat connections B_{L,R} and solve two linear auxiliary problems.

$$(\partial + B^{L})\psi_{a}^{L} = 0 (\partial + B^{R})\psi_{a}^{R} = 0$$

$$B_{z}^{L} = \begin{pmatrix} \partial \alpha & e^{\alpha} \\ e^{-\alpha}p(z) & -\partial \alpha \end{pmatrix}$$

Space-time coordinates

$$Y_{a,\dot{a}} = \begin{pmatrix} Y_{-1} + Y_2 & Y_1 - Y_0 \\ Y_1 + Y_0 & Y_{-1} - Y_2 \end{pmatrix} = \psi_a^L M \psi_{\dot{a}}^R$$

One can check that Y constructed that way has all the correct properties.

Prescription

$$A_n \sim e^{-\frac{\sqrt{\lambda}}{2\pi}A_{min}}$$

- A_n: Leading exponential behavior of the n-point scattering amplitude.
- A_{min}(k₁^μ, k₂^μ, ..., k_n^μ): Area of a minimal surface that ends on a sequence of light-like segments on the boundary.

Special kinematical configurations Conclusions and outlook

Based on explicit perturbative computations:

BDS proposal for all loops MHV amplitudes

$$\log \mathcal{M}_n = \sum_{i=1}^n \left(-\frac{1}{8\epsilon^2} f^{(-2)} \left(\frac{\lambda \mu^{2\epsilon}}{s_{i,i+1}^\epsilon} \right) - \frac{1}{\epsilon} g^{(-1)} \left(\frac{\lambda \mu^{2\epsilon}}{s_{i,i+1}^\epsilon} \right) \right) + f(\lambda) Fin_n^{(1)}(k)$$

- f(λ), g(λ) → cusp/collinear anomalous dimension.
- Fine for n = 4, 5, not fine for n > 5.

(0) (8) (3) (3)

String theory set up

- Such amplitudes can be computed at strong coupling by considering strings on AdS₅.
- As in the gauge theory, we need to introduce a regulator.
 Place a D-brane at z = z_{IR} ≫ R.

$$ds^2 = R^2 \frac{dx_{3+1}^2 + dz^2}{z^2}$$

- The asymptotic states are open strings ending on the D-brane.
- Consider the scattering of these open strings (representing the gluons)

After going to a dual space: $AdS \rightarrow \tilde{AdS}$ (e.g. $z \rightarrow r = 1/z$), the

problem reduces to a minimal area problem