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Abstract: By using the AAS/CFT duality, the computation of MSY M scattering amplitudes at strong coupling boils down to the computation of
minimal areas on AdS_5 with certain boundary conditions. Unfortunately, this seems to be a hard problem. In this talk we show how one can make
progress by restricting to AdS_3.
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Motivations

We will be interested in gluon scattering amplitudes of planar
N = 4 super Yang-Mills.

Motivation: It can give non trivial information about more realistic
theories but is more tractable.

@ Weak coupling: Perturbative computations are easier than in
QCD. In the last years a huge technology was developed.

@ The strong coupling regime can be studied, by means of the
gauge/string duality, through a weakly coupled string sigma
model.
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Aim of this project

Learn about scattering amplitudes of planar N’ = 4 super
Yang-Mills by means of the AdS/CFT correspondence.

€ Background
@ Gauge theory results
@ String theory set up
@ Explicit example

© Special kinematical configurations
@ Regular polygons
@ The octagon

© Conclusions and outlook
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ackground eory results

Gauge theory amplitudes (sem, bion and smimov)

@ Focus in gluon scattering amplitudes of N' = 4 SYM, with
SU(Nc) gauge group with N, large, in the color decomposed
form

AP S, TH(T2m T2 A (p(1), .., (2))

@ Leading N, color ordered n—points amplitude at L loops: AE,L]
@ The amplitudes are IR divergent.

@ Dimensional regularization D = 4 — 2¢ — AETL](E) =1/ +...
@ Focus on MHV amplitudes and scale out the tree amplitude

My (e) = AT /AY
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Based on explicit perturbative computations:

BDS proposal for all loops MHV amplitudes

- 1 - ,\uEE ; ST A“ZE '
log M, =) (—szf( 2) (sf) ~ Eg( 1 ( = )) + F(A)Fin'Y) (k)
—1

1i+1 ii+1

@ f(A), g(A) — cusp/collinear anomalous dimension.

@ Fine for n = 4,5, not fine for n > 5.
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Hackground

String theory set up

String theory set up

@ Such amplitudes can be computed at strong coupling by
considering strings on AdSs.

@ As in the gauge theory, we need to introduce a regulator.
Place a D-brane at z = zjp > R.

2 dx32+1 + dz?

72

ds’ = R

@ The asymptotic states are open strings
ending on the D-brane.

@ Consider the scattering of these open
strings (representing the gluons)

TS

Z=7 Z=(

After going to a dual space: AdS — AdS (e.g. z— r = 1/z), the
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Based on explicit perturbative computations:

BDS proposal for all loops MHV amplitudes

,\“25 . A”ZE :
log M, Z (—Bezf( 2) (sf__ ) ~ ;g( 1) (sg_ )) + F(X)Fin'Y (k)

Ii+1

@ f(A), g(A) — cusp/collinear anomalous dimension.
@ Fine for n = 4,5, not fine for n > 5.
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ackground

String theory set up

String theory set up

@ Such amplitudes can be computed at strong coupling by
considering strings on AdSs.

@ As in the gauge theory, we need to introduce a regulator.
Place a D-brane at z = zjp > R.

@ The asymptotic states are open strings
ending on the D-brane.

@ Consider the scattering of these open
strings (representing the gluons)

Z=7, Z=(

After going to a dual space: AdS — AdS (e.g. z— r = 1/z), the
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String theory set up

dx?. . +dz? d
@ ds? = 31 — ds?® = 3. i - Minimal surface in AdS

— @ For each particle with momentum
—n k* draw a segment Ay* = 2wk*

= @ Concatenate the segments
. Vs according to the particular color
ordering.
_— @ Look for the minimal surface
=RiZa ending in such polygon.

@ As we have introduced the regulator, the minimal surface ends
akir— RZ/Z;R >
@ As zjgr — oc the boundary of the world-sheet moves to r = 0.

@ Vev of a Wilson-Loop given by a sequence of light-like
segments!

Page 10/99
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String theory set up

@ Such amplitudes can be computed at strong coupling by
considering strings on AdSs.

@ As in the gauge theory, we need to introduce a regulator.
Place a D-brane at z = z;p > R.

dx32+1 + dz?

Z2

ds®* = R?

@ The asymptotic states are open strings
ending on the D-brane.

@ Consider the scattering of these open
strings (representing the gluons)

Z=7, Z=(

After going to a dual space: AdS — AdS (e.g. z— r = 1/z), the
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problem reduces to a minimal area problem




ackground

String theory set up

dx2 . +dz? d
@ ds? = 31 — ds® = 3. i - Minimal surface in AdS

— @ For each particle with momentum
= k* draw a segment Ay* = 2wk*

_ ¢ 1 @ Concatenate the segments
. S according to the particular color
ordering.

= @ Look for the minimal surface

=RiZa ending in such polygon.

@ As we have introduced the regulator, the minimal surface ends
k= Rz/z,'R > 0.

@ As zjr — oc the boundary of the world-sheet moves to r = 0.

@ Vev of a Wilson-Loop given by a sequence of light-like
segments!
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Prescription

@ A,: Leading exponential behavior of the n—point scattering
amplitude.

® Anin(ki', k5, ...,kh): Area of a minimal surface that ends on a
sequence of light-like segments on the boundary.
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ackground

String theory set up

dxZ, . +dz? d +dr?
3-1 < 3. L——: Minimal surface in AdS

—— @ For each particle with momentum
s k* draw a segment Ay* = 2wk*

| £-) @ Concatenate the segments
TN according to the particular color
ordering.

e = @ Look for the minimal surface

=RiZa ending in such polygon.

@ As we have introduced the regulator, the minimal surface ends
akr= RZ/Z,'R > 0.
@ As zjr — oo the boundary of the world-sheet moves to r = 0.

@ Vev of a Wilson-Loop given by a sequence of light-like
segments!
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Hackground ;auge theory results
S_tring theory set up

Prescription

@ A,: Leading exponential behavior of the n—point scattering
amplitude.

o Anin(ki', k5, ...,kn): Area of a minimal surface that ends on a
sequence of light-like segments on the boundary.
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ackground

String theory set up

- . a9
dx3 l+dz

e dst =3, e I{ - Minimal surface in AdS

P— @ For each particle with momentum
= k* draw a segment Ay# = 2wk*

i ) @ Concatenate the segments
e N according to the particular color
ordering.
e @ Look for the minimal surface
=RiZa ending in such polygon.

@ As we have introduced the regulator, the minimal surface ends
akr= RZ/Z,'R > 0.

@ As zjzr — oc the boundary of the world-sheet moves to r = 0.

@ Vev of a Wilson-Loop given by a sequence of light-like
segments!
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Prescription

@ A,: Leading exponential behavior of the n—point scattering
amplitude.

® Anin(ki, k5, ...,kpn): Area of a minimal surface that ends on a
sequence of light-like segments on the boundary.
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ackground

String theory set up

F a0
e ds® = dxa*;z' == ds® = A i : Minimal surface in AdS

— @ For each particle with momentum
: k* draw a segment Ay* = 2wk*

S @ Concatenate the segments
, sV according to the particular color
ordering.

@ Look for the minimal surface

=R Zs ending in such polygon.

@ As we have introduced the regulator, the minimal surface ends
akr= R2/Z,'R > 0.

@ As zjr — oc the boundary of the world-sheet moves to r = 0.

@ Vev of a Wilson-Loop given by a sequence of light-like
segments!
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Prescription

vAa .
Aﬂ' ~ e_ 2w Amm

@ A,: Leading exponential behavior of the n—point scattering
amplitude.

® Anin(ki', k5, ...,kpn): Area of a minimal surface that ends on a
sequence of light-like segments on the boundary.
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Background

String theory set up

a2, +dz? d
e ds’ =3, — — ds’= s : - Minimal surface in AdS

P @ For each particle with momentum
. | — k* draw a segment Ay* = 2wk*
£ ] @ Concatenate the segments
NN according to the particular color
ordering.

=== @ Look for the minimal surface
=RiZa ending in such polygon.
@ As we have introduced the regulator, the minimal surface ends
akr— Rz/Z;‘R > 0.
@ As zjzr — oc the boundary of the world-sheet moves to r = 0.

@ Vev of a Wilson-Loop given by a sequence of light-like
segments!
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§trirtg theory set up

Prescription

vAa .
Aﬂ' ~ e_ 2w Amm

@ A,: Leading exponential behavior of the n—point scattering
amplitude.

@ Anin(ki', k5, ...,kp): Area of a minimal surface that ends on a
sequence of light-like segments on the boundary.
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Background

E:q:hnt mplné =

Four point amplitude at strong coupling

Consider k; + k3 — ko + kg

@ The simplest case s = t.

Need to find the minimal surface ending on
such sequence of light-like segments

r(yi,y2) = '\/(1 -y - ¥3)

Yo = »niye

In embedding coordinates (—Y2, — Y7+ Y2 +...+ Y2 =-1)

YoYV-2=NMYs V5=Y=0

maooce® - Dual” SO(2,4) isometries — most general solution ( s Futud




Background

String theory set up

2
@ ds* = —— — ds® = ds. ,{ : Minimal surface in AdS

— @ For each particle with momentum
_—— k* draw a segment Ay* = 2wk*

| ‘ @ Concatenate the segments
N according to the particular color
ordering.

@ Look for the minimal surface

=RiZy ending in such polygon.

@ As we have introduced the regulator, the minimal surface ends
akr= R2/Z,'R > 0.

@ As zjgr — oc the boundary of the world-sheet moves to r = 0.

@ Vev of a Wilson-Loop given by a sequence of light-like
segments!
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Background

Expliﬁt mplé -

Four point amplitude at strong coupling

Consider k1 + k3 — ko + kg

@ The simplest case s = t.

Need to find the minimal surface ending on
such sequence of light-like segments

r(yi,y2) = \/(1*")/12)(1 —¥5)

Yo = ny2

In embedding coordinates (—Y2, — Y7+ Y2 +...+ Y2 =-1)

YUY_I = Y]Yg, ) T

maososc® - Dual” SO(2,4) isometries — most general solution ( s it




ackground

String theory set up

& a9
@ ds® = dx?";z' e ds® = ds. I{ : Minimal surface in AdS

— @ For each particle with momentum
— k* draw a segment Ay* = 2wk

= @ Concatenate the segments
"N according to the particular color
ordering.

e @ Look for the minimal surface

=RiZy ending in such polygon.

@ As we have introduced the regulator, the minimal surface ends
ake= R2/Z,'R > 0.

@ As zjgr — oc the boundary of the world-sheet moves to r = 0.

@ Vev of a Wilson-Loop given by a sequence of light-like
segments!
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ECKE‘mund iauge theory res
E:q:liﬁit mplé e

Four point amplitude at strong coupling

Consider k; + k3 — ko + kg

@ The simplest case s = t.

Need to find the minimal surface ending on
such sequence of light-like segments

) = /0-R)1-)
Yo = »ny2

In embedding coordinates (—Y2, — Y7+ Y2 +...+ Y2 =-1)

YoY_3:=WMY5 YV3=Y=0

maooce® | Dual” SO(2,4) isometries — most general solution ( s it




Hackground eorv results

Gauge theory amplitudes (sem, bion snd smimov

@ Focus in gluon scattering amplitudes of N' = 4 SYM, with
SU(Nc) gauge group with N, large, in the color decomposed
form

AT T, TH(T2m  T20) A (p(1), .., (2))

@ Leading N, color ordered n—points amplitude at L loops: AE,L)
@ The amplitudes are IR divergent.
@ Dimensional regularization D = 4 — 2¢ — Ag‘](e) =31/ ...

@ Focus on MHV amplitudes and scale out the tree amplitude

n(€) = An AT
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Prescription

vAa .
Aﬂ' ~ e_ 2w Amm

@ A,: Leading exponential behavior of the n—point scattering
amplitude.

® Anin(ki, k5, ...,kn): Area of a minimal surface that ends on a
sequence of light-like segments on the boundary.
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Hackground sauge theory results

E:q:lin:it mmpE

Four point amplitude at strong coupling
Consider k; + k3 — ko + ka

@ The simplest case s = t.

Need to find the minimal surface ending on
such sequence of light-like segments

r(yi,y2) = \/(1 -y)(1—y)

Yo = yniye

In embedding coordinates (—Y2, — Y7+ Y2 +...+ Y2 =-1)

YeY_31=MY3 YV3=Y3=0

maososce® | Dual” SO(2,4) isometries — most general solution ( s it




ackground

String theory set up

dx? _, +dz? d
o ds* = 3, — ds®* = y3‘r - Minimal surface in AdS

—— @ For each particle with momentum
|_—n k* draw a segment Ay* = 2wk*

£ S8 @ Concatenate the segments
e according to the particular color
ordering.

- @ Look for the minimal surface

—RiZg ending in such polygon.

@ As we have introduced the regulator, the minimal surface ends
akr— Rz/Z;R > 0.

@ As zjr — oc the boundary of the world-sheet moves to r = 0.

@ Vev of a Wilson-Loop given by a sequence of light-like
segments!
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ackground

String theory set up

dx? _,+dz? d
o ds* = 3, — ds®* = y3‘r - Minimal surface in AdS

— @ For each particle with momentum
- k* draw a segment Ay* = 2wk*

=1 @ Concatenate the segments
s S according to the particular color
ordering.

S @ Look for the minimal surface

=RiZy ending in such polygon.

@ As we have introduced the regulator, the minimal surface ends
aker— Rz/z,'R > 0.

@ As zjzr — oo the boundary of the world-sheet moves to r = 0.

@ Vev of a Wilson-Loop given by a sequence of light-like
segments!
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Prescription

v o .
Aﬂ' ~ e_ 2 Amm

@ A,: Leading exponential behavior of the n—point scattering
amplitude.

o Anin(ki', k5, ...,kn): Area of a minimal surface that ends on a
sequence of light-like segments on the boundary.
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ackground

E::phnt mmpﬁ -

Four point amplitude at strong coupling

Consider ky + k3 — ko + ka

@ The simplest case s = t.

Need to find the minimal surface ending on
such sequence of light-like segments

V=) - )

Y1y2

r(y1,y2)
Yo

In embedding coordinates (—Y2, — Y7+ Y2 +...+ Y2 =-1)

YoY_1=Y1Y2, Yz=Ys=0

maososce® | Dual” SO(2,4) isometries — most general solution ( s it




Explicic exmple
Let's compute the area...

@ In order for the area to converge we need to introduce a
regulator.

@ Dimensional reduction scheme: Start with ' =1 in D=10
and go down to D = 4 — 2e.

@ For integer D this is exactly the low energy theory living on
Dp—branes (p = D — 1)

Regularized supergravity background
dy2 + dr? Vv —
S /—ADCD(YD_I_ ) e — 1\2:-6{)/5_0

rete re

@ The regularized area can be computed and it agrees precisely
with the BDS ansatz!

@ What about other cases with n > 47

o for all n SO(2,4) — Astrong = A1—toop + F(5) (Orummond et 3. )
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ackground

Based on explicit perturbative computations:

BDS proposal for all loops MHV amplitudes
log M, Z _1 g2 e lg(—l) A + F(A)Fin'Y) (k)
8e? s - SF i -

Ii+1

e f(A), g(A) — cusp/collinear anomalous dimension.

@ Fine for n = 4,5, not fine for n > 5.
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ackground

String theory set up

T o
dx:,_ldz

o dst =3, S ,{ - Minimal surface in AdS

P @ For each particle with momentum
_— k* draw a segment Ay* = 2wk*

% & o Concatenate the segments
N according to the particular color
ordering.

@ Look for the minimal surface

=RiZy ending in such polygon.

@ As we have introduced the regulator, the minimal surface ends
aknr= RZ/Z,'R > 0.

@ As zjzr — oc the boundary of the world-sheet moves to r = 0.

@ Vev of a Wilson-Loop given by a sequence of light-like
segments!
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Explin-:it mmple b

Four point amplitude at strong coupling

Consider ki + k3 — ko + kg

@ The simplest case s = t.

Need to find the minimal surface ending on
such sequence of light-like segments

r(yi,y2) = \/(1*')/12)(1 —¥5)

Yo = nye

In embedding coordinates (—Y2, — Y7+ Y2 +...+ Y2 =-1)

YoY_1=Y1Y2, Yz=Ys=0

maososce® - Dual” SO(2,4) isometries — most general solution ( s it




Background

Explict example

Let's compute the area...

@ In order for the area to converge we need to introduce a
regulator.

@ Dimensional reduction scheme: Start with N’ =1 in D=10
and go down to D = 4 — 2e.

@ For integer D this is exactly the low energy theory living on
Dp—branes (p = D — 1)

Regularized supergravity background
d dr? VA =
o = Vapep (P L) — 5, = Voo [ Lo

r2+e re

@ The regularized area can be computed and it agrees precisely
with the BDS ansatz!

@ What about other cases with n > 47
o for all n SO(2,4) — Astrong = A1—loop + F(;—"-’ﬂ) (Drummond et 3l. )

ik }‘{H Page 38/9
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Eglidt ammply

Four point amplitude at strong coupling

Consider ki + k3 — ko + ks

@ The simplest case s = t.

Need to find the minimal surface ending on
such sequence of light-like segments

r(yi,y2) = '\/(1 - y7)(1 - ¥3)

Yo = Ny

In embedding coordinates (—Y2, — Y7+ Y2 +...+ Y2 =-1)

el § — Y1Y2, Y3 = Y4 —

mooscze® - Dual” SO(2,4) isometries — most general solution ( s Futwd




ackground

Explict example -

Let's compute the area...

@ In order for the area to converge we need to introduce a
regulator.

@ Dimensional reduction scheme: Start with N’ =1 in D=10
and go down to D = 4 — 2e.

@ For integer D this is exactly the low energy theory living on
Dp—branes (p = D — 1)

Regularized supergravity background
dy2 + dr? v —
2 — /—ADCD(YD_i_ )—’SE: );}rCD/E_U

r2+f re

@ The regularized area can be computed and it agrees precisely
with the BDS ansatz!

@ What about other cases with n > 47
o for all n SO(2,4) — Astrong = A1—loop + F(‘E’-’ﬂ) (Drummond et 3. |

il ‘XJ,'r Page 40/9
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Based on explicit perturbative computations:

BDS proposal for all loops MHV amplitudes
log M, Z _L g2 e 1g(—l) 2 + f(A)Fin'") (k)
8e? st. - Sf i =

= Ii+1

@ f(A), g(A) — cusp/collinear anomalous dimension.

@ Fine for n = 4,5, not fine for n > 5.
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Four point amplitude at strong coupling

Consider k1 + k3 — ko + kg

@ The simplest case s = t.

Need to find the minimal surface ending on
such sequence of light-like segments

ry) = /-y -)
Yo = ny2

In embedding coordinates (—Y2, — Y7+ Y2 +...+ Y2 =-1)

YoY_1=MY Y3=Yy=0

mooscze® - Dual” SO(2,4) isometries — most general solution ( s Futed




Explick oample
Let's compute the area...

@ In order for the area to converge we need to introduce a
regulator.

@ Dimensional reduction scheme: Start with ' =1 in D=10
and go down to D = 4 — 2e.

@ For integer D this is exactly the low energy theory living on
Dp—branes (p = D — 1)

Regularized supergravity background
dy2 + dr? v —
2 — /—ADCD(YD‘F ) e 1\2:-(:9/5_0

r2+f re

@ The regularized area can be computed and it agrees precisely
with the BDS ansatz!

@ What about other cases with n > 47

o for all n SO(2,4) — Astrong = A1—toop + F(ZE2) (Orummond et al )
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Special kinematical configurations RO

Special kinematical configurations

@ Unfortunately its very hard to find classical solutions...

@ Consider a special kinematical configuration

/| | @ Projection of the world-sheet to the
2 (v1,)2) plane is a polygon which
circumscribes the unit circle.

/_-—’-"“--—_ @ Eom’'s and boundary conditions are
4 % = consistent with Y3 = Yy = 0.

sz ocipye surface lives effectively in a AdSs subspace! Page 44199




Special kinematical configurations

The scattering is equivalent to a 2D scattering, e.g. in the cylinder.

= 2

@ Consider a zig-zagged Wilson loop of 2n
_ sides
'“ N ® Parametrized by n X~ coordinates and n
X. coordinates.

@ We can build 2n — 6 invariant cross ratios.

X ; X

Pirsa: 09090023 Page 45/99

@ Consider classical strings on AdSs.
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Special kinematical configurations

@ Unfortunately its very hard to find classical solutions...

@ Consider a special kinematical configuration

/| | @ Projection of the world-sheet to the
i (v1, ¥2) plane is a polygon which
circumscribes the unit circle.

7 @ Eom's and boundary conditions are
/ 1 1\ 3 consistent with Y3 = Yy = 0.

sz ocspye surface lives effectively in a AdS3 subspace! Page 46199




Hackground

Expliat mplé s

Four point amplitude at strong coupling

Consider ki + k3 — ko + ks

@ The simplest case s = t.

Need to find the minimal surface ending on
such sequence of light-like segments

r(y1,y2) = ’\/(1 —YI.Z)(I _'.Vg)

Yo = Ny

In embedding coordinates (—Y2, — Y7+ Y2 +...+ Y2 =-1)

YoV_-2=Y1Y5 YV3=Y3=0

moosczs® - Dual” SO(2,4) isometries — most general solution ( s Futd
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Special kinematical configurations

@ Unfortunately its very hard to find classical solutions...

@ Consider a special kinematical configuration

= | @ Projection of the world-sheet to the
E (v1, y2) plane is a polygon which
circumscribes the unit circle.

g @ Eom’s and boundary conditions are
- ; consistent with Y3 = Yy = 0.

sz ocipoye surface lives effectively in a AdS3 subspace! Page 46199




Four point amplitude at strong coupling
Consider k; + k3 — ko + kg

@ TThe simplest case s = t.

Need to find the minimal surface ending on
such sequence of light-like segments

r(yi,y2) = \/(1 - 7)1 - ¥3)

Yo = »niye

In embedding coordinates (—Y2, — Y7+ Y2 +...+ Y2 =-1)

YoY_1=Y1Y2, Y3z=Ys=0

maososce® | Dual” SO(2,4) isometries — most general solution ( s it
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Special kinematical configurations

@ Unfortunately its very hard to find classical solutions...

@ Consider a special kinematical configuration

= | @ Projection of the world-sheet to the
E (v1, y2) plane is a polygon which
circumscribes the unit circle.

] @ Eom’s and boundary conditions are
=1 ) consistent with Y3 = Yy = 0.

sz ocipoye surface lives effectively in a AdSs subspace! Page 5019
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Expli:n‘t a:a;mpllé -

Four point amplitude at strong coupling

Consider k; + k3 — ko + kg

@ The simplest case s = t.

Need to find the minimal surface ending on
such sequence of light-like segments

r(yi,y2) = '\/(1 - 7)1 - ¥3)

Yo = Nn»y2

In embedding coordinates (—Y2, — Y7+ Y2 +...+ Y2 =-1)

Yo¥ 1 =YY, Ya=VYs=0

maooscze® - Dual” SO(2,4) isometries — most general solution ( s Futsd




Explick oample
Let's compute the area...

@ In order for the area to converge we need to introduce a
regulator.

@ Dimensional reduction scheme: Start with ' =1 in D=10
and go down to D = 4 — 2e.

@ For integer D this is exactly the low energy theory living on
Dp—branes (p = D — 1)

Regularized supergravity background
dy2 + dr? Vv .
o /—ADCD(YD‘F ) e z\Z?TCD/Eﬂ

r2+f re

@ The regularized area can be computed and it agrees precisely
with the BDS ansatz!

@ What about other cases with n > 47

o for all n SO(2,4) — Astrong = A1—toop + F(ZE2) (rummond et al )
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Special kinematical configurations

@ Unfortunately its very hard to find classical solutions...

@ Consider a special kinematical configuration

ol | @ Projection of the world-sheet to the
= (v1,y2) plane is a polygon which
circumscribes the unit circle.

e @ Eom’'s and boundary conditions are
y s S i consistent with Y3 = Yy = 0.

ez ocioye surface lives effectively in a AdS3 subspace! Page 5319




Four point amplitude at strong coupling
Consider ki1 + k3 — ko + kg

@ [he simplest case s = t.

Need to find the minimal surface ending on
such sequence of light-like segments

) = /0-R)1-%)
Yo = Ny

In embedding coordinates (—Y2, — Y7+ Y2 +...+ Y2 =-1)

YoV_3=MY5 VG=Ye=0

maososce® | Dual” SO(2,4) isometries — most general solution ( s s
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Special kinematical configurations

@ Unfortunately its very hard to find classical solutions...

@ Consider a special kinematical configuration

& | @ Projection of the world-sheet to the
2 (v1,)2) plane is a polygon which
circumscribes the unit circle.

gl @ Eom’'s and boundary conditions are
/ 4= i consistent with Y3 = Yy = 0.

mxocipoye surface lives effectively in a AdS3 subspace! Page 55199
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Special kinematical configurations

@ Unfortunately its very hard to find classical solutions...

@ Consider a special kinematical configuration

i i @ Projection of the world-sheet to the
= (v1,)2) plane is a polygon which
circumscribes the unit circle.

o @ Eom’'s and boundary conditions are
£ 1% i consistent with Y3 = Yy = 0.

sz ocipoye surface lives effectively in a AdSs subspace! Page 5619
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Special kinematical configurations

@ Unfortunately its very hard to find classical solutions...

@ Consider a special kinematical configuration

g | @ Projection of the world-sheet to the
5 (v1,)2) plane is a polygon which
circumscribes the unit circle.

s @ Eom’s and boundary conditions are
y ol = S consistent with Y3 = Y; = 0.

sz ocipoye surface lives effectively in a AdSs subspace! Page 57199




Special kinematical configurations

The scattering is equivalent to a 2D scattering, e.g. in the cylinder.

= -

@ Consider a zig-zagged Wilson loop of 2n
_ sides
L = ‘ >, ® Parametrized by n X~ coordinates and n
X. coordinates.

@ We can build 2n — 6 invariant cross ratios.

Pirsa: 09090023 Page 58/99

@ Consider classical strings on AdSs.
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Special kinematical configurations

@ Unfortunately its very hard to find classical solutions...

@ Consider a special kinematical configuration

/| ‘ @ Projection of the world-sheet to the
= (v1,)2) plane is a polygon which
circumscribes the unit circle.

= B @ Eom’'s and boundary conditions are
F | \ i consistent with Y3 = Yy = 0.

sz ocipoye surface lives effectively in a AdSs subspace! Page 59199




Special kinematical configurations

The scattering is equivalent to a 2D scattering, e.g. in the cylinder.

[ = ¥

@ Consider a zig-zagged Wilson loop of 2n
_ sides
L N ® Parametrized by n X~ coordinates and n
X. coordinates.

@ We can build 2n — 6 invariant cross ratios.

x § x—l
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@ Consider classical strings on AdSs.




Special kinematical configurations e .— POTYESS

Strings on AdSs3

StringsonAng:??: Y3, -Ye+YE+YEi=-1

Eoms : 30Y —(0Y.OY)Y =0, Virasoro:3Y.0Y =dY.9Y =0

Polhmeyer kind of reduction — generalized Sinh-Gordon

a(z,z) = iog(a‘?.g?), p=—e %€ g0 YYPOYOY"?
l
e

p=p(z), 88a—e* +|p(z)2e=2 =0

@ a(z,Zz) and p(z) invariant under conformal transformations.
@ Area of the world sheet: A = [ e**d*z
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Special kinematical configurations

Generalized Sinh-Gordon — Strings on AdS3?

@ From a, p construct flat connections B; g and solve two linear
auxiliary problems.

a+BL Tb::(] da e“
( R) R _ B = (“-_“P(‘-') ‘3“)
(0+ B )y =0

Space-time coordinates

-~ SV B Te—T0F  Faull
Ya,a ( Yl 3 YU Y—l == Yg) = waM¢é

One can check that Y constructed that way has all the correct
properties.
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Strings on AdSs3

Strings on AdS3 : Y.Y = -Y%, - Y+ Y+ YEi=-1

Eoms : 30Y —(8Y.0Y)Y =0, Virasoro:3Y.0Y =3Y.8Y =0

Polhmeyer kind of reduction — generalized Sinh-Gordon

a(z,z) = Iog(B‘?. _‘7), p=—e %€ g0 Y?YPOYOY"?
l
p = p(z), 80a — €** + |p(z)|?e > =0

@ az,Z) and p(z) invariant under conformal transformations.
@ Area of the world sheet: A = [ e**d*z
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Special kinematical configurations

Generalized Sinh-Gordon — Strings on AdS3?

@ From a, p construct flat connections B; g and solve two linear
auxiliary problems.

(8+B Wi =0 B’-:( da ea)
(0 + BR)y5 =0 s e =
d

- s+ B—TY .8
Ya,a—(Y1+YU Y_l—Y2>_ aM'l)bé

One can check that Y constructed that way has all the correct
properties.

irsa: 09090023 Page 64/99
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Strings on AdSs3

Strings on AdSs3 : Y.Y = -Y%, - Y+ Y+ YE=—1

Eoms : 30Y —(8Y.8Y)Y =0, Virasoro:dY.8Y =3Y.0Y =0

a(z,z) = log(d ‘7.5\7), p=—e %€ g0°Y?YPOY DY
l
— g2a s ‘p(z)‘ze-Za =0

p = p(z), dda

® az,Z) and p(z) invariant under conformal transformations.
@ Area of the world sheet: A = [ e**d*z
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Special kinematical configurations

Generalized Sinh-Gordon — Strings on AdS3?

@ From a, p construct flat connections B; g and solve two linear
auxiliary problems.

(8+B )i =0 B’-:( da ea)
8+ BR)f =0 s

Space-time coordinates

s T—18% _aal
Ya’a_(YI‘f‘YU Y_l_Yz)_waM¢é

One can check that Y constructed that way has all the correct
properties.

irsa: 09090023 Page 66/99
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Strings on AdSs3

Strings on AdSs3 : Y.Y = -Y%, - Y+ Y+ YE=—1

Eoms : 30Y —(8Y.OY)Y =0, Virasoro:3Y.0Y =3Y.9Y =0

a(z,z) = log(d ‘?.5\7), p=—e %€ g0° Y YPOYOY?
!
— g2a 5 ‘p(z)‘ze-za =0

p = p(z), d0c

@ a(z,Z) and p(z) invariant under conformal transformations.
@ Area of the world sheet: A = [ e**d*z
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Special kinematical configurations

Generalized Sinh-Gordon — Strings on AdS3?

@ From a, p construct flat connections B; g and solve two linear
auxiliary problems.

(8 + BL)'l/);‘ — BL ( fa e )
(a 2 BR)'I,DE -8 z e “*p(z) —Oa

Space-time coordinates

— e B — Y el
Ya,a_(Y1+Y0 Y_I—Yz)_ 3M¢é

One can check that Y constructed that way has all the correct
properties.
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Special kinematical configurations

Relation to Hitchin equations

Consider self-dual YM in 4d reduced to 2d
@ A12 — A12: 2d gauge field, A3 4 — ®,®*: Higgs field.

Hitchin equations

D;® = D,®* =0

F®) _ @
#F — FZE < [¢, ¢*] - 0

— —

@ We can decompose B = A+ ®.
@ dB + B A B =0 implies the Hitchin equations.
@ We have a particular solution of the SU(2) Hitchin system.
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Special kinematical configurations

Generalized Sinh-Gordon — Strings on AdS3?

@ From a, p construct flat connections B; g and solve two linear
auxiliary problems.

(8+ B )w:=0 B":( da ea)
8+ BR)F =0 Eheds

Space-time coordinates

— KWV F— 10 % o
Ya,a ( YI & YU Y—'l = Y2) =5 ¢;M¢é

One can check that Y constructed that way has all the correct
properties.
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Special kinematical configurations S i

Relation to Hitchin equations

Consider self-dual YM in 4d reduced to 2d
@ A;2 — A12: 2d gauge field, A3 4 — @, ®*: Higgs field.

Hitchin equations

D;® = D,0* =0

(4) — F4)
F *F - FZE 5 [¢, ¢*] = 0

@ We can decompose B = A+ .
e dB + B A B =0 implies the Hitchin equations.
@ We have a particular solution of the SU(2) Hitchin system.
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Special kinematical configurations

@ Classical solutions on AdS3; — p(z),a(z,z)

dw = /p(z)dz, & =a — .i.l—|. log pp — 8,054 = sinh2é&

@ We need to get some intuition for solutions corresponding to
scattering amplitudes...

n =2 "square” solution: p(z) =1, &=0

@ For the solutions relevant to scattering amplitudes we require
p(z) to be a polynomial and & to decay at infinity.
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Special kinematical configurations

Generalized Sinh-Gordon — Strings on AdS3?

@ From a, p construct flat connections B; g and solve two linear
auxiliary problems.

I
Y: + Yo Y_l—vz)_‘”-"“wa

One can check that Y constructed that way has all the correct
properties.
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Relation to Hitchin equations

Consider self-dual YM in 4d reduced to 2d
@ A;2 — Ai12: 2d gauge field, A3 4 — ®,®*: Higgs field.

Hitchin equations

Ds® = D,®* =0

(4) _ 4
F *F — FZE + [¢, ¢*] 2 0

@ We can decompose B = A+ .
@ dB + B A B =0 implies the Hitchin equations.
@ We have a particular solution of the SU(2) Hitchin system.
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Special kinematical configurations

@ Classical solutions on AdS; — p(z),a(z,z)

dw = /p(z)dz, & =a — }, log pp — 0,056 = sinh2é

@ We need to get some intuition for solutions corresponding to
scattering amplitudes...

n =2 "square” solution: p(z) =1, &=0

@ For the solutions relevant to scattering amplitudes we require
p(z) to be a polynomial and & to decay at infinity.
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Special kinematical configurations

Consider a generic polynomial of degree n — 2

polz)=z"*+c 42" *+...+azt+q

@ We have used translations and re-scalings in order to fix the
first two coefficients to one and zero.

e For a polynomial of degree n — 2 we are left with 2n — 6 (real)
variables.

@ This is exactly the number of invariant cross-ratios in two
dimensions for the scattering of 2n gluons!

Null Wilsons loops of 2n sides & P"%(z) and a(z, z)
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Special kinematical configurations F_\".egula[ '

Regular polygons

o

@ Simplest case: p(z) =2z"* — a(z,Z) = ap)

Sinh-Gordon — Painleve 1|

ﬁ”(ﬂ) Y &T’p) — %sinh(2ﬁ(ﬂ))

@ Solved in terms of Painleve transcendentals, well studied in
the literature.

Another interesting feature

@ w = z"/%: As we go once around the z—plane, we go around
the w—plane n/2 times.
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Special kinematical configurations F_{ggulaf pqh_(

@ The inverse map can be solved exactly.

@ The solution has a Z, symmetry and indeed corresponds to
the regular polygon! (each quadrant in the w—plane
corresponds to a cusp.)

@ Question: How do we compute the area?

A= /ez‘idzw - /(ez'ﬁ —1)d*w + f 1d°w = Aginh + Adiv

@ Ai.s is finite, we don't need to introduce any regulator.

@ A, Is divergent, we need to regularize it
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Special kinematical configurations

The scattering is equivalent to a 2D scattering, e.g. in the cylinder.

= |

@ Consider a zig-zagged Wilson loop of 2n
_ sides
L N ® Parametrized by n X~ coordinates and n
X. coordinates.

@ We can build 2n — 6 invariant cross ratios.
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@ Consider classical strings on AdSs.
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Special kinematical configurations

@ Unfortunately its very hard to find classical solutions...

@ Consider a special kinematical configuration

= | @ Projection of the world-sheet to the
g (v1,y2) plane is a polygon which
circumscribes the unit circle.

< @ Eom’s and boundary conditions are
7 = SR B consistent with Y3 = Y = 0.

sz ocipoye surface lives effectively in a AdSs subspace! Page 2019
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Strings on AdSs3

Strings on AdS;3 : Y.Y = ~Y3, - Y§+ Y+ Yi=—-1

Eoms : 30Y —(0Y.OY)Y =0, Virasoro:3Y.0Y =dY.9Y =0

a(z,z) = log(d ‘?.5‘7’), p=—e %€ g0 Y?YPOYOY?
!
— g2a B ‘p(z)‘ze—Za —@

p = p(z), dda

@ a(z,Zz) and p(z) invariant under conformal transformations.
@ Area of the world sheet: A = [ e**d?z
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Special kinematical configurations

Consider a generic polynomial of degree n — 2

plz)=z2""+cp 42 *+...+az+q

@ We have used translations and re-scalings in order to fix the
first two coefficients to one and zero.

e For a polynomial of degree n — 2 we are left with 2n — 6 (real)
variables.

@ This is exactly the number of invariant cross-ratios in two
dimensions for the scattering of 2n gluons!

Null Wilsons loops of 2n sides & P"?(z) and a(z, 2)
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Regular polygons

—2

e Simplest case: p(z) =2z"* — a(z,Z) = ap)

Sinh-Gordon — Painleve ||

a‘”(P) + &ff)p) — %sinh(2ﬁ(ﬂ))

@ Solved in terms of Painleve transcendentals, well studied in
the literature.

Another interesting feature

o w=2z"2: As we go once around the z—plane, we go around
the w—plane n/2 times.
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Special kinematical configurations Ffeguia[ P'ohfﬂﬂl'ﬁ

@ The inverse map can be solved exactly.

@ The solution has a Z, symmetry and indeed corresponds to
the regular polygon! (each quadrant in the w—plane
corresponds to a cusp.)

@ Question: How do we compute the area?

A= / e%d’w = /(62& —1)d’w + / 1d°w = Aginh + Adiv

@ Aq.s is finite, we don't need to introduce any regulator.

@ A, Is divergent, we need to regularize it
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Regular polygons

Special kinematical configurations

In order to compute Ag;, use dimensional regularization...

n

1
aiv €) /rf = (sin 52 )¢€?

@ |t has the expected IR behavior!

@ The integrand of Asinn was studied by Zamolodchikov!

T

@ When n — oc, the regular Wilson loop approaches the circular
Wilson loop.

@ Ainh — %Trn — 27 + O(1/n) in agreement with the known
result!
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Special kinematical configurations F_{ggulai W}Y

@ The inverse map can be solved exactly.

@ The solution has a Z, symmetry and indeed corresponds to
the regular polygon! (each quadrant in the w—plane
corresponds to a cusp.)

@ Question: How do we compute the area?

A= f e28d’w = f(ez'f' —1)d*w + [ 1d°w = Aginh + Adiv

@ A, is finite, we don't need to introduce any regulator.

@ A, Is divergent, we need to regularize it
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Regular polygons

Special kinematical configurations

In order to compute Ag;, use dimensional regularization...

n

1
aiv (€) /rf = (sin 5 )c€?

@ |t has the expected IR behavior!

@ The integrand of Asinn was studied by Zamolodchikov!

T
As;'nh — 4'_!1(3"2 e 8” = 2 4),

@ When n — oc, the regular Wilson loop approaches the circular
Wilson loop.

@ Ainp — g:rrn — 2w+ O(1/n) in agreement with the known
result!
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Special kinematical configurations

The m.:tagnn'

First non trivial case: p(z) = z°> — m, the " octagon”
@ We can split the area again into A, and Ag;,, but...

@ We don’'t know explicitly the solution for c...
@ We cannot perform the inverse map...
@ The w—plane is complicated...

Sheet 1 Sheey 2

HlE

@ The information of m survives at large distances and we can
compute cross-ratios vs. m = m, + im;.

ome — CENE ) _ G ) =)

— I —x VM —xt )’ = om o~ VMo— -
Pirsa: 09090023 ('xd- =y )(xz = ) (xd — ey )(X'Z — ) Page 88/99




Regular polygons

Special kinematical configurations

In order to compute Ag;, use dimensional regularization...

n

1
div €) /rf "= (sin 7)€

@ |t has the expected IR behavior!

@ The integrand of Asinn was studied by Zamolodchikov!

T

@ When n — oc, the regular Wilson loop approaches the circular

Wilson loop.

@ Agon — %ﬂ‘n — 27 + O(1/n) in agreement with the known

result!
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Special kinematical configurations

Thﬁ g;un'

First non trivial case: p(z) = z°> — m, the " octagon”
@ We can split the area again into A, and Ag;,, but...

@ We don't know explicitly the solution for a...
@ We cannot perform the inverse map...
@ [The w—plane is complicated...

Sheet | Sheet 2

rJiE

@ The information of m survives at large distances and we can
compute cross-ratios vs. m = m, + im;.

eMr — (g =% )0g —x)

m; — (X =% )0g —% )

e

— T T oY) — e — —
Pirsa: 09090023 (X# T )(X? — ) (xﬂ- =y )(XZ = ) Page 90/99




Special kinematical configurations

Gathering all the terms and working a little bit...

Eight sided Wilson loop at strong coupling

1 met — me™t O,
Asinh + Aextra = 5 dt P |0g (]_ + e—‘n‘(me +me ))

@ This is the remainder function for the scattering of eight
gluons (for this particular configuration)

@ Correct limits as [m| — 0 and |/m| — oo.

@ Correct analytic structure.
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Conclusions and outliook

What have we done?

@ We have given a further small step towards the computation
of classical solutions relevant to scattering amplitudes at
strong coupling.

e Explicit solutions for regular polygons.

@ We could compute the area for the octagon, even without
knowing (fully) the classical solution.
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Special kinematical configurations

Gathering all the terms and working a little bit...

Eight sided Wilson loop at strong coupling

1 met — met e
Asinh + Aextra = § dt P Iog (]_ + e—ﬂ'(me +me ))

@ This is the remainder function for the scattering of eight
gluons (for this particular configuration)

@ Correct limits as [m| — 0 and |m| — oo.

@ Correct analytic structure.
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Conclusions and outiook

What have we done?

@ We have given a further small step towards the computation
of classical solutions relevant to scattering amplitudes at
strong coupling.

e Explicit solutions for regular polygons.

@ We could compute the area for the octagon, even without
knowing (fully) the classical solution.
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Special kinematical configurations F_{egular ! oYE

@ The inverse map can be solved exactly.

@ The solution has a Z, symmetry and indeed corresponds to
the regular polygon! (each quadrant in the w—plane
corresponds to a cusp.)

@ Question: How do we compute the area?

A= f e?od?w = f(ezﬁ —1)d*w + f 1d°w = Aginh + Adiv

@ A..s is finite, we don't need to introduce any regulator.

@ A, is divergent, we need to regularize it
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Special kinematical configurations

Generalized Sinh-Gordon — Strings on AdS3?

@ From a, p construct flat connections B; g and solve two linear
auxiliary problems.

8+BL '!/);‘ZO da e
( R) R B; = (E_"P(‘-’) ‘3’:’)
(0+ B )y =0

Space-time coordinates

—— FW T W— Y ol
Ya,a_(YI_I_YU Y_I_Y2)_waM¢é

One can check that Y constructed that way has all the correct
properties.
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Prescription

vAa .
Aﬂ ~ e_ 2w Amm

@ A,: Leading exponential behavior of the n—point scattering
amplitude.

o Anin(ki', k5, ...,kn): Area of a minimal surface that ends on a
sequence of light-like segments on the boundary.
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Based on explicit perturbative computations:

BDS proposal for all loops MHV amplitudes

Au2£ S /\#25 -
log M, Z(_aezf{ 2) (sf___ )—Eg( 1) (sF_ )) + f(X)Fin'Y (k)

Ii+1

@ f(A), g(A) — cusp/collinear anomalous dimension.
@ Fine for n = 4,5, not fine for n > 5.
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Background

String theory set up

String theory set up

@ Such amplitudes can be computed at strong coupling by
considering strings on AdSs.

@ As in the gauge theory, we need to introduce a regulator.
Place a D-brane at z = zjp > R.

dx32 g+ dz?

Z2

ds®* = R?

@ The asymptotic states are open strings
ending on the D-brane.

@ Consider the scattering of these open
strings (representing the gluons)

Z=27, Z=(

After going to a dual space: AdS — AdS (e.g. z— r = 1/z), the
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problem reduces to a minimal area problem




