Title: Spacetime can be simultaneously discrete and continuous, in the same way that information can.

Date: Sep 16, 2009 02:00 PM

URL: http://pirsa.org/09090005

Abstract: TBA

Pirsa: 09090005 Page 1/27

Spacetime could be simultaneously discrete and continuous, in the same way that information can.

Achim Kempf

Departments of Applied Mathematics and Physics, University of Waterloo

Perimeter Institute colloquium, September 16, 2009

Spacetime at short distances?

A gedanken experiment (Heisenberg):

Assume we try to resolve a distance more and more precisely

- => increasing momentum uncertainty
 momentum gravitates and thus curves space
- => increasing curvature uncertainty
- => increasing distance uncertainties
- => a limit to how precisely distances can be resolved

=> Estimate of "natural ultraviolet cutoff": Planck length, i.e., 10^(-35)m.

Spacetime at the Planck scale?

General quantum gravity studies (incl. string theory) suggest e.g.:

There could be an underlying structure, below the UV cutoff scale:

- strings, foams, causal sets, emergent, etc...
- several key approaches are being developed and pursued here at PI.
- so far, no experimental access and no consensus.

Spacetime at short distances?

A gedanken experiment (Heisenberg):

Assume we try to resolve a distance more and more precisely

- => increasing momentum uncertainty
 momentum gravitates and thus curves space
- => increasing curvature uncertainty
- => increasing distance uncertainties
- => a limit to how precisely distances can be resolved

=> Estimate of "natural ultraviolet cutoff": Planck length, i.e., 10^(-35)m.

Spacetime at the Planck scale?

General quantum gravity studies (incl. string theory) suggest e.g.:

There could be an underlying structure, below the UV cutoff scale:

- strings, foams, causal sets, emergent, etc...
- several key approaches are being developed and pursued here at Pl.
- so far, no experimental access and no consensus.

Spacetime at the Planck scale?

Problem hard since QFT and GR provide conflicting indications!

General relativity:

- Fields naturally described as living on a differentiable spacetime manifold.

Quantum field theory:

- Fields are quantizable generally only if spacetime described as discrete.

Recall: Information can be both! Let us try this idea:

Spacetime could be both discrete and continuous, in the same way that information can.

Discrete vs. continuous in information theory

Information can be:

- continuous (music, speech, etc):

- discrete (letters, digits, etc):

R725B

Unified in 1949 by Shannon, through: Sampling theory

Applications are ubiquitous in all of:

- analog / digital conversion
- communication engineering
- signal processing and analysis
- scientific data taking

The basic Shannon sampling theorem

· Assume f is "bandlimited", i.e:

$$f(x) = \int_{-\omega_{\text{max}}}^{\omega_{\text{max}}} \widetilde{f}(\omega) e^{-2\pi i \omega x} d\omega$$

Take samples of f(x) with spacing:

$$x_{n+1} - x_n = (2\omega_{\text{max}})^{-1}$$

Then, <u>exact</u> reconstruction is possible:

 $f(x) = \sum f(x_n) \frac{\sin[2\pi(x-x_n)\omega_{\max}]}{\pi(x-x_n)\omega_{\max}}$

samples

No magic required

Traditional proof:

- uses Fourier theory
- but Fourier theory would not be useful on curved spaces

New method of proof:

1) Notice: Trivial for any N-dimensional function space

- Consider a function space specified by N given basis functions.
- Any function, f, is determined by its N coefficients in that basis.
- The values of f at N points yield N equations to determine the N coefficients.
- => we obtain f in a basis, thus we know f completely, i.e., everywhere.
- 2) For suitable function spaces, can take the limit N -> infinity.

The basic Shannon sampling theorem

· Assume f is "bandlimited", i.e:

$$f(x) = \int_{-\omega_{\text{max}}}^{\omega_{\text{max}}} \widetilde{f}(\omega) e^{-2\pi i \omega x} d\omega$$

Take samples of f(x) with spacing:

$$x_{n+1} - x_n = (2\omega_{\text{max}})^{-1}$$

samples

No magic required

Traditional proof:

- uses Fourier theory
- but Fourier theory would not be useful on curved spaces

New method of proof:

1) Notice: Trivial for any N-dimensional function space

- Consider a function space specified by N given basis functions.
- Any function, f, is determined by its N coefficients in that basis.
- The values of f at N points yield N equations to determine the N coefficients.
- => we obtain f in a basis, thus we know f completely, i.e., everywhere.
- 2) For suitable function spaces, can take the limit N -> infinity.

Fun with bandlimited calculus

- Differential operators are also finite difference operators.
- Differential equations are also finite difference equations.
- Integrals are also series:

$$\int_{-\infty}^{\infty} f(x)^* g(x) dx = \frac{1}{2\omega_{\text{max}}} \sum_{n=-\infty}^{\infty} f(x_n)^* g(x_n)$$

Notice:

Useful also as a summation tool for series (traditionally used, e.g., in analytic number theory)

Sampling theory for physical fields?

Let us ask: (for now only in the <u>euclidean signature</u> case)

Could there be a natural UV cutoff in QFT such that fields possess a suitable "finite spatial bandwidth"?

Consequences, if yes:

- Fields, actions and equations of motion possess equivalent representations:
 - on a spacetime manifold (shows preservation of external symmetries incl. Killing vector fields)
 - on any lattice of sufficiently dense spacing (showing UV finiteness)

"Bandlimited" physical fields

Generalize "bandlimitation":

- Cut off spectrum of the Laplacian at Λ, e.g., at the Planck scale.
- Thus, the space of fields, F, that is summed over in QFT path integral
 is spanned only by the eigenfunctions with eigenvalues λ_i < Λ.
- Cutoff is covariant since Laplacian is scalar.

Observation: On any finite-volume region of space, F is finite dimensional.

- ⇒ Thus, we have a sampling theorem for any finite region of space!
 - Q: Does (# samples/Volume) stay finite as (Volume -> infinty) ?
 - A: Yes: Can be shown via Weyl's asymptotic formula of spectral geometry.

Recall: Spectral Geometry

M. Kac 1966: Can one hear the shape of a drum?

Spectral geometry: Basically yes!

except in a few subtle cases (but with UV cutoff a coarser equivalence will suffice)

Shape of Riemannian manifold

Spectrum of Laplacian

Sampling theory of spacetime itself?

Idea: Nontrivial shape <=> nontrivial distance relations <=> nontrivial 2-point correlators

Method: to sample and reconstruct a piece of a euclidean signature spacetime: (see arxiv:0908.3061)

- From matrix elements, < x_a | $1/\Delta$ | x_b >, calculate lowest eigenvalues of Δ .
- Use spectral geometry to reconstruct the piece of spacetime, up to UV cutoff.
- A piece of (euclidean signature) spacetime with this UV cutoff
 - = an equivalence class of mflds with same spectrum up to the UV cutoff.

(a spacetime is an equivalence class of manifolds differing only by sub-Planckian ripples).

Consistent: Sub-Planckian ripples in space cannot be resolved as fields are bandlimited.

Representation-theoretic view

In general relativity:

 A choice of coordinates is merely a choice of representation of an underlying Riemannian manifold

If there is also this UV cutoff, one has, further:

- Even the choice of Riemannian manifold is merely a choice of representation of an underlying spacetime with UV cutoff.
 (the spacetime is specified by a spectrum up to Λ).
- One can represent a spacetime as any manifold whose Laplacian's spectrum is as specified, up to Λ.

Dynamics of spacetime?

Consider a simple action:

$$S_{matter} = \int d^n x \sqrt{|g|} \frac{1}{2} \phi(x) (\Delta + m^2) \phi(x)$$

$$= \sum_{i=1}^{N} \frac{1}{2} \phi_i (\lambda_i + m^2) \phi_i$$

$$= Tr(\frac{1}{2} (\Delta + m^2) |\phi) (\phi|)$$

- In contains the degrees of freedom of the field and the spacetime, except for N.
- Simplest possible action for N? $S_{\rm Size} = \alpha \; N = \alpha \; Tr(1)$

Tr(1) = Einstein action

A result of spectral geometry (Gilkey 1975, but anticipated via Sakharov mechanism 1969):

$$N = \frac{1}{16\pi} \int d^4x \sqrt{|g|} \left\{ \frac{\Lambda^2}{2} + \frac{\Lambda}{6}R + O(R^2, \Lambda^{-1}) \right\}$$

=> Einstein action emerges when choosing $\alpha = 6 \Lambda$.

(Note: an analogous result for the Dirac operator has been used in NC geometry by Rovelli, Landi, Connes et al)

Here, obtain new interpretation of role of cosmological constant and curvature:

Without curvature, the density of samples (i.e. of degrees of freedom) is:

$$\frac{N}{V} = \frac{\Lambda^2}{32\pi}$$
 (i.e., around the Planck density)

=> Curvature can be viewed as local perturbation of density of degrees of freedom.

Dynamics of spacetime?

Consider a simple action:

$$S_{matter} = \int d^n x \sqrt{|g|} \frac{1}{2} \phi(x) (\Delta + m^2) \phi(x)$$

$$= \sum_{i=1}^{N} \frac{1}{2} \phi_i (\lambda_i + m^2) \phi_i$$

$$= Tr(\frac{1}{2} (\Delta + m^2) |\phi) (\phi|)$$

- In contains the degrees of freedom of the field and the spacetime, except for N.
- Simplest possible action for N? $S_{\rm Size} = \alpha \; N = \alpha \; Tr(1)$

Tr(1) = Einstein action

A result of spectral geometry (Gilkey 1975, but anticipated via Sakharov mechanism 1969):

$$N = \frac{1}{16\pi} \int d^4x \sqrt{|g|} \left\{ \frac{\Lambda^2}{2} + \frac{\Lambda}{6}R + O(R^2, \Lambda^{-1}) \right\}$$

=> Einstein action emerges when choosing $\alpha = 6 \Lambda$.

(Note: an analogous result for the Dirac operator has been used in NC geometry by Rovelli, Landi, Connes et al)

Here, obtain new interpretation of role of cosmological constant and curvature:

$$\frac{N}{V} = \frac{\Lambda^2}{32\pi}$$
 (i.e., around the Planck density)

=> Curvature can be viewed as local perturbation of density of degrees of freedom.

Any theoretical evidence?

Recall quantum gravity studies:

=> there may exist a minimum length uncertainty Δx_{\min} :

Functional analysis shows:

Functions (wave functions or fields etc) in the domain of any operator X with lower uncertainty bound necessarily possess the sampling property.

Page 23/27

Experimental evidence?

- Applications to inflationary cosmology:
 - Sampling theoretic UV cutoff is easily applied to FRW spacetimes.
 - Multiple groups have worked out predictions for CMB.
 - Predicted experimental signatures:
 - Characteristic, O(10⁽⁻⁵⁾) modulations in CMB power spectrum.

However:

Modulations could have many causes, e.g., suitable inflaton potential.

Characteristic deviation from scalar/tensor consistency relation in B-polarization data.

However:

B-polarization is being sought but is very hard to measure.

Summary

Spacetime can be discrete & continuous, in same way information can.

- combines mathematical languages of QT and GR
- expresses minimum length uncertainty principle
- Fields, actions and equations of motion possess equivalent representations
 - · on a spacetime manifold
 - on any lattice of sufficiently dense spacing
- Describes gravity via eigenvalues of the Laplacian:
 - representational degrees of freedom are modded out
 - Einstein action is automatically induced

Outlook:

- develop Lorentz covariant framework further (see e.g. PRL 2004, new soon).
- study spacetime as a channel with fundamental quantum noise (see arxiv:0908.3144)

If not a fundamental property of nature?

- Any new sampling theoretic methods could be useful in communication engineering and signal processing (2 patents)
- Covariant sampling theory yields tools that should be useful in various quantum gravity theories that describe substructure (as in number theory):
 - For any discrete theory can define an equivalent continuum theory
 - Use, e.g., to express finite difference equations as differential equations.
 - Use to define and stabilize dimension of lattices.
 - Replace continuum limit with reconciling discrete and continuum formulations.

Lorentzian signature sampling

- Hard because Lorentzian spectral geometry less developed.
- Results on fully covariant sampling theory exist for:
 - Minkowski space [AK, Phys.Rev.Lett., 92, 221301 (2004)]
 - The FRW cases of de Sitter space, and power law inflation [work with R.T. Martin, soon to be posted]
- Key feature of Lorentz covariant sampling:
 - Spatial modes obey temporal sampling theorem, and vice versa
 - This way, Lorentz contraction and time dilatation ensure covariance.