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Abstract: At NIST we are engaged in an experiment whose goal is to create superpositions of optical coherent states (such superpositions are
sometimes called & quot;Schroedinger cat&quot; states). We use homodyne detection to measure the light, and we apply maximum likelihood
guantum state tomography to the homodyne data to estimate the state that we have created. To assist in this analysis we have made a few
improvements to quantum state tomography: we have devised a new iterative method (that has faster convergence than R*\rho* R iterations) to find
the maximum likelihood state, we have formulated a stopping criterion that can upper-bound the actual maximum likelihood, and we have
implemented a bias-corrected resampling strategy to estimate confidence intervals.
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“Schrodinger Cat” States

(I'm talking about the) state of a single harmonic oscillator.
e superposition of two coherent (or “"displaced vacuum”) states

1

= —{—an)t a:)

e b
| +) has only even numbers of photons.

e |-)has only odd numbers.

(+] =0

e This type of Schrodinger cat states have been made in a light field
trapped in a cavity, microwaves in a superconducting resonator,
motion of a trapped ion, traveling light wave (others?)

e With photon (or phonon) numbers < 10.
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“Schrodinger Cat” States

e (I'm talking about the) state of a single harmonic oscillator.
e superposition of two coherent (or “"displaced vacuum”) states

superposition of
coherent state coherent states

(m)=4

e This type of Schrodinger cat states have been made in a light field
trapped in a cavity, microwaves in a superconducting resonator,
motion of a trapped ion, traveling light wave (others?)

e With mean photon (or phonon) numbers < 10.
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How to Make Cat States

e Original cat making scheme:
— Use Kerr effect Hamiltonian

o) — o)+
2z

e Current materials have too much absorption and too small
v, but there is hope for EIT methods.

e We need to make cats with a specific optical mode shape,
and Kerr effect interactions will disturb the mode.

Yurke and Stoler
PRL 57, 13

irsa: 09090003 Page 7/70

7



Lower Order Nonlinearity + Post Selection

| 7/ Glancy and Vasconcelos
. = arXiv-0705.2045
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Photon Subtraction

e Make squeezed light by S(L m
degenerate down conversion.
(‘)pump_)'zmsqueezed -

e Send through beam splitter.
e Trigger on observing a photon.

e Works like heralded single
photon source, but with stronger
squeezing ~3dB.

perfect cat state

ideal photon
|a|4=0.8

subtracted state

Qurjoumisev etal.
méalgeee 312. 83
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Photon Subtraction

e Make squeezed light by §(Z) m
degenerate down conversion. |
mpump%zmsqueezed -

e Send through beam splitter.
e Trigger on observing a photon.

e Works like heralded single
photon source, but with stronger
squeezing ~3dB.

perfect cat state

subt - |]%2=0.8
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Our Photon Subtraction

e Subtract two or more photons

*
&
»

@

e Using superconducting transition edge sensor (TES) photon
number resolving detectors.
— efficiency ~ 90%
— dark counts limited by black-body radiation
e Subtracting more photons makes a higher fidelity, larger
cat, using less squeezing.
e Four Data Sets:
— n=1 by avalanche photo diode (APD)
— n=2 by APD
—n=2 by TES
e~ — =3 Inp. TES Sl
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_ click
e Make squeezed light by §(Z)
degenerate down conversion. _
mpump_’zmsqueezed -

e Send through beam splitter.
e Trigger on observing a photon.

e Works like heralded single
photon source, but with stronger
squeezing ~3dB.

perfect cat state

subt - | |4=0.8

Ourje ~ A
S 600003 == = Page 12/7qr0



Our Photon Subtraction

e Subtract two or more photons

*
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e Using superconducting transition edge sensor (TES) photon
number resolving detectors.
— efficiency ~ 90%
— dark counts limited by black-body radiation
e Subtracting more photons makes a higher fidelity, larger
cat, using less squeezing.
e Four Data Sets:
— n=1 by avalanche photo diode (APD)
— n=2 by APD
— n=2 by TES
o e = I RS Fese 13701




Measure by Homodyne Detection

Local Oscillator

e Vary local oscillator phase ¢, observe x.
e Record N pairs: {(X,,, )| m=1_N}.

o Calibrate system efficiency 7=7optpdmm Mdc

ope=0ptical components 94.0% + 0.5%
np.a=photo-diodes 97.6% *= 2.2%
nmmm=mMode-mismatch 95.0% = 0.5%
nac=dark current 97.9% + 0.1%

e np~ 85% + 3%

irsa: 09090003

Lvovsky & Raymer
quant-ph/0511044
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Forward Measurement Model

e Relate measurement
probabilities to o /

quantum state p:

P(xj¢)=Tr[IT(x.¢)p]

-3

- II(x,¢) is an element of a continuous POVM.
(x,0)=> E,(m)e **°|x)x|e"** “E, ()

rn
— |x) is the harmonic oscillator position eigenstate in
photon number basis.

— e%7a js the phase evolution operator.
— E (n) is the Krauss operator for photon loss.
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Measure by Homodyne Detection

Local Oscillator

e Vary local oscillator phase ¢, observe x.
e Record N pairs: {(xX,,, ¢,) | m=1_N}.

o Calibrate system efficiency 7=7opt/pdmm Mdc

nope=0ptical components 94.0% + 0.5%
n.a=photo-diodes 97.6% = 2.2%
nTmm=mMmode-mismatch 95.0% = 0.5%
nec=dark current 97.9% + 0.1%

e 7~ 85% + 3%
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Forward Measurement Model

e Relate measurement
probabilities to -
quantum state p: /

P(x|g)=Tr[T1(x.¢)p]

-

- II(x.,¢) is an element of a continuous POVM.
H(I,Q) — ZEH (}?)e_ma‘ﬂ‘x><x‘e+f¢a'aEH (I?)T

rn
— |x) is the harmonic oscillator position eigenstate in
photon number basis.

— e%7a js the phase evolution operator.
— E, (n) is the Krauss operator for photon loss.
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RpR Maximum Likelihood

e Iterative scheme:
— begin with p,=N{I)=maximally mixed state
— at each step i, compute

Re)= g Tr(ﬁ:pr)

— find next p.., = NMR,2R,)
— at maximum likelihood point gy = MRy o Ryt)
e R is positive and hermitian, so each p; is also hermitian
and can be normalized to have trace 1.

e The “diluted algorithm”, in which R—>I+<R, will increase £
if, and ¢ is small enough.

e In practice e—»>«.

Rehaceketal.
quant-ph/0611244
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R pR Stopping Criterion

e Consider subsequent p's:
p'=p+elc—p)
e Expand £ to first order in &:

£(p*)az<p>+sj€£(pfﬁ

L(p')= L(p)+Tr(Ro)—£Tr(Rp)
L(p)= L(p)+eTr(Re)—eN

e What o will maximize £(p)? o=|w){w|, where | is the
eigenvector of R with the largest eigenvalue.

L(p')= L(p)+ |lmax(eig(R)) - N |
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R pR Stopping Criterion

e Consider subsequent p's:
p'=p+elc—p)
e Expand £ to first order in &:

L(p*)u(p)wjgfwﬁ

L(p')= L(p)+eTr(Ro)—Tr(Rp)
L(p')= L(p)+Tr(Ro)—N

e What o will maximize £(p)? o=|w{w|, where | is the
eigenvector of R with the largest eigenvalue.

L(p')~ L(p)+ &|max(eig(R)) - N
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RpR Stopping Criterion
25 _ - )

Q )

I-fidelity(p,p, , )

in

"3
-]

: 160 zﬁu 3uu 400 S 0 1000 2000 3000
£ of iterations Z of iterations
<10 photons, 40,000 measurements

e Bound is not very tight.
e Bounding £, is good, but I wish we had a bound on the
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Regularized Gradient Ascent

e Quadratic approximation of L:
— p... =p; + A, where A is 2" order in A.

Lo(po)= £(p,)+ Tr(RA) _lin (Tfﬂ M]

(Hmpf)

— Write A as a 2d2 element real vector 4.
-l
lQ(pH—l) ‘£(pr)+v A+EATM4

e Choose maximum step size: ¢ 47 4
e Maximize Ly(p:.,) subject to constraint s > AT A:

AA)=0ia-M)"¥

e A is a Lagrange multiplier, which we set to A=max(eig(M))
and increase if necessary.
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Regularized Gradient Ascent

e Quadratic approximation of L:
— p... =p; + A, where A is 2" order in A.

lp.a)e £lp) s TeRA) L3 [ TULAN

(Hmpf)

— Write A as a 2d2 element real vector 4.
e
lQ(pz—l—l) £(p5)+v A_I_EATM

e Choose maximum step size: ¢ _ 47 4
e Maximize Ly(p;.,) subject to constraint s > A" A:

AA)=QAa-M)"v

e A is a Lagrange multiplier, which we set to A=max(eig(M))
and increase if necessary.
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Regularized Gradient Ascent

e Quadratic approximation of L:
— p... =p; + A, where A is 2" order in A.

Lo(ps)= Llp, )+Tr(m)__i,, ( Tr(II, A)]

(Hmpf)
— Write A as a 2d2 element real vector 4.

Lolpua)= Llp)+7 A+ A" M

e Choose maximum step size: ¢ _ 47 4
e Maximize £y(p:.,) subject to constraint s > A" A:

AA)=Qia-M)"¥

e A is a Lagrange multiplier, which we set to A=max(eig(M))
and increase if necessary.

Pirsa: 09090003 Page 37/7%5






RGA vs. RpR Competition

10 photons, 2,000 measurements 10 photons, 20,000 measurements
'IDE ‘I!I:I5
30 RpR/RGA RoR — 17 RpR/RGA
a
= 1!‘.’!1:I I 1 BER-— " 10 |
5 — : .
g S v — 0 0 10 150 200
time (s) e
20 photons, 2,000 measurements 20 photons, 20,000 measurements
lﬂa *ll.'.‘rrj
126 RpR/RGA 69 RpR/RGA
a g
~ 10 L\ ' - 10 |
5 5
10 - ; ; 10 . =
0 20 40 60 80 0 500 1000 1500
time (s) time (s)

e If stopping r is small enough, RGA is faster.
e _For high dimensions RpR can be faster for larger r.
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RGA & RpR Cooperation

e Use RpR for time equal to one RGA iteration, then switch

to RGA.
10 photons, 2,000 measurements
'IUE RPR
o RGA —
- 10 ]
5
-
0 5 10
time(s)

20 photons, 2,000 measurements

3
10

~ 10

-3
10 ;
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10 photons, 20,000 measurements

S
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0 50 llélﬂ 1513 200
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20 photons, 2,0000 measurements
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Parametric Bootstrap

e Resampling for fidelity with ideal cat state:

25 subtracting 1 photon
20+ 324,510 measurements
151 B=100 data sets
Long red line is maximum
10t likelinood.
5l Shorter red lines mark
central 68 percentile.
(?.51 052 033 054
Fidelity
e Resampling is biased toward lower fidelity with pure
state.

e We also see bias toward less negative Wigner function
irsa: 09090003 Values- Page 42/7(30



Parametric Bootstrap

e Resampling for fidelity with ideal cat state:
25

subtracting 2 photons
41,223 measurements
B=100 data sets

Long red line is maximum
likelinood.

Shorter red lines mark
central 68 percentile.

20+

15F

&52 054 056 058 06
Fidelity
e Resampling is usually biased toward lower fidelity with

pure state.

e We also see bias toward less negative Wigner function
Pirsa: 09090003 Values. Page 43/7(‘)3 1



Parametric Bootstrap

e Resampling for fidelity with ideal cat state:

30 subtracting 3 photons
1087 measurements

20 B = 100 data sets
Central red line is

10 maximum likelihood.
Quterred lines mark
central 68 percentile.

82 0.4 0.6 0.8
Fidelity
e Resampling is biased toward lower fidelity with pure
state.

e We also see bias toward less negative Wigner function
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Parametric Bootstrap

e Resampling for fidelity with ideal cat state:

25

subtracting 2 photons
41,223 measurements
B=100 data sets

Long red line is maximum
likelinood.

Shorter red lines mark
central 68 percentile.

20+

13-

(?952 054 056 0358 06
Fidelity
e Resampling is usually biased toward lower fidelity with

pure state.

e We also see bias toward less negative Wigner function
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Parametric Bootstrap

e Resampling for fidelity with ideal cat state:

30 subtracting 3 photons
1087 measurements

20 B = 100 data sets
Central red line is

10 maximum likelihood.
Quterred lines mark
central 68 percentile.

82 0.4 06 0.8
Fidelity
e Resampling is biased toward lower fidelity with pure
state.

e We also see bias toward less negative Wigner function
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Parametric Bootstrap

e Resampling for fidelity with ideal cat state:

250 subtracting 3 photons
200¢ 1087 measurements
150+ B = 800 data sets
100! Centralred line is
maximum likelihood.
307 Outer red lines mark
0 central 68 percentile.
0 0.2 04 06 0.8
Fidelity
e Resampling is biased toward lower fidelity with pure
state.
e We also see bias toward less negative Wigner function
irsa: 09090003 Values-
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Bias Correcting Parametric Bootstrap

e (Can we correct for the bias?

e Given: Flpy)=Fur P(Fl pyy), Far®, Fy ™

e Hypothesize p,, a candidate for the true state p.
e Imagine F(p,)=F,, P(F|p,). F,®, F,™.

* Assume P(F|p,) = P(F-f,| ou).

P(F) 7 4 3

Fl F,.F."ED F FF
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Parametric Bootstrap

e Resampling for fidelity with ideal cat state:

250 subtracting 3 photons
200+ 1087 measurements
150! B = 800 data sets
Central red line is
100} maximum likelihood.
50+ Outer red lines mark
central 68 percentile.
% 02 04 06 08
Fidelity
e Resampling is biased toward lower fidelity with pure
state.
e We also see bias toward less negative Wigner function
s 000000 V@IUES.,

Page 51/7§?.



Parametric Bootstrap

e Resampling from state “close” to maximum likelihood

250 subtracting 3 photons

200+ 1087 measurements

150! B = 800 data sets
Central red line is fidelity

100} of state used to generate
data.

SO+
Outer red lines mark
00 32 04 06 0.8 central 68 percentile.

Fidelity

e Histograms look similar, but clearly P(F|p,) = P(F-f,| oy ) IS
not exactly true.
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Parametric Bootstrap

e Resampling for fidelity with ideal cat state:

250 subtracting 3 photons
200+ 1087 measurements
150! B = 800 data sets
Central red line is
100+ maximum likelihood.
50+ Outer red lines mark
central 68 percentile.
IE}0 0.2 0.4 06 0.8
Fidelity
e Resampling is biased toward lower fidelity with pure
state.

e We also see bias toward less negative Wigner function
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Parametric Bootstrap

e Resampling from state “close” to maximum likelihood

250 subtracting 3 photons

200+ 1087 measurements

150! B = 800 data sets
Central red line is fidelity

100} of state used to generate
data.

50+
Outer red lines mark
00 32 04 08 0.8 central 68 percentile.

Fidelity

e Histograms look similar, but clearly P(Flp,) = P(F-f,| ox1) IS
not exactly true.
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Parametric Bootstrap

e Resampling from state “close” to maximum likelihood

250 subtracting 3 photons

200+ 1087 measurements

150! B = 800 data sets
Central red line is fidelity

100} of state used to generate
data.

SO+
Outer red lines mark
00 02 04 08 0.8 central 68 percentile.

Fidelity

e Histograms look similar, but clearly P(F|p,) = P(F-f,| oy ) IS
not exactly true.
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Bias Correcting Parametric Bootstrap

Can we correct for the bias?

Given: F(pyp)=Fyr. P(Fl pyp), Farr®, Fayt™
Hypothesize p,, a candidate for the true state p.
Imagine F(p,)=F,, P(Fl|p,), F,®, F,™.

Assume P(F|p,) = P(F-f,| pyp).
If p, is a good hypothesis, F,V<Fy; <F_ ™

P(F)

Fy Hiﬁff Fan®, Fo™
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Bias Correcting Our Data

08
0.75 U
]
g 0.65 3
s 06 =rs
o) -
= 055 - $ } : T )
05 <
0.45 -
(V)]
04 - - - = - . . S’
n=1,. n=1. n=2. n=2. n=2. n=2. n=3. n=3,.
APD APD.BC| APD APD.BC| TES TES.BC| TES TES.BC
n=1,APD n=2 APD , n=2_TES n=3, TES
N 324,510 41,223 | 24,790 1,087
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Bias Correcting Our Data

08
0.75 U
07 ]
3
2 =3 >
ir. 095 -~
B * >
05 t <
0.45 -
[\
04 - - . - . 5"
n=1, n=1. n=2. n==2, n=2. n=2. n=3, n=3,
APD APD.BC}| APD APD.BC| TES TES.BC| TES TES.BC

e We must also include calibration uncertainty n~85%=*=3%.
e Choosing n=82% or 88% shifts Fy, by ~1.5%.
e So, I have increased the size of the data squares.
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Conclusions

e MaxLlikelihood stopping criterion:
r=max(eig(R(p))) —N
— bounds likelihood: £ </f(p)+r
e Regularized Gradient Ascent maximization algorithm.
— faster convergence, but may not be practical in all cases
— can optimize any convex function of p.
e Parametric bootstrap resampling with bias correction
— correct low-purity bias of MaxLikelihood inference.
— requires strong assumptions.
e (Created approximate cat states by subtracting 3 photons.
— (n) is fairly large, but fidelity needs improvement
— requires higher purity squeezing
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Bias Correcting Our Data
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3
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n=1, n=1. n=2. n==2. n=2. n=2. n=3, n=3.
APD APD BC} APD APD.BC| TES TES.BC} TES TES,BC
n=1,APD n=2 APD n=2_TES n=3, TES
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Bias Correcting Our Data

08
0.75 U
]
= 3
= g D
ir. 0.55 -
* L 2
0.45
(V)]
04 : - . -. . S"
n=1, n=1. n=2. n=2. n=2. n=2. n=3. n=3.
APD APD. BC| APD APD.BC| TES TES.BC| TES TES.BC

e We must also include calibration uncertainty n~85%=*=3%.
e Choosing n=82% or 88% shifts Fy, by ~1.5%.
e So, I have increased the size of the data squares.
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Conclusions

e MaxLlikelihood stopping criterion:
r=max(eig(R(p)))—N
— bounds likelihood: £ </f(p)+r
e Regularized Gradient Ascent maximization algorithm.
— faster convergence, but may not be practical in all cases
— can optimize any convex function of p.
e Parametric bootstrap resampling with bias correction
— correct low-purity bias of MaxLikelihood inference.
— requires strong assumptions.
e (Created approximate cat states by subtracting 3 photons.
— (n) is fairly large, but fidelity needs improvement
— requires higher purity squeezing
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Bias Correcting Parametric Bootstrap

Can we correct for the bias?

Given: Flpy)=Fyr, P(F| pyy), Fa®, Fy ™
Hypothesize p,, a candidate for the true state p;.

Imagine F(p,)=F,, P(F|p,), F,®, F,™.

Assume P(F|p,) = P(F-f,| o).

P(F)

.

Fon®

Fop Fin® F,0

F,

i)
F,
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Parametric Bootstrap

e Resampling for fidelity with ideal cat state:

25 subtracting 1 photon
20+ 324,510 measurements
151 B=100 data sets
Long red line is maximum
10+ likelinood.
51 Shorter red lines mark
central 68 percentile.
(?.51 052 033 054
Fidelity
e Resampling is biased toward lower fidelity with pure
state.

e We also see bias toward less negative Wigner function
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Parametric Bootstrap

e Resampling for fidelity with ideal cat state:

25 subtracting 1 photon
20+ 324,510 measurements
151 B=100 data sets
Long red line is maximum
10+ likelihood.
5l Shorter red lines mark
central 68 percentile.
&51 052 033 0.54
Fidelity
e Resampling is biased toward lower fidelity with pure
state.

e We also see bias toward less negative Wigner function
irsa: 09090003 VHIUES. Page 70/7%



