Title: An Introduction to Quantum Information

Date: Aug 17, 2009 01:00 PM

URL: http://pirsa.org/09080062

Abstract: A game that illustrates that quantum theory requires non-locality; an overview of the concept and basic mathematics of entanglement; and the concept of spin introduced via a Stern Gerlach set-up.

An Introduction to Quantum Information

ISSYP 2009

A Game of Probabilities: Set-up

- Two people, called observers
- Two priors, duck or goose
- Two outcome choices, it or not it

Pirsa: 09080062 Page 3/47

A Game of Probabilities: Part 1

How to win:

- If both observers have the same prior information, they both choose the same outcome.
- If the observers have different prior information, they choose the opposite outcomes.

Pirsa: 09080062 Page 4/47

A Game of Probabilities: Part 3

How to win:

- If both observers have the prior, Goose, they both choose the opposite outcomes.
- 2. If both observers have the prior, Duck, they choose the same outcome.
- If the observers have different priors, they choose the same outcome.

Pirsa: 09080062 Page 5/47

A Game of Probabilities: Part 3

How to win:

- If both observers have the prior, Goose, they both choose the opposite outcomes.
- If both observers have the prior, Duck, they choose the same outcome.
- If the observers have different priors, they choose the same outcome.

Pirsa: 09080062 Page 6/47

Pirsa: 09080062 Page 7/47

What is the best probability of winning?

Pirsa: 09080062 Page 8/47

- What is the best probability of winning?
- Classically, 75%

Pirsa: 09080062 Page 9/47

- What is the best probability of winning?
- Classically, 75%
- With quantum systems, we can do better!

Pirsa: 09080062 Page 10/47

Entanglement

"Spooky action-at-a-distance"

Pirsa: 09080062 Page 11/47

Pirsa: 09080062 Page 12/47

$$ket \rightarrow |\psi\rangle$$

$$ket \rightarrow |\psi\rangle$$

$$ket \rightarrow |\psi\rangle$$

$$tensor \rightarrow |\psi\rangle_A \otimes |\varphi\rangle_B$$

Composite system

Every composite system can be represented as

$$|\psi\rangle_{AB} = \sum_{i,j} c_{ij} |i\rangle_A \otimes |j\rangle_B$$

Separable states

• If
$$|\psi\rangle_{AB} = |\psi\rangle_{A} \otimes |\varphi\rangle_{B}$$

where
$$c_{ij} = c_i^A c_j^B$$

$$|\psi\rangle_A = \sum_i c_i^A |i\rangle_A \qquad |\varphi\rangle_B = \sum_j c_j^B |j\rangle_B$$

Composite system

Every composite system can be represented as

$$|\psi\rangle_{AB} = \sum_{i,j} c_{ij} |i\rangle_A \otimes |j\rangle_B$$

Separable states

• If
$$|\psi\rangle_{AB} = |\psi\rangle_{A} \otimes |\varphi\rangle_{B}$$

where
$$c_{ij} = c_i^A c_j^B$$

$$|\psi\rangle_A = \sum_i c_i^A |i\rangle_A \qquad |\varphi\rangle_B = \sum_j c_j^B |j\rangle_B$$

If a state is not separable, it is entangled!

Pirsa: 09080062 Page 20/47

Separable states

• If
$$|\psi\rangle_{AB} = |\psi\rangle_{A} \otimes |\varphi\rangle_{B}$$

where
$$c_{ij} = c_i^A c_j^B$$

$$|\psi\rangle_A = \sum_i c_i^A |i\rangle_A \qquad |\varphi\rangle_B = \sum_j c_j^B |j\rangle_B$$

If a state is not separable, it is entangled!

Pirsa: 09080062 Page 22/47

Separable or entangled?

Pirsa: 09080062 Page 23/47

Separable or entangled?

$$|\psi\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B + |0\rangle_A |1\rangle_B$$

Separable or entangled?

$$|\psi\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B + |0\rangle_A |1\rangle_B)$$

• Separable or entangled?

Pirsa: 09080062 Page 26/47

Separable states

• If
$$|\psi\rangle_{AB} = |\psi\rangle_{A} \otimes |\varphi\rangle_{B}$$

where
$$c_{ij} = c_i^A c_j^B$$

$$|\psi\rangle_A = \sum_i c_i^A |i\rangle_A \qquad |\varphi\rangle_B = \sum_j c_j^B |j\rangle_B$$

Composite system

Every composite system can be represented as

$$|\psi\rangle_{AB} = \sum_{i,j} c_{ij} |i\rangle_A \otimes |j\rangle_B$$

Separable states

If
$$|\psi\rangle_{AB} = |\psi\rangle_{A} \otimes |\varphi\rangle_{B}$$
where

where
$$c_{ij} = c_i^A c_j^B$$

$$|\psi\rangle_A = \sum_i c_i^A |i\rangle_A \qquad |\varphi\rangle_B = \sum_j c_j^B |j\rangle_B$$

Composite system

Every composite system can be represented as

$$|\psi\rangle_{AB} = \sum_{i,j} c_{ij} |i\rangle_A \otimes |j\rangle_B$$

Pirsa: 09080062 Page 31/47

Separable or entangled?

$$|\psi\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B + |0\rangle_A |1\rangle_B$$

Separable or entangled?

$$|\psi\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B + |0\rangle_A |1\rangle_B)$$

Separable!

$$|\psi\rangle_A = |0\rangle_A \qquad |\varphi\rangle_B = \frac{1}{\sqrt{2}} (|0\rangle_B + |1\rangle_B)$$

Pirsa: 09080062 Page 34/47

Separable or entangled?

$$|\psi\rangle_{AB} = \frac{1}{\sqrt{2}} (|1\rangle_A |0\rangle_B + |0\rangle_A |1\rangle_B)$$

Separable or entangled?

$$|\psi\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A |0\rangle_B + |0\rangle_A |1\rangle_B)$$

Separable!

$$|\psi\rangle_A = |0\rangle_A \qquad |\varphi\rangle_B = \frac{1}{\sqrt{2}} (|0\rangle_B + |1\rangle_B)$$

Separable or entangled?

$$|\psi\rangle_{AB} = \frac{1}{\sqrt{2}} (|1\rangle_A |0\rangle_B + |0\rangle_A |1\rangle_B)$$

Separable or entangled?

$$|\psi\rangle_{AB} = \frac{1}{\sqrt{2}} (|1\rangle_A |0\rangle_B + |0\rangle_A |1\rangle_B)$$

Entangled!

So what does this math tell you?

Pirsa: 09080062 Page 39/47

Separable or entangled?

$$|\psi\rangle_{AB} = \frac{1}{\sqrt{2}} (|1\rangle_A |0\rangle_B + |0\rangle_A |1\rangle_B)$$

Entangled!

So what does this math tell you?

Spin

My favourite quantum feature

Pirsa: 09080062 Page 42/47

Stern-Gerlach

Spin is...

- an intrinsic property
- equivalent to polarization for light (photons)
- the basis for the qubit
- weird

Pirsa: 09080062 Page 44/47

Using spin: NMR

- Rough procedure: count number of protons, number of neutrons, and probe with EM radiation
- The spin of a molecule is dependent on the parity of the number of protons and the number of neutrons.
- Spin gives rise to a magnetic moment with a proportionality constant called the gyromagnetic ratio.
- NMR works on the principle that an object with a nonzero spin will absorb (and then emit) radiation at characteristic frequencies.

Pirsa: 09080062 Page 45/47

End of slide show, click to exit.

Using spin: NMR

- Rough procedure: count number of protons, number of neutrons, and probe with EM radiation
- The spin of a molecule is dependent on the parity of the number of protons and the number of neutrons.
- Spin gives rise to a magnetic moment with a proportionality constant called the gyromagnetic ratio.
- NMR works on the principle that an object with a nonzero spin will absorb (and then emit) radiation at characteristic frequencies.

Pirsa: 09080062 Page 47/47