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Abstract: | will discuss a set of strong, but probabilistically intelligible, axioms from which one can {\em almost} derive the appratus of finite
dimensional quantum theory. These require that systems appear completely classical as restricted to a single measurement, that different
measurements, and likewise different pure states, be equivalent up to the action of a compact group of symmetries, and that every state be the
marginal of a bipartite state perfectly correlating two measurements. This much yields a mathematical representation of measurements, states and
symmetries that is already very suggestive of quantum mechanics. One final postulate (a ssmple minimization principle, still in need of a clear
interpretation) forces the theory's state space to be that of aformally real Jordan algebra
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Two ways to be Puzzled by QM:

(a) as a linear dynamical theory with a familiar mathematical
apparatus, but a mysterious probabilistic interpretation.

(b) as a conservative extension of classical probability theory, with a
relatively unproblematic interpretation, but a mysterious
mathematical apparatus.

|deally, one would like to have a short list of physically
plausible assumptions from which one could deduce [the
structure of QM]. Short of this one would like a list from
which one could deduce a set of possibilities for the
structure ... all but one of which could be show to be
inconsistent with suitably planned experiments.

— G. W. Mackey, Mathematical Foundations of QM, 1963
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Cones

Definition

A cone in a real vector space A is a closed subset K C A such that
(a) aeK, A >0=AacK

(b) abeK=a+bekK

(c) Kn—K = {0}.

Note that K induces a partial orderon A: a< biffb—ac K. K is
generating iff A=K — K={a—bla,be K}. In what follows, an
ordered linear space is a real vector space A with a specified
generating cone K =: A, — and all spaces are finite-dimensional!
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Self-Duality and Homogeneity

The dual of a cone K is
K*:={fec A"|f(a) >0VvVac K}.
If A carries an inner product ( , ), the internal dual of K is
Kt ={beA|(ba)>0VeK}~K"

K is self-dual iff there exists an inner product on A with K = K.

Example: The cone .#, (H) of positive operators on H is self-dual
w.r.t. the usual trace inner product.

A, is homogeneous iff for any pair a. b in the interior of A, there
exists an affine automorphism ¢ : A, — A, taking ato b.

Example: #,(H). (Use the spectral theorem.)
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Koecher-Vinberg Theorem

Theorem (Koecher-Vinberg)

A finite-dimensional homogeneous self-dual cone is isomorphic to the
positive cone of a formally real Jordan algebra

irsa: 09080015 Page 7/65




Koecher-Vinberg Theorem

Theorem (Koecher-Vinberg)

A finite-dimensional homogeneous self-dual cone is isomorphic to the
positive cone of a formally real Jordan algebra
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Koecher-Vinberg Theorem

Theorem (Koecher-Vinberg)

A finite-dimensional homogeneous self-dual cone is isomorphic to the
positive cone of a formally real Jordan algebra

Hence, by the Jordan-Weyl-von Neumann classification, such a cone
is a direct sum of cones of one of the following types:
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Koecher-Vinberg Theorem

Theorem (Koecher-Vinberg)

A finite-dimensional homogeneous self-dual cone is isomorphic to the
positive cone of a formally real Jordan algebra

Hence, by the Jordan-Weyl-von Neumann classification, such a cone
is a direct sum of cones of one of the following types:

¢ Positive Hermitian matrices over B.C or H
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Koecher-Vinberg Theorem

Theorem (Koecher-Vinberg)

A finite-dimensional homogeneous self-dual cone is isomorphic to the
positive cone of a formally real Jordan algebra

Hence, by the Jordan-Weyl-von Neumann classification, such a cone
is a direct sum of cones of one of the following types:

e Positive Hermitian matrices over B.C or H

e Cones with n-dimensional ball-shaped cross sections (“spin
factors")
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Koecher-Vinberg Theorem

Theorem (Koecher-Vinberg)

A finite-dimensional homogeneous self-dual cone is isomorphic to the
positive cone of a formally real Jordan algebra

Hence, by the Jordan-Weyl-von Neumann classification, such a cone
is a direct sum of cones of one of the following types:

e Positive Hermitian matrices over B.C or H

e Cones with n-dimensional ball-shaped cross sections (“spin
factors")

e Positive 3 by 3 Hermitian matrices over the octonions
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Koecher-Vinberg Theorem

Theorem (Koecher-Vinberg)

A finite-dimensional homogeneous self-dual cone is isomorphic to the
positive cone of a formally real Jordan algebra

Hence, by the Jordan-Weyl-von Neumann classification, such a cone
is a direct sum of cones of one of the following types:

e Positive Hermitian matrices over E.C or H

e Cones with n-dimensional ball-shaped cross sections (“spin
factors")

e Positive 3 by 3 Hermitian matrices over the octonions

IDEA: |If we can motivate homogeneity and self-duality, we come
close to motivating QM.
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Test Space Tutorial

Definition: A test space is a collection 21 of non-empty sets, called
tests, understood as the outcome-sets of various “measurements”.

Notation and Jargon:
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Test Space Tutorial

Definition: A test space is a collection 21 of non-empty sets, called
tests, understood as the outcome-sets of various “measurements”.

Notation and Jargon:

e X =|J%UIis the outcome space for 2.
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Test Space Tutorial

Definition: A test space is a collection 21 of non-empty sets, called
tests, understood as the outcome-sets of various “measurements”.

Notation and Jargon:

e X =|J%Uis the outcome space for 2.
« A probability weight on 2l is a mapping « : X — [0, 1] with

) a(x)="1

xcE

for all E 3.
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Test Space Tutorial

Definition: A test space is a collection 21 of non-empty sets, called
tests, understood as the outcome-sets of various “measurements”.

Notation and Jargon:

e X =|J%UIis the outcome space for 2.
¢ A probability weight on 2l is a mapping « : X — [0, 1] with

) a(x)=1

xcE

for all E 3.

e The convex set (2(2) of all probability weights on 2 is the latter’s
state space.
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Examples

Example 1: Classical Models. Let 2 = {E} where E is a finite set,
(1= A(E), the set of all probability weights on E.
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Test Space Tutorial

Definition: A test space is a collection 21 of non-empty sets, called
tests, understood as the outcome-sets of various “measurements”.

Notation and Jargon:

e X =|J%UIis the outcome space for 2.
¢ A probability weight on 2l is a mapping « : X — [0, 1] with

) a(x)=1
xcE
for all E = 4.

¢ The convex set {2(2) of all probability weights on 2 is the latter’s
state space.
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Test Space Tutorial

Definition: A test space is a collection 21 of non-empty sets, called
tests, understood as the outcome-sets of various “measurements”.

Notation and Jargon:

o X =|J%UIis the outcome space for 2.
¢ A probability weight on 21 is a mapping « : X — [0, 1] with

) a(x)=1
xcE

for all E 3.

¢ The convex set (2(2) of all probability weights on 2 is the latter's
state space.
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Examples

Example 1: Classical Models. Let 2 = {E} where E is a finite set,
(1= A(E), the set of all probability weights on E.
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Examples

Example 1: Classical Models. Let 2 = {E} where E is a finite set,
(1= A(E), the set of all probability weights on E.

Example 2: Quantum Models. Let 2 = §(H), the set of orthonormal
bases for a Hilbert space H, {2 = (}(H) states of the form

a(x)= (px.x), p adensity operator on H. (Gleason's Theorem tells
us that all states have this form, if dimH > 2.)
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L inearization

Let (21, Q2) be a model, with total outcome-space X = J2. Let V(2) be
the span of Q in BX, ordered pointwise. Note that  is a base for this
positive cone: every u > 0in V is a non-negative multiple of a state.

Example: For the quantum model (§(H).C2(H)), V = _#,(H) with the
usual ordering.

Definition: Let V* be the dual space of V, ordered pointwise on (2,
L.e., f e VI iff f(a) = 0 for every « € 2. Note that there is a natural
mapping X — V* given by x — X where X(«) = a(x) for all a € V.
Note, too, that for every E € 2, we have

):;-’E'zu

xcE
where u(a) = 1.

Example: For the quantum model, we again have V ~ V* = _#,(H).
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Axiom 1: Lots of States

Definition: A set ) of states on 2 is separating iff x — X is injective.
(1 is unital iff for every x € X, there exists at least one « = (2 with
i x)—1.

Axiom 1: (2 is separating and unital.

Note that separating is an axiom of convenience: if not, simply
identify x with x. I'll do this in any case!
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Symmetry

Definition: Let G be a group. A G-test space is a test space 2 such
that X = J%2 carries a G action, with gE e forallge G, E 2. A
G-test space 2 is fully symmetric iff
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Symmetry

Definition: Let G be a group. A G-test space is a test space 2 such
that X =% carries a G action, with gE e forallge G, E 2. A
G-test space 2 is fully symmetric iff

o all tests have the same size, and
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Symmetry

Definition: Let G be a group. A G-test space is a test space 2 such
that X = J%2 carries a G action, with gE e forallge G, E 2. A
G-test space 2 is fully symmetric iff

¢ all tests have the same size, and
e any bijection between tests is implemented by an element of G.
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Symmetry

Definition: Let G be a group. A G-test space is a test space 2 such
that X = J%2 carries a G action, with gE e forallge G, E 2. A
G-test space 2 is fully symmetric iff

e all tests have the same size, and
e any bijection between tests is implemented by an element of G.

Example: The test space §(H) of frames of H is fully symmetric
under H’s unitary group U(H).
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Axiom 2: Lots of Symmetry

Note that G acts also on Q by g(«)(x) = a(g~ (X)), x € X. If Qis
invariant under this action, we say that G acts on the model (21, ).

Axiom 2: There is a compact group G acting continuously on
(21.€2), in such a way that

(i) G acts fully symmetrically on 21
(i) G acts transitively on pure states. (1oy.

A classical test space 2l = {E} satisfies Axiom 2 trivially with
G = S(E), the symmetric group on E. A quantum test space
(§(H).Q2y) satisfies Axiom 2 with G = U(H), the unitary group of H.

Call an inner product on V* positive iff (a.b) > 0 for all a.b < V7.
Note that the trace inner product on V* = _#,(H) is positive in this
sense.
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Symmetry

Definition: Let G be a group. A G-test space is a test space 2 such
that X =2 carries a G action, withgE e forallge G, E 2. A
G-test space 2 is fully symmetric iff

¢ all tests have the same size, and
e any bijection between tests is implemented by an element of G.

Example: The test space §(H) of frames of H is fully symmetric
under H’s unitary group U(H).
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Axiom 2: Lots of Symmetry

Note that G acts also on Q by g(«)(x) = a(g (X)), x € X. If Qis
invariant under this action, we say that G acts on the model (21, Q).

Axiom 2: There is a compact group G acting continuously on
(21.€2), in such a way that

(i) G acts fully symmetrically on 21
(i) G acts transitively on pure states. (1oy.

A classical test space 2l = {E} satisfies Axiom 2 trivially with
G = S(E), the symmetric group on E. A quantum test space
(§(H).Q2y) satisfies Axiom 2 with G = U(H), the unitary group of H.

Call an inner product on V* positive iff (a.b) >0 for all a, b V7.
Note that the trace inner product on V* = _#,(H) is positive in this
sense.
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Representation |

| emma

Subject to Axiom 2, there exists a positive, G-invariant inner product
on V*.

Proof: Represent Q).,; as G/K with K the stabilizer of some (any) pure state
oo. Any f = V* gives rise to a continuous function G — R by g — f(gay). This
gives an embedding of V* as a G-invariant real subspace of the algebra
C(G) of continuous complex-valued functions on G. The restriction of the
natural inner product on the latter to V* is a real, G-invariant inner product,
and is positive, simply because the convolution of positive functions on Gis
positive. [J

Denote the inner product arising from C(G) by ( . )g.
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Representation ||

| emma

Let (,) be any positive, G-invariant inner product on V*. There is an
embedding x — v, of the outcome-space X into the unit sphere of V*
with (vx.vy) =0 Tforallx Ly < X.

Proof: Foreach x € X, set g =x — (x,u)u. Then (gx.U)=0and ¥ ,.ggx =0
for any E < 2. As G acts 2-transitively on X, 3 constants r > 0 and sg with

lgx||=rvx <X and (gx.qy) =Sq "X LYy
Let x € E < 2A: then

0=1(qx.0)=(gx. Y Gy) =r*+(n—1)sq
yekE

S0 sq = —- < 0. Set vx = g« +cu where c=r/v/n—1 (so that sg = —c?).
Since (g i u for all x = X, we have (vy,vy) =0for x L y. Since G acts
transitively x, ||v.|| is constant; normalizing if necessary, we can assume
V|| =1 for all x. Obviously, the mapping x — @y IS injective; since (x.u) is
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Axiom 2: Lots of Symmetry

Note that G acts also on Q by g(«)(x) = a(g (X)), x € X. If Qis
invariant under this action, we say that G acts on the model (21, ).

Axiom 2: There is a compact group G acting continuously on
(21.€2), in such a way that

(i) G acts fully symmetrically on 21
(i) G acts transitively on pure states. (2oy.

A classical test space 2l = {E} satisfies Axiom 2 trivially with
G = S(E), the symmetric group on E. A quantum test space
(§(H).(2y) satisfies Axiom 2 with G = U(H), the unitary group of H.

Call an inner product on V* positive iff (a.b) > 0 for all a,.bec V7.
Note that the trace inner product on V* = _#,(H) is positive in this
sense.
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Representation |

lemma

Subject to Axiom 2, there exists a positive, G-invariant inner product
on V*.

Proof: Represent Q).,; as G/K with K the stabilizer of some (any) pure state
oo. Any f = V* gives rise to a continuous function G — R by g — f(gay). This
gives an embedding of V* as a G-invariant real subspace of the algebra
C(G) of continuous complex-valued functions on G. The restriction of the
natural inner product on the latter to V* is a real, G-invariant inner product,
and is positive, simply because the convolution of positive functions on Gis
positive. [J

Denote the inner product arising from C(G) by ( . )g.
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Representation ||

| emma

Let (,) be any positive, G-invariant inner product on V*. There is an
embedding x — v, of the outcome-space X into the unit sphere of V*
with (vx,vy)=0Tforallx Ly X.

Proof: Foreach x € X, set g =x — (x,u)u. Then (gc.U)=0and ¥, gx =0
for any £ < 2. As G acts 2-transitively on X, 3 constants r > 0 and s with

Igx||=rvx <X and (Qx.Qy) =Sqg7X LY
Let x € E =< A then

0=(gx,0) = (gx, ¥ qy) =r°+(n—1)sq.
yek

S0 Sg = —n"—i < 0. Set vy =gx +cuwhere c=r/vn—1 (sothat sq = _c2).
Since (gy L ufor all x € X, we have (vy,vy,) =0for x L y. Since G acts
transitively x, ||v.|| is constant; normalizing if necessary, we can assume

V|| =1 for all x. Obviously, the mapping x — @y is injective; since (x.u) is
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Representation ||

l emma

Let (,) be any positive, G-invariant inner product on V*. There is an
embedding x — v, of the outcome-space X into the unit sphere of V*
with (vx,vy) =0 forallx Ly X.

Proof: Foreach x € X, set g =x — (x,u)u. Then (gx.U)=0and ¥ ,.ggx =0
for any E < 2. As G acts 2-transitively on X, 3 constants r > 0 and sq with

Igx||=rvx <X and (Qx.Qy) =Sqg7X LYy
Let x € E < A then

0=(gx,0) = (gx, Y qy) =r*+(n—1)sq.
yekE

S0 Sg = —n"—_EI < 0. Set vy =gx+cuwhere c=r/vn—1 (sothat sq = _c2).
Since (gx L u for all x € X, we have (vy,vy,) =0for x L y. Since G acts
transitively x, ||v«|| is constant; normalizing if necessary, we can assume

V|| =1 for all x. Obviously, the mapping x — @y Is injective; since (x.u) is
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Representation ||

| emma

Let (,) be any positive, G-invariant inner product on V*. There is an
embedding x — v, of the outcome-space X into the unit sphere of V*
with (vx,vy) =0 Tforallx Ly X.

Proof: Foreach x € X, set gy =x — (x,u)u. Then (gx.U)=0and ¥ ,.ggx =0
for any £ < 2. As G acts 2-transitively on X, 3 constants r > 0 and s with

Igx||=rvx <X and (Qx.Qy) =Sqg7X LYy
Let x € E <A then

0=(gx,0) = (gx, ¥ qy) =r°+(n—1)sq.
yekE

S0 Sg = —n"—_EI < 0. Set vy =qgx+cuwhere c=r/vn—1 (sothat sq = _c2).
Since (gy L ufor all x € X, we have (vy,vy) =0for x L y. Since G acts
transitively x, ||vx|| is constant; normalizing if necessary, we can assume

V|| =1 for all x. Obviously, the mapping x — @y is injective; since (x.u) is
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| emma

Lets=(x,y) where x L y. Then, for all outcomes x andy in X,
(Vx,Vy) = (X,¥)—S8.

Proof: Let m = the (constant) value of (x,u). Set g, = x — mu as in the proof
of Lemma 2, so that (g.,u) =0 vx < X. Recall that v, = g + cu where
= Sq = constant value of (gx.qgy) for x L y. Thus,

(\Vx,Vy) = (Qx.Qy) +6 = \Gx.qy) — Sq.
Now

(Qx,Qy) = (X—mu.y —mu) = (X,y) —m{x,u) —m(u.y) + me — (X,¥) — me.

Considering the case where x L y, this yields

= 2
Sq=5—m".

Hence,
Vi, Vy) = (X,¥) —m? —sqg = (X,y) — 5.

as promised. [J
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Representation ||

| emma

Let (,) be any positive, G-invariant inner product on V*. There is an
embedding x — v, of the outcome-space X into the unit sphere of V*
with (vx,vy)=0Tforallx Ly e X.

Proof: Foreach x € X, set g =x — (x,u)u. Then (gx.U)=0and ¥ ,.ggx =0
for any E < 2. As G acts 2-transitively on X, 3 constants r > 0 and s with

lgx||=rvx <X and (gx.qy) =Sq "X LYy
Let x € E < 2A: then

0=1(qx.0) = (g, Y Gy) =r*+(n—1)sq
yekE

S0 sq = —- < 0. Set vx = g« +cu where c=r/v/n—1 (so that sq = —c?).
Since (g i u for all x = X, we have (vyx.vy) =0for x L y. Since G acts
transitively x, ||vx|| is constant; normalizing if necessary, we can assume
V|| =1 for all x. Obviously, the mapping x — @y is injective; since (x.u) is
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Representation ||

| emma

Let (,) be any positive, G-invariant inner product on V*. There is an
embedding x — v, of the outcome-space X into the unit sphere of V*
with (vx,vy)=0Tforallx Ly X.

Proof: For each x € X, set gx =x — (x,u)u. Then (gx.u)=0and ¥ ,.cgx =0
for any £ < 2. As G acts 2-transitively on X, 3 constants r > 0 and s with

lgx||=rvx <X and (gx.qy) =Sq "X LYy
Let x € E < 2A: then

0=1(qx.0) = (g, Y qy) =r*+(n—1)sg.
yeE

S0 Sg = —n"—_ET < 0. Set vy =gx +cuwhere c=r/vn—1 (sothat sq = _c2).
Since (g L u for all x € X, we have (vx,vy,) =0for x L y. Since G acts
transitively x, ||vx|| Is constant; normalizing if necessary, we can assume

V|| =1 for all x. Obviously, the mapping x — @y is injective; since (x.u) is
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| emma

Lets=(x,y) where x L y. Then, for all outcomes x andy in X,
(Vx,Vy) = (X,¥)—S.

Proof: Let m = the (constant) value of (x,u). Set g, = x — mu as in the proof
of Lemma 2, so that (g.,u) =0 vx < X. Recall that v, = g, + cu where
—¢? = s = constant value of (gx, qgy) for x L y. Thus,
(Voe, V) = (G, Gy} +C% = (Qx, Gy) — Sg.
Now

(Qx,Qy) = (X—mu.y —mu) = (X,y) —m(x,u) —m{u.y)+ me = (X,)) — me.

Considering the case where x L y, this yields

= 2
Sqg=S—m".

Hence,
Vi, Vy) = (X,¥) —m? —sq = (X,y) —S.

as promised. [J
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Provisional Axiom 3

Definition: A G-invariant, positive inner product on V* is minimizing
iff the constant s of Lemma 3 is the minimum value of {x, y) on X x X.

True for the trace inner product on #;(H), where s = 0!

lemma

For a minimizing inner product, the vectors vy of Lemma 2 lie in the
positive cone of VV*. Moreover, ey := (vx|-) is the unique state with

Proof: Immediate from Lemma 3. [

Provisional Axiom 3 (Minimization): There exists a
minimizing G-invariant, positive inner product on V*.

Fact: all positive inner products on V* = _#,(H) invariant under the
rrsx ocosoptfitary group of H, are in fact minimizing. Page 43165



| emma

Lets=(x,y) where x L y. Then, for all outcomes x andy in X,
(Vx,Vy) = (X,¥)—S8.

Proof: Let m = the (constant) value of (x,u). Set g, = x — mu as in the proof
of Lemma 2, so that (g.,u) =0 vx < X. Recall that v, = g, + cu where

[}
i

¢ = Sq = constant value of (gx.qgy) for x L y. Thus,
(Vi, V) = (G, Qy) + €2 = (Gx, Qy) — Sq-
Now
(Gx.Qy) = (X —mu.y —mu) = (x,y) —m(x,u) —m{u.y)+m? = (x,y) —m>.
Considering the case where x L y, this yields
2

Sqg=5—m".

Hence,
Vi, Vy) = (X,¥) —m? —sg = (X,y) —S.

as promised. [J
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Provisional Axiom 3

Definition: A G-invariant, positive inner product on V* is minimizing
iff the constant s of Lemma 3 is the minimum value of {x, y} on X x X.

True for the trace inner product on #;(H), where s = 0!

| emma

For a minimizing inner product, the vectors vy of Lemma 2 lie in the
positive cone of VV*. Moreover, gy := (vx/|-) is the unique state with

Proof: Immediate from Lemma 3. [

Provisional Axiom 3 (Minimization): There exists a
minimizing G-invariant, positive inner product on V*.

Fact: all positive inner products on V* = _#,(H) invariant under the
rrsx ocosopgfitary group of H, are in fact minimizing. Page 45165



| emma

Lets=(x,y) where x L y. Then, for all outcomes x andy in X,
(Vx,Vy) = (X,¥)—8.

Proof: Let m = the (constant) value of (x,u). Set g, = x — mu as in the proof
of Lemma 2, so that (g.,u) =0 vx < X. Recall that v, = g, + cu where

[}
i

= Sq = constant value of (gx.qgy) for x L y. Thus,

(Voe, V) = (G, Gy +C% = (G, Gy) — Sq.
Now
(Qx.Qy) = (X—mu.y —mu} = (X,y) —mX,u) —mu.y; + m> = (X,y) — mP.

Considering the case where x L y, this yields

= 2
Sqg=S—m".

Hence,
Vi, Vy) = (X,¥) —m? —sg = (X,y) — 5.

as promised. [J
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Provisional Axiom 3

Definition: A G-invariant, positive inner product on V* is minimizing
iff the constant s of Lemma 3 is the minimum value of {x, y} on X x X.

True for the trace inner product on #;(H), where s = 0!

l emma

For a minimizing inner product, the vectors vy of Lemma 2 lie in the
positive cone of VV*. Moreover, ey := (vx/|-) is the unique state with

Proof: Immediate from Lemma 3. [

Provisional Axiom 3 (Minimization): There exists a
minimizing G-invariant, positive inner product on V*.

Fact: all positive inner products on V* = _#,(H) invariant under the
sz ocosoptfitary group of H, are in fact minimizing. Page 47165



Self-Duality

Proposition
Subject to Axioms 1, 2 and Provisional axiom 3, V7 is self-dual.

Proof: Let (,) be a minimizing, G-invariant positive inner product. Positivity
givesus Vi C V*+ ~ V. Letting v be defined as in Lemma 2, Lemma 7
tells us that ax(y) := (V. vy defines a state making x certain (since
(Vx,Vx) = | V|| = 1). By Axiom 3, this is the pure state < x|. It follows from
Axiom 2 that every pure state has the form g < x| =< gx| for some g = G.
Thus, every pure state is represented in the cone V7, so that V*+ C Vi . O
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Self-Duality

Proposition
Subject to Axioms 1, 2 and Provisional axiom 3, V7 is self-dual.

Proof: Let (.) be a minimizing, G-invariant positive inner product. Positivity
givesus Vi C V*+ ~ V. Letting v, be defined as in Lemma 2, Lemma 7
tells us that ax(y) := (V. V) defines a state making x certain (since
(Vx,Vx) = | V|| = 1). By Axiom 3, this is the pure state < x|. It follows from
Axiom 2 that every pure state has the form g < x| =< gx| for some g = G.
Thus, every pure state is represented in the cone V3, sothat V*+ C Vi. O
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Digression: Coupled Systems

If 24 and ‘B are test spaces, let A x B ={E x F|[E € A,F € ‘B}. A state
m on 2 x B is non-signaling if it has well-defined marginal states

o1(x):= ) o(x.y) and mp(y) = ) o(x.y)
yeF xcE

(independent of E =2 and F € B, respectively).
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Digression: Coupled Systems

If A and B are test spaces, let A x B ={E x F|[E € A,F € ‘B}. A state
m on 2 x B is non-signaling if it has well-defined marginal states

o1(x):= ) o(x.y) and ap(y) = ) o(x.y)
yeF xcE

(independent of E =2 and F € B, respectively).

e Mixtures of product states (a @ B)(x.y) := a(x)B(y) are
obviously influence-free.
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Digression: Coupled Systems

If A and B are test spaces, let A x B ={E x F|[E € A,F € ‘B}. A state
m on 2 x B is non-signaling if it has well-defined marginal states

o1(x):= ) o(x.y) and ap(y) = ) o(x.y)
yeF xcE

(independent of E =2 and F € B, respectively).

e Mixtures of product states (ax = B)(x.y) := a(x)B(y) are
obviously influence-free.

e Unless Q(2A) or 2(B) is a simplex, there exist entangled
non-signaling states not mixtures of product states.
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If @ Is non-signaling, every 21-outcome x yields a conditional state

_ 0(X.y)
o x(¥) = @1 (X)

if w1(x) > 0; otherwise ao,x = 0. Likewise, every B-outcome yields a
conditional state @4, on 2. We have obvious laws of total probability:
for any tests E € A, F € B,

w1 =) op(y)myy and @y = Y o (X)wyy.
yeF xcE
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Correlation

Definition: A non-signaling state @ on 2 < 2 is correlating iff, for
some tests E, F < 2, and some bijection f : E — F, w(xy) =0 for all
(x,y) € E x Fwith y = f(x).

Axiom 3 (Correlation): Every state is the marginal of a
correlating bipartite state.

This is satisfied by both classical and quantum systems: trivially in
the first case, and by the Schmidt decomposition in the second.
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Spectrality

l emma

Every state on U is spectral, i.e., for every a < () there exists a test E
with

=Y a(x)ex.

xcE

Proof: For every E < 21, we have

wo(y) = ), o1(X)oyy,

ek

where @,,, Is the conditional state on 2 given outcome x < E. If  correlates
E with F via f: E — F, then we have, for all x < E with @{(x) > 0, that
wgx(y) =11f y = f(x) € F; hence, gy = &¢(x)- Thus,

W =Yy-F EI'J~1(J’(_1U’})E};. Evaluating both sides at any y < F, we have

o1 (f~1(y)) = wa(y). s0

Wo = Z w2 (Y )ey .
yeF

irsa: 09080015
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Filtering

Axiom 5 (Filtering): For every test E and every f: E — (0,1
there exists an automorphism ¢ : V* — V* with ¢(x) = f(x)x.

This says that the outcomes of a test can simultaneously and
independently be attenuated by any (non-zero) factors we like, by a
reversible physical process. In this respect, we insist that the theory,
as restricted to the single measurement E, “look completely
classical.™
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Pirsa: 09080015

roposition
Subject to Axioms 1-5, the cone V is homogeneous.

Proof: Let a, b be interior points of V. By Proposition 1, (a| and (b| are
(un-normalized) states. By Lemma 4, they are spectral — say

(al=) (ax)(x|and (b|= Y (b.y)(y|.
xcE yeF

Hence, we have a=Y, g (& x)x, and similarly for b. Since aand b are
interior points, (a.x) and (b,y) are non-zero for all x.y. Let g € G define a
bijection E — F, and set

t(x)=(b,gx)/(a,x) >0

for every x < E. By Axiom 5, there is an order-automorphism ¢ : V* — V*
with ¢ : x — t(x)x for every x = E. Hence,

o(@= ) (axjo(x)=Y (ax)t(x)x=Y (b gx)x.
x<E xekE x<E

Applying g, we have

go(a)= )Y (bgx)gx= Y (b,y)y=b.0
xckE yeF
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Filtering

Axiom 5 (Filtering): For every test E and every f : E — (0,1
there exists an automorphism ¢ : V* — V* with ¢(x) = f(x)x.

This says that the outcomes of a test can simultaneously and
independently be attenuated by any (non-zero) factors we like, by a
reversible physical process. In this respect, we insist that the theory,
as restricted to the single measurement E, “look completely
classical.™
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Pirsa: 09080015

roposition
Subject to Axioms 1-5, the cone V: is homogeneous.

Proof: Let a, b be interior points of V. By Proposition 1, (a| and (b| are
(un-normalized) states. By Lemma 4, they are spectral — say

(al=Y (ax)(x|and (b|= Y (b.y){y|.
i yeF

Hence, we have a=Y, g (&, x)x, and similarly for b. Since aand b are
interior points, (a.x) and (b, y) are non-zero for all x.y. Let g £ G define a
bijection E — F, and set

t(x)=(b,gx)/(a,x) >0

for every x < E. By Axiom 5, there is an order-automorphism ¢ : V* — V*
with ¢ : x — t(x)x for every x = E. Hence,

o(@)= Y (axjo(x)=Y (ax)t(x)x=Y (b.gx)x.
x<E xek xsE

Applying g, we have

go(a)=Y (b.gxijgx=Y (by)y=>b.0O
xckE yeF
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Correlation

Definition: A non-signaling state @ on 2 < 2 is correlating iff, for
some tests E, F < 2, and some bijection f : E — F, w(xy) =0 for all
(x,y) € E x Fwith y # f(x).

Axiom 3 (Correlation): Every state is the marginal of a
correlating bipartite state.

This is satisfied by both classical and quantum systems: trivially in
the first case, and by the Schmidt decomposition in the second.
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Filtering

Axiom 5 (Filtering): For every test E and every f: E — (0,1
there exists an automorphism ¢ : V* — V* with ¢(x) = f(x)x.

This says that the outcomes of a test can simultaneously and
independently be attenuated by any (non-zero) factors we like, by a
reversible physical process. In this respect, we insist that the theory,
as restricted to the single measurement E, “look completely
classical.™
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If @ Is non-signaling, every 2l-outcome x yields a conditional state

 o(x.y)
fﬂzx(y) T f'JT(X)

if w1(x) > 0; otherwise an|, = 0. Likewise, every B-outcome yields a
conditional state w4, on 2. We have obvious laws of total probability:
for any tests E € A, F € B,

w1 =) op(y)myy and e = Y o (X)wyy.
yeF xcE
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Digression: Coupled Systems

If A and ‘B are test spaces, let A x B ={E x F|[E € A,F € ‘B}. A state
m on 2 x B is non-signaling if it has well-defined marginal states

o1(x):= ) o(x.y) and ap(y) = ) o(x.y)
yeF xcE

(independent of £E =2 and F € B, respectively).

e Mixtures of product states (ax B)(x.y) := a(x)B(y) are
obviously influence-free.

e Unless () or 2(B) is a simplex, there exist entangled
non-signaling states not mixtures of product states.
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Spectrality

l emma

Every state on U is spectral, i.e., for every a < () there exists a test E
with

=Y a(x)ex.

xcE

Proof: For every E < 21, we have

wa(y) = ), o1(X)oyy,
xcE

where w,,, Is the conditional state on 2 given outcome x < E. If  correlates
E with F via f: E — F, then we have, for all x = E with w¢(x) > 0, that
wgx(y) =11f y = f(x) € F; hence, gy = &(x)- Thus,

Wy =Yy-F 331(1’(_1{}’})5};. Evaluating both sides at any y < F, we have

o1 (f~1(y)) = wa(y). s0

Wo = Z w2 (Y )ey .
yeF

irsa: 09080015
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Filtering

Axiom 5 (Filtering): For every test E and every f: E — (0,1
there exists an automorphism ¢ : V* — V* with ¢(x) = f(x)x.

This says that the outcomes of a test can simultaneously and
independently be attenuated by any (non-zero) factors we like, by a
reversible physical process. In this respect, we insist that the theory,
as restricted to the single measurement E, “look completely
classical.”
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