Title: Four and a Half Axioms for Quantum Mechanics

Date: Aug 13, 2009 09:00 AM

URL: http://pirsa.org/09080015

Abstract: I will discuss a set of strong, but probabilistically intelligible, axioms from which one can {\em almost} derive the appratus of finite dimensional quantum theory. These require that systems appear completely classical as restricted to a single measurement, that different measurements, and likewise different pure states, be equivalent up to the action of a compact group of symmetries, and that every state be the marginal of a bipartite state perfectly correlating two measurements. This much yields a mathematical representation of measurements, states and symmetries that is already very suggestive of quantum mechanics. One final postulate (a simple minimization principle, still in need of a clear interpretation) forces the theory's state space to be that of a formally real Jordan algebra

Pirsa: 09080015 Page 1/65

4.5 Axioms for QM

Alex Wilce

Susquehanna University

Reconstructing Quantum Theory Perimeter Institute., August, 2009

1. Motivation

2. Framework

3. Axioms

Two ways to be Puzzled by QM:

- (a) as a linear dynamical theory with a familiar mathematical apparatus, but a mysterious probabilistic interpretation.
- (b) as a conservative extension of classical probability theory, with a relatively unproblematic interpretation, but a mysterious mathematical apparatus.

Ideally, one would like to have a short list of physically plausible assumptions from which one could deduce [the structure of QM]. Short of this one would like a list from which one could deduce a set of possibilities for the structure ... all but one of which could be show to be inconsistent with suitably planned experiments.

- G. W. Mackey, Mathematical Foundations of QM, 1963

Cones

Definition

A **cone** in a real vector space A is a closed subset $K \subseteq A$ such that

- (a) $a \in K$, $\lambda \ge 0 \Rightarrow \lambda a \in K$
- (b) $a, b \in K \Rightarrow a + b \in K$
- (c) $K \cap -K = \{0\}.$

Note that K induces a partial order on A: $a \le b$ iff $b - a \in K$. K is **generating** iff $A = K - K = \{a - b | a, b \in K\}$. In what follows, an ordered linear space is a real vector space A with a specified generating cone $K =: A_+ -$ and all spaces are finite-dimensional!

Self-Duality and Homogeneity

The dual of a cone K is

$$K^* := \{ f \in A^* | f(a) \ge 0 \ \forall a \in K \}.$$

If A carries an inner product \langle , \rangle , the *internal dual* of K is

$$K^+ := \{b \in A | \langle b, a \rangle \ge 0 \ \forall \in K\} \simeq K^*.$$

K is self-dual iff there exists an inner product on A with $K = K^+$.

Example: The cone $\mathcal{L}_{+}(\mathbf{H})$ of positive operators on \mathbf{H} is self-dual w.r.t. the usual trace inner product.

 A_+ is *homogeneous* iff for any pair a, b in the *interior* of A_+ , there exists an affine automorphism $\phi: A_+ \to A_+$ taking a to b.

Example: $\mathcal{L}_h(\mathbf{H})$. (Use the spectral theorem.)

Theorem (Koecher-Vinberg)

A finite-dimensional homogeneous self-dual cone is isomorphic to the positive cone of a formally real Jordan algebra

Pirsa: 09080015 Page 7/65

Theorem (Koecher-Vinberg)

A finite-dimensional homogeneous self-dual cone is isomorphic to the positive cone of a formally real Jordan algebra

Pirsa: 09080015 Page 8/65

Theorem (Koecher-Vinberg)

A finite-dimensional homogeneous self-dual cone is isomorphic to the positive cone of a formally real Jordan algebra

Hence, by the Jordan-Weyl-von Neumann classification, such a cone is a direct sum of cones of one of the following types:

Pirsa: 09080015 Page 9/65

Theorem (Koecher-Vinberg)

A finite-dimensional homogeneous self-dual cone is isomorphic to the positive cone of a formally real Jordan algebra

Hence, by the Jordan-Weyl-von Neumann classification, such a cone is a direct sum of cones of one of the following types:

Positive Hermitian matrices over ℝ, ℂ or ℍ

Pirsa: 09080015 Page 10/65

Theorem (Koecher-Vinberg)

A finite-dimensional homogeneous self-dual cone is isomorphic to the positive cone of a formally real Jordan algebra

Hence, by the Jordan-Weyl-von Neumann classification, such a cone is a direct sum of cones of one of the following types:

- Positive Hermitian matrices over ℝ, ℂ or ℍ
- Cones with n-dimensional ball-shaped cross sections ("spin factors")

Pirsa: 09080015 Page 11/65

Theorem (Koecher-Vinberg)

A finite-dimensional homogeneous self-dual cone is isomorphic to the positive cone of a formally real Jordan algebra

Hence, by the Jordan-Weyl-von Neumann classification, such a cone is a direct sum of cones of one of the following types:

- Positive Hermitian matrices over ℝ, ℂ or ℍ
- Cones with n-dimensional ball-shaped cross sections ("spin factors")
- Positive 3 by 3 Hermitian matrices over the octonions

Pirsa: 09080015 Page 12/65

Theorem (Koecher-Vinberg)

A finite-dimensional homogeneous self-dual cone is isomorphic to the positive cone of a formally real Jordan algebra

Hence, by the Jordan-Weyl-von Neumann classification, such a cone is a direct sum of cones of one of the following types:

- Positive Hermitian matrices over ℝ, ℂ or ℍ
- Cones with n-dimensional ball-shaped cross sections ("spin factors")
- Positive 3 by 3 Hermitian matrices over the octonions

IDEA: If we can motivate homogeneity and self-duality, we come close to motivating QM.

Pirsa: 09080015 Page 13/65

Definition: A **test space** is a collection $\mathfrak A$ of non-empty sets, called *tests*, understood as the outcome-sets of various "measurements".

Notation and Jargon:

Pirsa: 09080015 Page 14/65

Definition: A **test space** is a collection $\mathfrak A$ of non-empty sets, called *tests*, understood as the outcome-sets of various "measurements".

Notation and Jargon:

X = U 𝔄 is the outcome space for 𝔄.

Pirsa: 09080015 Page 15/65

Definition: A **test space** is a collection $\mathfrak A$ of non-empty sets, called *tests*, understood as the outcome-sets of various "measurements".

Notation and Jargon:

- X = U 𝔄 is the outcome space for 𝔄.
- A probability weight on $\mathfrak A$ is a mapping $\alpha: X \to [0,1]$ with

$$\sum_{x\in E}\alpha(x)=1$$

for all $E \in \mathfrak{A}$.

Definition: A **test space** is a collection $\mathfrak A$ of non-empty sets, called *tests*, understood as the outcome-sets of various "measurements".

Notation and Jargon:

- X = U 𝔄 is the outcome space for 𝔄.
- A probability weight on A is a mapping α: X → [0, 1] with

$$\sum_{x\in E}\alpha(x)=1$$

for all $E \in \mathfrak{A}$.

 The convex set Ω(𝔄) of all probability weights on 𝔄 is the latter's state space.

Examples

Example 1: Classical Models. Let $\mathfrak{A} = \{E\}$ where E is a finite set, $\Omega = \Delta(E)$, the set of all probability weights on E.

Pirsa: 09080015 Page 18/65

Definition: A **test space** is a collection $\mathfrak A$ of non-empty sets, called *tests*, understood as the outcome-sets of various "measurements".

Notation and Jargon:

- X = ∪ A is the outcome space for A.
- A probability weight on A is a mapping α: X → [0, 1] with

$$\sum_{x\in E}\alpha(x)=1$$

for all $E \in \mathfrak{A}$.

 The convex set Ω(𝔄) of all probability weights on 𝔄 is the latter's state space.

Definition: A **test space** is a collection $\mathfrak A$ of non-empty sets, called *tests*, understood as the outcome-sets of various "measurements".

Notation and Jargon:

- X = U 𝔄 is the outcome space for 𝔄.
- A probability weight on A is a mapping α: X → [0, 1] with

$$\sum_{x\in E}\alpha(x)=1$$

for all $E \in \mathfrak{A}$.

 The convex set Ω(𝔄) of all probability weights on 𝔄 is the latter's state space.

Examples

Example 1: Classical Models. Let $\mathfrak{A} = \{E\}$ where E is a finite set, $\Omega = \Delta(E)$, the set of all probability weights on E.

Pirsa: 09080015 Page 21/65

Examples

Example 1: Classical Models. Let $\mathfrak{A} = \{E\}$ where E is a finite set, $\Omega = \Delta(E)$, the set of all probability weights on E.

Example 2: Quantum Models. Let $\mathfrak{A} = \mathfrak{F}(\mathbf{H})$, the set of orthonormal bases for a Hilbert space \mathbf{H} , $\Omega = \Omega(\mathbf{H})$ states of the form $\alpha(x) = \langle \rho x, x \rangle$, ρ a density operator on \mathbf{H} . (Gleason's Theorem tells us that all states have this form, if dim $\mathbf{H} > 2$.)

Linearization

Let (\mathfrak{A}, Ω) be a model, with total outcome-space $X = \bigcup \mathfrak{A}$. Let $V(\Omega)$ be the span of Ω in \mathbb{R}^X , ordered pointwise. Note that Ω is a base for this positive cone: every $\mu \geq 0$ in V is a non-negative multiple of a state.

Example: For the quantum model $(\mathfrak{F}(\mathbf{H}), \Omega(\mathbf{H}))$, $V = \mathcal{L}_h(\mathbf{H})$ with the usual ordering.

Definition: Let V^* be the dual space of V, ordered pointwise on Ω , i.e., $f \in V_+^*$ iff $f(\alpha) \ge 0$ for every $\alpha \in \Omega$. Note that there is a natural mapping $X \to V^*$ given by $x \mapsto \hat{x}$ where $\hat{x}(\alpha) = \alpha(x)$ for all $\alpha \in V$. Note, too, that for every $E \in \mathfrak{A}$, we have

$$\sum_{x \in E} \hat{x} = u$$

where $u(\alpha) \equiv 1$.

Example: For the quantum model, we again have $V \simeq V^* = \mathcal{L}_h(\mathbf{H})$. Pirsa: 09080015

Axiom 1: Lots of States

Definition: A set Ω of states on $\mathfrak A$ is **separating** iff $x \mapsto \hat{x}$ is injective. Ω is **unital** iff for every $x \in X$, there exists at least one $\alpha \in \Omega$ with $\alpha(x) = 1$.

Axiom 1: Ω is separating and unital.

Note that separating is an axiom of convenience: if not, simply identify x with \hat{x} . I'll do this in any case!

Definition: Let G be a group. A G-test space is a test space $\mathfrak A$ such that $X = \bigcup \mathfrak A$ carries a G action, with $gE \in \mathfrak A$ for all $g \in G$, $E \in \mathfrak A$. A G-test space $\mathfrak A$ is **fully symmetric** iff

Pirsa: 09080015 Page 25/65

Definition: Let G be a group. A G-test space is a test space $\mathfrak A$ such that $X = \bigcup \mathfrak A$ carries a G action, with $gE \in \mathfrak A$ for all $g \in G$, $E \in \mathfrak A$. A G-test space $\mathfrak A$ is **fully symmetric** iff

all tests have the same size, and

Definition: Let G be a group. A G-test space is a test space $\mathfrak A$ such that $X = \bigcup \mathfrak A$ carries a G action, with $gE \in \mathfrak A$ for all $g \in G$, $E \in \mathfrak A$. A G-test space $\mathfrak A$ is **fully symmetric** iff

- all tests have the same size, and
- any bijection between tests is implemented by an element of G.

Pirsa: 09080015 Page 27/65

Definition: Let G be a group. A G-test space is a test space $\mathfrak A$ such that $X = \bigcup \mathfrak A$ carries a G action, with $gE \in \mathfrak A$ for all $g \in G$, $E \in \mathfrak A$. A G-test space $\mathfrak A$ is **fully symmetric** iff

- all tests have the same size, and
- any bijection between tests is implemented by an element of G.

Example: The test space $\mathfrak{F}(\mathbf{H})$ of frames of \mathbf{H} is fully symmetric under \mathbf{H} 's unitary group $U(\mathbf{H})$.

Pirsa: 09080015 Page 28/65

Axiom 2: Lots of Symmetry

Note that G acts also on Ω by $g(\alpha)(x) = \alpha(g^{-1}(x))$, $x \in X$. If Ω is invariant under this action, we say that G acts on the model (\mathfrak{A}, Ω) .

Axiom 2: There is a compact group G acting continuously on (\mathfrak{A}, Ω) , in such a way that

- (i) G acts fully symmetrically on ℑ
- (ii) G acts transitively on pure states. Ω_{ext} .

A classical test space $\mathfrak{A} = \{E\}$ satisfies Axiom 2 trivially with G = S(E), the symmetric group on E. A quantum test space $(\mathfrak{F}(\mathbf{H}), \Omega_{\mathbf{H}})$ satisfies Axiom 2 with $G = U(\mathbf{H})$, the unitary group of \mathbf{H} .

Call an inner product on V^* **positive** iff $\langle a,b\rangle \geq 0$ for all $a,b\in V_+^*$. Note that the trace inner product on $V^*=\mathcal{L}_h(\mathbf{H})$ is positive in this sense.

Definition: Let G be a group. A G-test space is a test space $\mathfrak A$ such that $X = \bigcup \mathfrak A$ carries a G action, with $gE \in \mathfrak A$ for all $g \in G$, $E \in \mathfrak A$. A G-test space $\mathfrak A$ is **fully symmetric** iff

- all tests have the same size, and
- any bijection between tests is implemented by an element of G.

Example: The test space $\mathfrak{F}(\mathbf{H})$ of frames of \mathbf{H} is fully symmetric under \mathbf{H} 's unitary group $U(\mathbf{H})$.

Pirsa: 09080015 Page 30/65

Axiom 2: Lots of Symmetry

Note that G acts also on Ω by $g(\alpha)(x) = \alpha(g^{-1}(x))$, $x \in X$. If Ω is invariant under this action, we say that G acts on the model (\mathfrak{A}, Ω) .

Axiom 2: There is a compact group G acting continuously on (\mathfrak{A}, Ω) , in such a way that

- (i) G acts fully symmetrically on ℜ
- (ii) G acts transitively on pure states. Ω_{ext} .

A classical test space $\mathfrak{A} = \{E\}$ satisfies Axiom 2 trivially with G = S(E), the symmetric group on E. A quantum test space $(\mathfrak{F}(\mathbf{H}), \Omega_{\mathbf{H}})$ satisfies Axiom 2 with $G = U(\mathbf{H})$, the unitary group of \mathbf{H} .

Call an inner product on V^* **positive** iff $\langle a,b\rangle \geq 0$ for all $a,b\in V_+^*$. Note that the trace inner product on $V^*=\mathcal{L}_h(\mathbf{H})$ is positive in this sense.

Representation I

Lemma

Subject to Axiom 2, there exists a positive, G-invariant inner product on V*.

Proof: Represent Ω_{ext} as G/K with K the stabilizer of some (any) pure state α_o . Any $f \in V^*$ gives rise to a continuous function $G \to \mathbb{R}$ by $g \mapsto f(g\alpha_o)$. This gives an embedding of V^* as a G-invariant real subspace of the algebra C(G) of continuous complex-valued functions on G. The restriction of the natural inner product on the latter to V^* is a real, G-invariant inner product, and is positive, simply because the convolution of positive functions on G is positive. \square

Denote the inner product arising from C(G) by \langle , \rangle_G .

Representation II

Lemma

Let \langle , \rangle be any positive, G-invariant inner product on V^* . There is an embedding $x \mapsto v_x$ of the outcome-space X into the unit sphere of V^* with $\langle v_x, v_y \rangle = 0$ for all $x \perp y \in X$.

Proof: For each $x \in X$, set $q_x = x - \langle x, u \rangle u$. Then $\langle q_x, u \rangle = 0$ and $\sum_{x \in E} q_x = 0$ for any $E \in \mathfrak{A}$. As G acts 2-transitively on X, \exists constants r > 0 and s_q with

$$||q_x|| \equiv r \ \forall x \in X \ \text{and} \ \langle q_x, q_y \rangle \equiv s_q \ \forall x \perp y$$

Let $x \in E \in \mathfrak{A}$: then

$$0 = \langle q_x, 0 \rangle = \langle q_x, \sum_{y \in E} q_y \rangle = r^2 + (n-1)s_q.$$

So $s_q = -\frac{r^2}{n-1} < 0$. Set $v_X = q_X + cu$ where $c = r/\sqrt{n-1}$ (so that $s_q = -c^2$). Since $\langle q_X \perp u$ for all $x \in X$, we have $\langle v_X, v_y \rangle = 0$ for $x \perp y$. Since G acts transitively x, $||v_X||$ is constant; normalizing if necessary, we can assume $||v_X|| = 1$ for all x. Obviously, the mapping $x \mapsto q_X$ is injective; since $\langle x, u \rangle$ is Page 33/65 constant on X, so is $x \mapsto v_X$. \square

Axiom 2: Lots of Symmetry

Note that G acts also on Ω by $g(\alpha)(x) = \alpha(g^{-1}(x))$, $x \in X$. If Ω is invariant under this action, we say that G acts on the model (\mathfrak{A}, Ω) .

Axiom 2: There is a compact group G acting continuously on (\mathfrak{A}, Ω) , in such a way that

- (i) G acts fully symmetrically on ℜ
- (ii) G acts transitively on pure states. Ω_{ext} .

A classical test space $\mathfrak{A} = \{E\}$ satisfies Axiom 2 trivially with G = S(E), the symmetric group on E. A quantum test space $(\mathfrak{F}(\mathbf{H}), \Omega_{\mathbf{H}})$ satisfies Axiom 2 with $G = U(\mathbf{H})$, the unitary group of \mathbf{H} .

Call an inner product on V^* **positive** iff $\langle a,b\rangle \geq 0$ for all $a,b\in V_+^*$. Note that the trace inner product on $V^*=\mathcal{L}_h(\mathbf{H})$ is positive in this sense.

Representation I

Lemma

Subject to Axiom 2, there exists a positive, G-invariant inner product on V*.

Proof: Represent Ω_{ext} as G/K with K the stabilizer of some (any) pure state α_o . Any $f \in V^*$ gives rise to a continuous function $G \to \mathbb{R}$ by $g \mapsto f(g\alpha_o)$. This gives an embedding of V^* as a G-invariant real subspace of the algebra C(G) of continuous complex-valued functions on G. The restriction of the natural inner product on the latter to V^* is a real, G-invariant inner product, and is positive, simply because the convolution of positive functions on G is positive. \Box

Denote the inner product arising from C(G) by \langle , \rangle_G .

Representation II

Lemma

Let \langle , \rangle be any positive, G-invariant inner product on V^* . There is an embedding $x \mapsto v_x$ of the outcome-space X into the unit sphere of V^* with $\langle v_x, v_y \rangle = 0$ for all $x \perp y \in X$.

Proof: For each $x \in X$, set $q_x = x - \langle x, u \rangle u$. Then $\langle q_x, u \rangle = 0$ and $\sum_{x \in E} q_x = 0$ for any $E \in \mathfrak{A}$. As G acts 2-transitively on X, \exists constants r > 0 and s_q with

$$||q_x|| \equiv r \ \forall x \in X \ \text{and} \ \langle q_x, q_y \rangle \equiv s_q \ \forall x \perp y$$

Let $x \in E \in \mathfrak{A}$: then

$$0 = \langle q_x, 0 \rangle = \langle q_x, \sum_{y \in E} q_y \rangle = r^2 + (n-1)s_q.$$

So $s_q = -\frac{r^2}{n-1} < 0$. Set $v_X = q_X + cu$ where $c = r/\sqrt{n-1}$ (so that $s_q = -c^2$). Since $\langle q_X \perp u$ for all $x \in X$, we have $\langle v_X, v_y \rangle = 0$ for $x \perp y$. Since G acts transitively x, $||v_X||$ is constant; normalizing if necessary, we can assume $||v_X|| = 1$ for all x. Obviously, the mapping $x \mapsto q_X$ is injective; since $\langle x, u \rangle$ is Page 36/65 constant on X, so is $x \mapsto v_X$. \square

Representation II

Lemma

Let \langle , \rangle be any positive, G-invariant inner product on V^* . There is an embedding $x \mapsto v_x$ of the outcome-space X into the unit sphere of V^* with $\langle v_x, v_y \rangle = 0$ for all $x \perp y \in X$.

Proof: For each $x \in X$, set $q_x = x - \langle x, u \rangle u$. Then $\langle q_x, u \rangle = 0$ and $\sum_{x \in E} q_x = 0$ for any $E \in \mathfrak{A}$. As G acts 2-transitively on X, \exists constants r > 0 and s_q with

$$||q_x|| \equiv r \ \forall x \in X \ \text{and} \ \langle q_x, q_y \rangle \equiv s_q \ \forall x \perp y$$

Let $x \in E \in \mathfrak{A}$: then

$$0 = \langle q_X, 0 \rangle = \langle q_X, \sum_{y \in E} q_y \rangle = r^2 + (n-1)s_q.$$

So $s_q = -\frac{r^2}{n-1} < 0$. Set $v_X = q_X + cu$ where $c = r/\sqrt{n-1}$ (so that $s_q = -c^2$). Since $\langle q_X \perp u$ for all $x \in X$, we have $\langle v_X, v_y \rangle = 0$ for $x \perp y$. Since G acts transitively x, $||v_X||$ is constant; normalizing if necessary, we can assume $||v_X|| = 1$ for all x. Obviously, the mapping $x \mapsto q_X$ is injective; since $\langle x, u \rangle$ is Page 37/65 constant on X, so is $x \mapsto v_X$. \square

Representation II

Lemma

Let \langle , \rangle be any positive, G-invariant inner product on V^* . There is an embedding $x \mapsto v_x$ of the outcome-space X into the unit sphere of V^* with $\langle v_x, v_y \rangle = 0$ for all $x \perp y \in X$.

Proof: For each $x \in X$, set $q_x = x - \langle x, u \rangle u$. Then $\langle q_x, u \rangle = 0$ and $\sum_{x \in E} q_x = 0$ for any $E \in \mathfrak{A}$. As G acts 2-transitively on X, \exists constants r > 0 and s_q with

$$||q_x|| \equiv r \ \forall x \in X \ \text{and} \ \langle q_x, q_y \rangle \equiv s_q \ \forall x \perp y$$

Let $x \in E \in \mathfrak{A}$: then

$$0 = \langle q_x, 0 \rangle = \langle q_x, \sum_{y \in E} q_y \rangle = r^2 + (n-1)s_q.$$

So $s_q = -\frac{r^2}{n-1} < 0$. Set $v_X = q_X + cu$ where $c = r/\sqrt{n-1}$ (so that $s_q = -c^2$). Since $\langle q_X \perp u$ for all $x \in X$, we have $\langle v_X, v_y \rangle = 0$ for $x \perp y$. Since G acts transitively x, $||v_X||$ is constant; normalizing if necessary, we can assume $||v_X|| = 1$ for all x. Obviously, the mapping $x \mapsto q_X$ is injective; since $\langle x, u \rangle$ is Page 38/65 constant on X, so is $x \mapsto v_X$. \square

Lemma

Let $s \equiv \langle x, y \rangle$ where $x \perp y$. Then, for all outcomes x and y in X, $\langle v_x, v_y \rangle = \langle x, y \rangle - s$.

Proof: Let m = the (constant) value of $\langle x, u \rangle$. Set $q_x = x - mu$ as in the proof of Lemma 2, so that $\langle q_x, u \rangle = 0 \ \forall x \in X$. Recall that $v_x = q_x + cu$ where $-c^2 = s_q =$ constant value of $\langle q_x, q_y \rangle$ for $x \perp y$. Thus,

$$\langle v_x, v_y \rangle = \langle q_x, q_y \rangle + c^2 = \langle q_x, q_y \rangle - s_q.$$

Now

$$\langle q_x,q_y\rangle=\langle x-mu,y-mu\rangle=\langle x,y\rangle-m\langle x,u\rangle-m\langle u,y\rangle+m^2=\langle x,y\rangle-m^2.$$

Considering the case where $x \perp y$, this yields

$$s_q = s - m^2.$$

Hence,

Pirsa: 09080015

$$\langle v_x, v_y \rangle = \langle x, y \rangle - m^2 - s_q = \langle x, y \rangle - s,$$

as promised.

Representation II

Lemma

Let \langle , \rangle be any positive, G-invariant inner product on V^* . There is an embedding $x \mapsto v_x$ of the outcome-space X into the unit sphere of V^* with $\langle v_x, v_y \rangle = 0$ for all $x \perp y \in X$.

Proof: For each $x \in X$, set $q_x = x - \langle x, u \rangle u$. Then $\langle q_x, u \rangle = 0$ and $\sum_{x \in E} q_x = 0$ for any $E \in \mathfrak{A}$. As G acts 2-transitively on X, \exists constants r > 0 and s_q with

$$||q_x|| \equiv r \ \forall x \in X \ \text{and} \ \langle q_x, q_y \rangle \equiv s_q \ \forall x \perp y$$

Let $x \in E \in \mathfrak{A}$: then

$$0 = \langle q_x, 0 \rangle = \langle q_x, \sum_{y \in E} q_y \rangle = r^2 + (n-1)s_q.$$

So $s_q = -\frac{r^2}{n-1} < 0$. Set $v_X = q_X + cu$ where $c = r/\sqrt{n-1}$ (so that $s_q = -c^2$). Since $\langle q_X \perp u$ for all $x \in X$, we have $\langle v_X, v_y \rangle = 0$ for $x \perp y$. Since G acts transitively x, $||v_X||$ is constant; normalizing if necessary, we can assume $||v_X|| = 1$ for all x. Obviously, the mapping $x \mapsto q_X$ is injective; since $\langle x, u \rangle$ is Page 40/65 constant on X, so is $x \mapsto v_X$. \square

Representation II

Lemma

Let \langle , \rangle be any positive, G-invariant inner product on V^* . There is an embedding $x \mapsto v_x$ of the outcome-space X into the unit sphere of V^* with $\langle v_x, v_y \rangle = 0$ for all $x \perp y \in X$.

Proof: For each $x \in X$, set $q_x = x - \langle x, u \rangle u$. Then $\langle q_x, u \rangle = 0$ and $\sum_{x \in E} q_x = 0$ for any $E \in \mathfrak{A}$. As G acts 2-transitively on X, \exists constants r > 0 and s_q with

$$||q_x|| \equiv r \ \forall x \in X \ \text{and} \ \langle q_x, q_y \rangle \equiv s_q \ \forall x \perp y$$

Let $x \in E \in \mathfrak{A}$: then

$$0 = \langle q_x, 0 \rangle = \langle q_x, \sum_{y \in E} q_y \rangle = r^2 + (n-1)s_q.$$

So $s_q = -\frac{r^2}{n-1} < 0$. Set $v_X = q_X + cu$ where $c = r/\sqrt{n-1}$ (so that $s_q = -c^2$). Since $\langle q_X \perp u$ for all $x \in X$, we have $\langle v_X, v_y \rangle = 0$ for $x \perp y$. Since G acts transitively x, $||v_X||$ is constant; normalizing if necessary, we can assume $||v_X|| = 1$ for all x. Obviously, the mapping $x \mapsto q_X$ is injective; since $\langle x, u \rangle$ is constant on X, so is $x \mapsto v_X$. \square

Lemma

Let $s \equiv \langle x, y \rangle$ where $x \perp y$. Then, for all outcomes x and y in X, $\langle v_x, v_y \rangle = \langle x, y \rangle - s$.

Proof: Let m = the (constant) value of $\langle x, u \rangle$. Set $q_x = x - mu$ as in the proof of Lemma 2, so that $\langle q_x, u \rangle = 0 \ \forall x \in X$. Recall that $v_x = q_x + cu$ where $-c^2 = s_q =$ constant value of $\langle q_x, q_y \rangle$ for $x \perp y$. Thus,

$$\langle v_x, v_y \rangle = \langle q_x, q_y \rangle + c^2 = \langle q_x, q_y \rangle - s_q.$$

Now

$$\langle q_x,q_y\rangle=\langle x-mu,y-mu\rangle=\langle x,y\rangle-m\langle x,u\rangle-m\langle u,y\rangle+m^2=\langle x,y\rangle-m^2.$$

Considering the case where $x \perp y$, this yields

$$s_q = s - m^2.$$

Hence,

$$\langle v_x, v_y \rangle = \langle x, y \rangle - m^2 - s_q = \langle x, y \rangle - s,$$

as promised.

Provisional Axiom 3

Definition: A *G*-invariant, positive inner product on V^* is **minimizing** iff the constant *s* of Lemma 3 is the minimum value of $\langle x, y \rangle$ on $X \times X$.

True for the trace inner product on $\mathcal{L}_h(\mathbf{H})$, where s=0!

Lemma

For a minimizing inner product, the vectors v_X of Lemma 2 lie in the positive cone of V^* . Moreover, $\varepsilon_X := \langle v_X | \cdot \rangle$ is the unique state with $\varepsilon_X(X) = 1$.

Proof: Immediate from Lemma 3. □

Provisional Axiom 3 (Minimization): There exists a minimizing G-invariant, positive inner product on V^* .

Fact: all positive inner products on $V^* = \mathcal{L}_h(\mathbf{H})$ invariant under the Pirsa: 0908004 initary group of \mathbf{H} , are in fact minimizing.

Lemma

Let $s \equiv \langle x, y \rangle$ where $x \perp y$. Then, for all outcomes x and y in X, $\langle v_x, v_y \rangle = \langle x, y \rangle - s$.

Proof: Let m = the (constant) value of $\langle x, u \rangle$. Set $q_x = x - mu$ as in the proof of Lemma 2, so that $\langle q_x, u \rangle = 0 \ \forall x \in X$. Recall that $v_x = q_x + cu$ where $-c^2 = s_q =$ constant value of $\langle q_x, q_y \rangle$ for $x \perp y$. Thus,

$$\langle v_x, v_y \rangle = \langle q_x, q_y \rangle + c^2 = \langle q_x, q_y \rangle - s_q.$$

Now

$$\langle q_x, q_y \rangle = \langle x - mu, y - mu \rangle = \langle x, y \rangle - m\langle x, u \rangle - m\langle u, y \rangle + m^2 = \langle x, y \rangle - m^2.$$

Considering the case where $x \perp y$, this yields

$$s_q = s - m^2.$$

Hence,

$$\langle v_x, v_y \rangle = \langle x, y \rangle - m^2 - s_q = \langle x, y \rangle - s,$$

as promised.

Provisional Axiom 3

Definition: A *G*-invariant, positive inner product on V^* is **minimizing** iff the constant *s* of Lemma 3 is the minimum value of $\langle x, y \rangle$ on $X \times X$.

True for the trace inner product on $\mathcal{L}_h(\mathbf{H})$, where s=0!

Lemma

For a minimizing inner product, the vectors v_X of Lemma 2 lie in the positive cone of V^* . Moreover, $\varepsilon_X := \langle v_X | \cdot \rangle$ is the unique state with $\varepsilon_X(X) = 1$.

Proof: Immediate from Lemma 3. □

Provisional Axiom 3 (Minimization): There exists a minimizing G-invariant, positive inner product on V^* .

Fact: all positive inner products on $V^* = \mathcal{L}_h(\mathbf{H})$ invariant under the Pirsa: 0908001 initary group of \mathbf{H} , are in fact minimizing.

Lemma

Let $s \equiv \langle x, y \rangle$ where $x \perp y$. Then, for all outcomes x and y in X, $\langle v_x, v_y \rangle = \langle x, y \rangle - s$.

Proof: Let m = the (constant) value of $\langle x, u \rangle$. Set $q_x = x - mu$ as in the proof of Lemma 2, so that $\langle q_x, u \rangle = 0 \ \forall x \in X$. Recall that $v_x = q_x + cu$ where $-c^2 = s_q =$ constant value of $\langle q_x, q_y \rangle$ for $x \perp y$. Thus,

$$\langle v_x, v_y \rangle = \langle q_x, q_y \rangle + c^2 = \langle q_x, q_y \rangle - s_q.$$

Now

$$\langle q_x,q_y\rangle=\langle x-mu,y-mu\rangle=\langle x,y\rangle-m\langle x,u\rangle-m\langle u,y\rangle+m^2=\langle x,y\rangle-m^2.$$

Considering the case where $x \perp y$, this yields

$$s_q = s - m^2.$$

Hence,

$$\langle v_x, v_y \rangle = \langle x, y \rangle - m^2 - s_q = \langle x, y \rangle - s,$$

as promised.

Provisional Axiom 3

Definition: A *G*-invariant, positive inner product on V^* is **minimizing** iff the constant *s* of Lemma 3 is the minimum value of $\langle x, y \rangle$ on $X \times X$.

True for the trace inner product on $\mathcal{L}_h(\mathbf{H})$, where s=0!

Lemma

For a minimizing inner product, the vectors v_X of Lemma 2 lie in the positive cone of V^* . Moreover, $\varepsilon_X := \langle v_X | \cdot \rangle$ is the unique state with $\varepsilon_X(X) = 1$.

Proof: Immediate from Lemma 3. □

Provisional Axiom 3 (Minimization): There exists a minimizing G-invariant, positive inner product on V^* .

Fact: all positive inner products on $V^* = \mathcal{L}_h(\mathbf{H})$ invariant under the Pirsa: 0908001 initary group of \mathbf{H} , are in fact minimizing.

Self-Duality

Proposition

Subject to Axioms 1, 2 and Provisional axiom 3, V_{+}^{*} is self-dual.

Proof: Let \langle , \rangle be a minimizing, *G*-invariant positive inner product. Positivity gives us $V_+^* \subseteq V^{*+} \simeq V_+$. Letting v_X be defined as in Lemma 2, Lemma 7 tells us that $\alpha_X(y) := \langle v_X, v_y \rangle$ defines a state making x certain (since $\langle v_X, v_X \rangle = \|v_X\| = 1$). By Axiom 3, this is the pure state $\langle x|$. It follows from Axiom 2 that every pure state has the form $g < x| = \langle gx|$ for some $g \in G$. Thus, every pure state is represented in the cone V_+^* , so that $V^{*+} \subseteq V_+^*$. \square

Pirsa: 09080015 Page 48/65

Self-Duality

Proposition

Subject to Axioms 1, 2 and Provisional axiom 3, V_{+}^{*} is self-dual.

Proof: Let \langle , \rangle be a minimizing, *G*-invariant positive inner product. Positivity gives us $V_+^* \subseteq V^{*+} \simeq V_+$. Letting v_X be defined as in Lemma 2, Lemma 7 tells us that $\alpha_X(y) := \langle v_X, v_y \rangle$ defines a state making x certain (since $\langle v_X, v_X \rangle = \|v_X\| = 1$). By Axiom 3, this is the pure state $\langle x|$. It follows from Axiom 2 that every pure state has the form $g < x| = \langle gx|$ for some $g \in G$. Thus, every pure state is represented in the cone V_+^* , so that $V^{*+} \subseteq V_+^*$. \square

Pirsa: 09080015 Page 49/65

If $\mathfrak A$ and $\mathfrak B$ are test spaces, let $\mathfrak A \times \mathfrak B = \{E \times F | E \in \mathfrak A, F \in \mathfrak B\}$. A state ω on $\mathfrak A \times \mathfrak B$ is *non-signaling* if it has well-defined *marginal states*

$$\omega_1(x) := \sum_{y \in F} \omega(x, y)$$
 and $\omega_2(y) := \sum_{x \in E} \omega(x, y)$

(independent of $E \in \mathfrak{A}$ and $F \in \mathfrak{B}$, respectively).

If $\mathfrak A$ and $\mathfrak B$ are test spaces, let $\mathfrak A \times \mathfrak B = \{E \times F | E \in \mathfrak A, F \in \mathfrak B\}$. A state ω on $\mathfrak A \times \mathfrak B$ is *non-signaling* if it has well-defined *marginal states*

$$\omega_1(x) := \sum_{y \in F} \omega(x, y)$$
 and $\omega_2(y) := \sum_{x \in E} \omega(x, y)$

(independent of $E \in \mathfrak{A}$ and $F \in \mathfrak{B}$, respectively).

 Mixtures of product states (α⊗β)(x,y) := α(x)β(y) are obviously influence-free.

If $\mathfrak A$ and $\mathfrak B$ are test spaces, let $\mathfrak A \times \mathfrak B = \{E \times F | E \in \mathfrak A, F \in \mathfrak B\}$. A state ω on $\mathfrak A \times \mathfrak B$ is *non-signaling* if it has well-defined *marginal states*

$$\omega_1(x) := \sum_{y \in F} \omega(x, y)$$
 and $\omega_2(y) := \sum_{x \in E} \omega(x, y)$

(independent of $E \in \mathfrak{A}$ and $F \in \mathfrak{B}$, respectively).

- Mixtures of product states (α ⊗ β)(x,y) := α(x)β(y) are obviously influence-free.
- Unless Ω(X) or Ω(X) is a simplex, there exist entangled non-signaling states not mixtures of product states.

If ω is non-signaling, every \mathfrak{A} -outcome x yields a **conditional state** $\omega_{2|x} \in \Omega(\mathfrak{B})$:

$$\omega_{2|x}(y) := \frac{\omega(x,y)}{\omega_1(x)}$$

if $\omega_1(x) > 0$; otherwise $\omega_{2|x} \equiv 0$. Likewise, every \mathfrak{B} -outcome yields a conditional state $\omega_{1|y}$ on \mathfrak{A} . We have obvious *laws of total probability*: for any tests $E \in \mathfrak{A}$, $F \in \mathfrak{B}$,

$$\omega_1 = \sum_{y \in F} \omega_2(y) \omega_{1|y} \text{ and } \omega_2 = \sum_{x \in E} \omega_1(x) \omega_{2|x}.$$

Correlation

Definition: A non-signaling state ω on $\mathfrak{A} \times \mathfrak{A}$ is **correlating** iff, for some tests $E, F \in \mathfrak{A}$, and some bijection $f : E \to F$, $\omega(xy) = 0$ for all $(x,y) \in E \times F$ with $y \neq f(x)$.

Axiom 3 (Correlation): Every state is the marginal of a correlating bipartite state.

This is satisfied by both classical and quantum systems: trivially in the first case, and by the Schmidt decomposition in the second.

Pirsa: 09080015 Page 54/65

Spectrality

Lemma

Every state on $\mathfrak A$ is spectral, i.e., for every $\alpha \in \Omega$ there exists a test E with

$$\alpha = \sum_{x \in E} \alpha(x) \varepsilon_x.$$

Proof: For every $E \in \mathfrak{A}$, we have

$$\omega_2(y) = \sum_{x \in E} \omega_1(x) \omega_{2|x},$$

where $\omega_{2|x}$ is the conditional state on $\mathfrak A$ given outcome $x \in E$. If ω correlates E with F via $f: E \to F$, then we have, for all $x \in E$ with $\omega_1(x) > 0$, that $\omega_{2|x}(y) = 1$ if $y = f(x) \in F$; hence, $\omega_{2|x} = \varepsilon_{f(x)}$. Thus, $\omega_2 = \sum_{y \in F} \omega_1(f^{-1}(y))\varepsilon_y$. Evaluating both sides at any $y \in F$, we have $\omega_1(f^{-1}(y)) = \omega_2(y)$, so

$$\omega_2 = \sum_{y \in F} \omega_2(y) \varepsilon_y$$
.

Filtering

Axiom 5 (Filtering): For every test E and every $f: E \rightarrow (0,1]$, there exists an automorphism $\phi: V^* \rightarrow V^*$ with $\phi(x) = f(x)x$.

This says that the outcomes of a test can simultaneously and independently be attenuated by any (non-zero) factors we like, by a reversible physical process. In this respect, we insist that the theory, as restricted to the single measurement *E*, "look completely classical."

Proposition

Subject to Axioms 1-5, the cone V_+^* is homogeneous.

Proof: Let a, b be interior points of V_+^* . By Proposition 1, $\langle a|$ and $\langle b|$ are (un-normalized) states. By Lemma 4, they are spectral – say

$$\langle a| = \sum_{x \in E} \langle a, x \rangle \langle x| \text{ and } \langle b| = \sum_{y \in F} \langle b, y \rangle \langle y|.$$

Hence, we have $a = \sum_{x \in E} \langle a, x \rangle x$, and similarly for b. Since a and b are interior points, $\langle a, x \rangle$ and $\langle b, y \rangle$ are non-zero for all x, y. Let $g \in G$ define a bijection $E \to F$, and set

$$t(x) = \langle b, gx \rangle / \langle a, x \rangle > 0$$

for every $x \in E$. By Axiom 5, there is an order-automorphism $\phi : V^* \to V^*$ with $\phi : x \mapsto t(x)x$ for every $x \in E$. Hence,

$$\phi(a) = \sum_{x \in E} \langle a, x \rangle \phi(x) = \sum_{x \in E} \langle a, x \rangle t(x) x = \sum_{x \in E} \langle b, gx \rangle x.$$

Applying g, we have

$$g\phi(a) = \sum_{x \in E} \langle b, gx \rangle gx = \sum_{y \in F} \langle b, y \rangle y = b. \square$$

Filtering

Axiom 5 (Filtering): For every test E and every $f: E \rightarrow (0,1]$, there exists an automorphism $\phi: V^* \rightarrow V^*$ with $\phi(x) = f(x)x$.

This says that the outcomes of a test can simultaneously and independently be attenuated by any (non-zero) factors we like, by a reversible physical process. In this respect, we insist that the theory, as restricted to the single measurement *E*, "look completely classical."

Proposition

Subject to Axioms 1-5, the cone V_+^* is homogeneous.

Proof: Let a, b be interior points of V_+^* . By Proposition 1, $\langle a|$ and $\langle b|$ are (un-normalized) states. By Lemma 4, they are spectral – say

$$\langle a| = \sum_{x \in E} \langle a, x \rangle \langle x| \text{ and } \langle b| = \sum_{y \in F} \langle b, y \rangle \langle y|.$$

Hence, we have $a = \sum_{x \in E} \langle a, x \rangle x$, and similarly for b. Since a and b are interior points, $\langle a, x \rangle$ and $\langle b, y \rangle$ are non-zero for all x, y. Let $g \in G$ define a bijection $E \to F$, and set

$$t(x) = \langle b, gx \rangle / \langle a, x \rangle > 0$$

for every $x \in E$. By Axiom 5, there is an order-automorphism $\phi : V^* \to V^*$ with $\phi : x \mapsto t(x)x$ for every $x \in E$. Hence,

$$\phi(a) = \sum_{x \in E} \langle a, x \rangle \phi(x) = \sum_{x \in E} \langle a, x \rangle t(x) x = \sum_{x \in E} \langle b, gx \rangle x.$$

Applying g, we have

$$g\phi(a) = \sum_{x \in E} \langle b, gx \rangle gx = \sum_{y \in F} \langle b, y \rangle y = b. \square$$

Correlation

Definition: A non-signaling state ω on $\mathfrak{A} \times \mathfrak{A}$ is **correlating** iff, for some tests $E, F \in \mathfrak{A}$, and some bijection $f : E \to F$, $\omega(xy) = 0$ for all $(x,y) \in E \times F$ with $y \neq f(x)$.

Axiom 3 (Correlation): Every state is the marginal of a correlating bipartite state.

This is satisfied by both classical and quantum systems: trivially in the first case, and by the Schmidt decomposition in the second.

Pirsa: 09080015 Page 60/65

Filtering

Axiom 5 (Filtering): For every test E and every $f: E \rightarrow (0,1]$, there exists an automorphism $\phi: V^* \rightarrow V^*$ with $\phi(x) = f(x)x$.

This says that the outcomes of a test can simultaneously and independently be attenuated by any (non-zero) factors we like, by a reversible physical process. In this respect, we insist that the theory, as restricted to the single measurement *E*, "look completely classical."

Pirsa: 09080015 Page 61/65

If ω is non-signaling, every \mathfrak{A} -outcome x yields a **conditional state** $\omega_{2|x} \in \Omega(\mathfrak{B})$:

$$\omega_{2|x}(y) := \frac{\omega(x,y)}{\omega_1(x)}$$

if $\omega_1(x) > 0$; otherwise $\omega_{2|x} \equiv 0$. Likewise, every \mathfrak{B} -outcome yields a conditional state $\omega_{1|y}$ on \mathfrak{A} . We have obvious *laws of total probability*: for any tests $E \in \mathfrak{A}$, $F \in \mathfrak{B}$,

$$\omega_1 = \sum_{y \in F} \omega_2(y) \omega_{1|y}$$
 and $\omega_2 = \sum_{x \in E} \omega_1(x) \omega_{2|x}$.

If $\mathfrak A$ and $\mathfrak B$ are test spaces, let $\mathfrak A \times \mathfrak B = \{E \times F | E \in \mathfrak A, F \in \mathfrak B\}$. A state ω on $\mathfrak A \times \mathfrak B$ is *non-signaling* if it has well-defined *marginal states*

$$\omega_1(x) := \sum_{y \in F} \omega(x, y)$$
 and $\omega_2(y) := \sum_{x \in E} \omega(x, y)$

(independent of $E \in \mathfrak{A}$ and $F \in \mathfrak{B}$, respectively).

- Mixtures of product states (α ⊗ β)(x,y) := α(x)β(y) are obviously influence-free.
- Unless Ω(X) or Ω(X) is a simplex, there exist entangled non-signaling states not mixtures of product states.

Spectrality

Lemma

Every state on $\mathfrak A$ is spectral, i.e., for every $\alpha \in \Omega$ there exists a test E with

$$\alpha = \sum_{X \in E} \alpha(X) \varepsilon_X.$$

Proof: For every $E \in \mathfrak{A}$, we have

$$\omega_2(y) = \sum_{x \in E} \omega_1(x) \omega_{2|x},$$

where $\omega_{2|x}$ is the conditional state on $\mathfrak A$ given outcome $x \in E$. If ω correlates E with F via $f: E \to F$, then we have, for all $x \in E$ with $\omega_1(x) > 0$, that $\omega_{2|x}(y) = 1$ if $y = f(x) \in F$; hence, $\omega_{2|x} = \varepsilon_{f(x)}$. Thus, $\omega_2 = \sum_{y \in F} \omega_1(f^{-1}(y))\varepsilon_y$. Evaluating both sides at any $y \in F$, we have $\omega_1(f^{-1}(y)) = \omega_2(y)$, so

$$\omega_2 = \sum_{y \in F} \omega_2(y) \varepsilon_y$$
.

Filtering

Axiom 5 (Filtering): For every test E and every $f: E \rightarrow (0,1]$, there exists an automorphism $\phi: V^* \rightarrow V^*$ with $\phi(x) = f(x)x$.

This says that the outcomes of a test can simultaneously and independently be attenuated by any (non-zero) factors we like, by a reversible physical process. In this respect, we insist that the theory, as restricted to the single measurement *E*, "look completely classical."