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Abstract: The quantum equations for bosonic fields may be derived using an 'exact uncertainty' approach [1]. This method of quantization can be
applied to fields with Hamiltonian functionals that are quadratic in the momentum density, such as the electromagnetic and gravitational fields. The
approach, when applied to gravity [2], may be described as a Hamilton-Jacobi quantization of the gravitational field. It differs from previous
approaches that take the classical Hamilton-Jacobi equation as their starting point in that it incorporates some new elements, in particular the use of
aformalism of ensembles on configuration space and the postulate of an exact uncertainty relation. These provide the fundamental elements needed
for the transition to the quantum theory. The formalism of ensembles on configuration space is genera enough to describe classical, quantum, and
interacting classical-quantum systems in a consistent way. This is of some relevance to gravity: although there are many physical arguments in
favour of a quantum theory of gravity, it appears that the justification for such a theory does not follow from logical arguments alone [3]. It is
therefore of interest to consider the coupling of quantum fields to a classical gravitational field. This leads to atheory that is fundamentally different
from standard semiclassical gravity. 1. Michael JW Hall, Kailash Kumar and Marcel Reginatto, Bosonic field equations from an exact uncertainty
principle, J. Phys. A 36 (2003) 9779-9794 (http://arxiv.org/abs/hep-th/0307259). 2. M. Reginatto, Exact Uncertainty Principle and Quantization:
Implications for the Gravitational Field, Proceedings of DICE2004 in: Braz. J. Phys. 35 (2005) 476-480 (http://arxiv.org/abs/gr-qc/0501030). 3.
Mark Albers, Claus Kiefer and Marcel Reginatto, Measurement analysis and quantum gravity, Phys. Rev. D 78 (2008) 064051
(http://arxiv.org/abs/0802.1978)
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Some

irsa: 09080006

motivation

Is it possible to quantize fields using the “exact
uncertainty” approach? Which type of fields?

How does this approach differ from other methods of
quantization?

@ What about gravity?

Is it possible to couple quantum fields to a classical
gravitational field using ensembles on configuration
space?
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The Hamilton-Jacobi equation

@ Define S = fr:z L(qx.qk)dt and vary S,

o d (LN
|oge ~ df \ g )| °%

s=3)

B

meqk — HAt

A

(where Age =6q, +gkAt, pp=2L H= rquq - L).

Ik

@ Endpoint variation leads to

7S 7S 7S
c?f*H(q’k C)QK) =% P g

@ S is a function of the configuration space variables.
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Electromagnetic field: Hamilton-Jacobi formulation

@ Lagrangian density

1 . oA, 0A
16?.’F‘[ Foy Fup=5—- s

L—— :
X, ax.

@ Endpoint variation leads to
as+/’d3X2_ 5821(Txﬂ)2 g 5 E
ot "\sa) " er — 0 SA. 4rn

@ I[nvariance of S under gauge transformations defined by
0AK = A\ requires

5S 5S
5S— | x| - SA, =0 .8 —
f / . (Mk) “ - (OAR)R

irsa: 09080006 Page 6/61




Electromagnetic field: classical ensembles

@ Hamilton-Jacobi equation and constraint:

S 1 T 2 5S
E+2” (ﬁ) —Fg(VXA) —k ({),Ak)‘ko.

@ Once you have a Hamilton-Jacobi equation of this form,
you can define ensembles on configurations space.

@ It requires introducing a probability density P with

(?F’) up

and an appropriate ensemble Hamiltonian FI[P. S].
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Electromagnetic field: ensemble hamiltonian H,

@ Define the ensemble Hamiltonian
.
. s %2
chz/DA/d3xP 2«n((§) +i(V><A) |
0A 3

@ Variation of H. leads to the equations

9S 3. . FESYS T . a2
m+/dx[2n (5,&) —|_8}T(V><A)

oP o f 3 5S
W+4“/d X [M{ (PM)] — 0.

=]

and
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Electromagnetic field: quantum theory

@ To quantize, introduce non-classical momentum
fluctuations = the ensemble Hamiltonian becomes

N 1 (6P\?
o=Hc+ - | DA | d&°x P =
Hg He + 3 / / x =% (JA)

@ If you define the wavefunctional by W = /Pe'S/"  the
equations take the form

fh% - / d3x [2752 j‘;ﬁ + 8; (\— x ,E\‘) . (v X ,Zi) w} .

@ The constraint on the wavefunction is

(‘?‘") _o.
fi:'fAk k
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Remarks
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@ The approach leads to the functional Schrédinger

equation for the fields.

—

E—=_479% and B=V xA.
SA

The exact uncertainty approach corresponds to:

— adding nonclassical fluctuations to the electric field
components of an ensemble of electromagnetic fields,

— with the fluctuation strength determined by the
uncertainty in the magnetic field components.

No need to go through the canonical formalism of the
classical field theory — but further “reconstruction” is
needed!
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Technical issues

@ Measure over the space of fields.

@ Assumptions needed for quantization:
— Independence,
— Invariance,
— Exact uncertainty,
— First order functional derivatives in Ho.

@ The assumptions regarding the momentum fluctuations
lead to an additional nonclassical term in the ensemble
Hamiltonian, specified by the covariance matrix
Covy (N) of the fluctuations at position x, where

[Covy(N)]?® = NaN2 ~ (6P/5f2)(6P/5f2)/P?.
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Hamilton-Jacobi formulation of gravity (in the metric

representation)
@ Einstein-Hamilton-Jacobi equation

1 5S 6S
ExN|-G——  — VhRl| =0
/ X {2 kar)h;j Ohy \/7 ]

@ Momentum constraints (invariance under spatial
coordinate transformations)

0S
D, (hﬁ.; r‘?hkj) — ;|

Notation: R is the curvature scalar and D; the covariant
derivative on a three-dimensional spatial hypersurface
with (positive definite) metric hy,, and

1
Gij = JE (hichj + hihjc — hjhg) .

irsa: 09080006 \/ Page 12/61




Gravitational field: ensemble Hamiltonian H,

@ An appropriate ensemble Hamiltonian for the
gravitational field is given by

. 1 S §S
H.— | Dh | d*°xPN |=Giyy— — — VhR] .
¢ / / > l2 ka(}h;j ORy \T ]

@ Variation of H, (set 2 = %2 = 0) leads to the equations

1 5S 6S
&xN| -G+ —  —  VhR| =0
/ > [2 M Shy ok ‘F]

s (P 9% Y
/d XNrjhg (PGUHr‘;hm) —)
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Hamilton-Jacobi formulation of gravity (in the metric

representation)
@ Einstein-Hamilton-Jacobi equation

1 3% A4S
&N |-Gu——— VARl =0
/ X {2 Uk}r)h;j Ohy \/7 }

@ Momentum constraints (invariance under spatial
coordinate transformations)

0S
D, (hﬁ.; r‘?hkj) —= ! |

Notation: R is the curvature scalar and D; the covariant
derivative on a three-dimensional spatial hypersurface
with (positive definite) metric hy,, and

1
Gjjr = JE (hichj + hihjc — hjhyg) .
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Gravitational field: ensemble Hamiltonian H,

@ An appropriate ensemble Hamiltonian for the
gravitational field is given by

. 1 S §S
H.— | Dh | d*xPN |=Giyy— — — VhR] .
¢ / / X lZ ”kf'dhfj Ry f ]

@ Variation of H, (set 25 = %2 = 0) leads to the equations

1 5S S
d®*xN|=Giy——— —VhAR| =0
/ = [2 i S hig \F]

- (e, 9 Y
/d XNrjhg (PGUHJhM) —@
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Hamilton-Jacobi formulation of gravity (in the metric

representation)
@ Einstein-Hamilton-Jacobi equation

1 5S §S
NG - Vhitl =0
/ X {2 Umr)h;j Ohy \/7 ]

@ Momentum constraints (invariance under spatial
coordinate transformations)

0S
D, (h,’;{ rihgj) —= : |

Notation: R is the curvature scalar and D; the covariant
derivative on a three-dimensional spatial hypersurface
with (positive definite) metric hy,, and

1
Gijr = I (hichj + hihjc — hjhg) .
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Gravitational field: ensemble Hamiltonian H,

@ An appropriate ensemble Hamiltonian for the
gravitational field is given by

. 1 S S
H.— | Dh | d*°xPN |=Giyy— — — VhR]| .
¢ / / = [2 ”kf@hfj Ohy \f ]

@ Variation of H, (set 2 = %2 = 0) leads to the equations

1 5S S
d®*xN|=Giy——— —VhAR| =0
/ = [2 i 5 hig \f]

S L T
/d XNrjhg (PGUHr‘;hH) — @
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Hamilton-Jacobi formulation of gravity (in the metric

representation)
@ Einstein-Hamilton-Jacobi equation

1 5S S
ExN|-Gy——-—  — VhEl =0
/ X {2 Um‘:’)hg Ohy \/7 ]

@ Momentum constraints (invariance under spatial
coordinate transformations)

0S
D, (h”{ rihgj) —

Notation: R is the curvature scalar and D; the covariant
derivative on a three-dimensional spatial hypersurface
with (positive definite) metric hy,, and

1
Gij = JE (hichj + hihjx — hijhyg) .
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Gravitational field: ensemble Hamiltonian H,

@ An appropriate ensemble Hamiltonian for the
gravitational field is given by

3 1 5S 6S
H.— | Dh | d*°xPN |=Giyy— — — VhR]| .
c / / = [2 M Shy 5hig vh ]

@ Variation of H, (set 25 = %2 = 0) leads to the equations

1 5S S
d*xN|-Giw—— — VhAR| =0
/ i [2 i Sy hig \F]

5. (pe, 9% Y
/d XNrjhg (PGUHr‘;hm) — )
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Remarks

@ The interpretation of the equation

)
Bx N (PG~ _ 0
/ = t’}hU ( Uk hkj)

as a contlnmty equation is only possible if @h*‘" Is linear

Ig! Gukf 3P "

@ Then, you can write
0S
0hy

where the gauge transformation (Dx N, + D;Ny) = o hy
has been included in the expression for oh;;.

ﬁhU = (NGU,H g D;M i 2 DjN;) ot

@ In this way, you get the remaining six Einstein equations.
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Gravitational field: quantum theory

@ To quantize, introduce non-classical momentum
fluctuations = the ensemble Hamiltonian becomes

- 3 h 1 oP oP
Hy=H:.+5 | Dh | d°x 5Gjig————
. ¢ 8 / / = P e fjh_;j :ﬁhm

@ If you define the wavefunctionalby W = /PeS/% | you
get the Wheeler-DeWitt equation

2 - -
[hfje-- ; _ WR} W = 0.

@ Notice that the exact uncertainty approach specifies a
particular operator ordering for the Wheeler-DeWitt
equation.
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Remarks

Pi

IIIII

: 09080006

@ The extrinsic curvature tensor can be written as

G 0S

K ijkl f‘.ihm

j— 2

The exact uncertainty approach corresponds to

— adding nonclassical fluctuations to the extrinsic
curvature tensor,

— with the fluctuation strength determined by the
uncertainty in the spatial metric.

The approach can also be used in the connection
representation of gravity, because in this formulation the
Hamilton-Jacobi equation is also quadratic in the field
momenta.
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Remarks

Pi

IIIII

: 09080006

@ The interpretation of the equation

3 Sl (‘]S -
/d XNth (PGUHth) =% |

as a continuity equation is only possible if dh"” Is linear
yS
Ig! Guk." f;hm -

@ Then, you can write
0S
Shyy

where the gauge transformation (Dx N, + D;Ny) = 0. hy
has been included in the expression for oh;;.

@ In this way, you get the remaining six Einstein equations.
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Gravitational field: ensemble Hamiltonian H,

@ An appropriate ensemble Hamiltonian for the
gravitational field is given by

. 1 5S S
H.— | Dh | d*°xPN |=Giy— — — VhR]| .
¢ / / = l2 ”kf'dhfj Ohy f ]

@ Variation of H, (set 25 = %2 = 0) leads to the equations

1 5S S
d®*xN|=Giy—— —VhAR| =0
/ = [2 i S Shig ‘F]

s (P, 9% Y
/d XNrjhg (PGUH(‘FhH) —@
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Remarks

Pi

IIIII

: 09080006

@ The interpretation of the equation

5S
d3 N— PG — 0
/ X r’)hu ( kar h;{;)

as a continuity equation is only possible if dh” Is linear
)
Ig! Guk." 3P "

@ Then, you can write
0S
ohy

where the gauge transformation (DN, + D;Ny) = o hy
has been included in the expression for oh;;.

rjhg = (Neukf g D;M F DjN;) ot

@ In this way, you get the remaining six Einstein equations.
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Gravitational field: quantum theory

@ To quantize, introduce non-classical momentum
fluctuations = the ensemble Hamiltonian becomes

~ ~ h 1 P oP
Hy=H:+—= | Dh | d®°x =Gjjy— ——.
q c 8 / / = P e f)h;j 0}7;(;

@ If you define the wavefunctional by W = /PeS/% | you
get the Wheeler-DeWitt equation

Y -2 - v’ER]wo.

@ Notice that the exact uncertainty approach specifies a
particular operator ordering for the Wheeler-DeWitt
equation.
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Gravitational field: quantum theory

@ To quantize, introduce non-classical momentum
fluctuations = the ensemble Hamiltonian becomes

oP oP
{jh-ﬂ’ {3,7;(; ‘

- - h 1
Hq — He - g /Dh /d‘?,xﬁGﬂk-"

@ If you define the wavefunctionalby W = /PeS/% | you
get the Wheeler-DeWitt equation

2 o -
[hfje-- ; \FhR}wo.

@ Notice that the exact uncertainty approach specifies a
particular operator ordering for the Wheeler-DeWitt
equation.
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Remarks

Pi

IIIII

: 09080006

@ The extrinsic curvature tensor can be written as

G 0S

K ikl r‘!hm

i — 2

The exact uncertainty approach corresponds to

— adding nonclassical fluctuations to the extrinsic
curvature tensor,

— with the fluctuation strength determined by the
uncertainty in the spatial metric.

The approach can also be used in the connection
representation of gravity, because in this formulation the
Hamilton-Jacobi equation is also quadratic in the field
momenta.
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Remarks

@ Stochastic rate equations? Comparison to classical
ensembles suggests the stochastic rate equation

Oh-’f ()‘S ki
of NGHM (fihkf +— @ ) -+ D;Nj -+ DjN;
where 0¥ is a stochastic field.

@ The quantization procedure described here amounts to
a “Hamilton-Jacobi quantization of gravity” — i.e., without
going first to a canonical formulation of classical gravity.
Has the problem of “Dirac consistency” been avoided
with this approach?

@ The usual difficulties of the Wheeler-DeWitt equation
remain!
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Quantum matter fields and classical gravity

@ To what extent can a mixed classical/quantum system
provide a consistent, satisfactory description of matter
and gravitation?

@ The study of such systems can provide clues that may
help in the search for a full quantum theory of gravity.

@ Dyson has argued that it might be impossible in
principle to observe the existence of individual
gravitons, and this has lead him to the conjecture that
“the gravitational field described by Einstein’s theory of
general relativity is a purely classical field without any
quantum behaviour.” If his conjecture is correct, mixed
classical/quantum systems become unavoidable.
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Coupling of a quantized scalar field to a classical
gravitational field

@ The ensemble Hamiltonian is the sum of two parts,

Hyn = / d>x / DhP N [Hen+ Fy) .

@ H.p Is the contribution to the ensemble Hamiltonian that
describes classical gravity with a scalar field,

 F {aSY 1,00 00
HohHh*z\/ﬁ(ﬁo) —|_\/E[2h (')X';()Xf_‘_v(u)]

@ F, is a contribution that results from the quantization of

the scalar field,
£ _P 1 (1P
8 VvhR\Pdp)
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Remarks

@ The gravitational field remains classical, but this does
not mean that we can not have states that are subject to
uncertainty.

@ The approach is one in which non-classical momentum
fluctuations are added to f,—f but no fluctuations are

added to 23

Jhm .

@ The result is fundamentally different from semiclassical
gravity, where the expectation value of the energy
momentum of the quantum field couples to a classical
gravitational field.

@ The equations are non-linear functional differential
equations.
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A “hybrid” model in spherically symmetric gravity

@ Consider spherically symmetric gravity, with the line
element

g, dx"dx” = —N2dt? + N\? (dr + N"dt)* + R?>dQ?.

For example, the line element that describes the
Einstein universe can be written as

N=1. N =0. A=a. R=asinr.

@ An ensemble Hamiltonian for classical gravity with a
quantized scalar field is of the form

I:IDAR — /dr/DhF’N [‘HQ;\R + F{:}} ;
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A “Hybrid” model in spherically symmetric gravity

@ The explicit form of the ensemble Hamiltonian is

~

Hizxp = /dr/DhF’N Honr + Fy, |

5S RZ ., AR2m? ,
Hear = Har 2AR2 (OO) +Sp 0+ 9,
16S6S 1A [6S AR?
_ b Lol LV
Far ROROA  2R? (o‘/\) il
e RR RR'N " RIZ ﬁ
A A2 2N 2

o\ 2
e = 1 ‘IOHF’
8AR2 \ P ¢
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rticular solution for the “hybrid” model

@ Assume that

(1) The foliation is of spaces of constant positive
curvature and the lapse function N is constant,

(2) The functionals S and P are of the form
S[R.A\,¢] =0,
P [R. A, 0] ~ ground state Gaussian functional of ¢.

@ In this particular case, the problem reduces to that of
solving for the the ground state of a quantized scalar
field in an Einstein universe.
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A “Hybrid” model in spherically symmetric gravity

@ The explicit form of the ensemble Hamiltonian is

Hin = [ dr [ DRPN [Hons + ]

1 (6S\* R? , ARZm? ,
Fonr = H“R+2AR2<5@) T T o T
15S6S 1A [3S\? _AR?
e , A AW
Far R0R0A+2R2(M) Ll T
- RR RR’AE_FRIZ ﬁ
A A2 T 2N 2

- 2
U A,
8AR2 \ P 3o
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rticular solution for the “hybrid” model

@ Assume that

(1) The foliation is of spaces of constant positive
curvature and the lapse function N is constant,

(2) The functionals S and P are of the form
S[R.A\,¢] =0,
P [R. A, 0] ~ ground state Gaussian functional of ¢.

@ In this particular case, the problem reduces to that of
solving for the the ground state of a quantized scalar
field in an Einstein universe.
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Remarks (some preliminary results)

@ The solutions depend on the value of the mass m of the
field, and the space of solutions is non-trivial due to the
renormalization of the quantum field.

@ The equation that describes the scale factor a is of the
form

Aa* — 3a° + a(ma) =0,

where a(ma) is a complicated function.

@ For certain values of the mass, a(ma) > 0, and the
cosmological constant A may be set to zero.

@ For a given mass, the value of the radius a depends on
the state of the quantized scalar field with the result that
a takes discrete values.
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A “Hybrid” model in spherically symmetric gravity

@ The explicit form of the ensemble Hamiltonian is

-~

Hoan = /dr/DhF’N Heonr + Fy, |

5S\?> R?2 , ARZm? ,
Honr = T 2AR2<00) TaR® @ T
16S4S 1A [6S AR?
_ A
Far R6R6A+2R2(o‘/\) Ll
- RR RR’AI_FRIZ ﬁ
A A 2R 2

N 2
£ 1 (1P
8AR2 \ P 00
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rticular solution for the “hybrid” model

@ Assume that

(1) The foliation is of spaces of constant positive
curvature and the lapse function N is constant,

(2) The functionals S and P are of the form
S[R.A\, 0] =0,
P [R. A, 0] ~ ground state Gaussian functional of .

@ In this particular case, the problem reduces to that of
solving for the the ground state of a quantized scalar
field in an Einstein universe.
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Remarks (some preliminary results)

@ The solutions depend on the value of the mass m of the
field, and the space of solutions is non-trivial due to the
renormalization of the quantum field.

@ The equation that describes the scale factor a is of the
form

\a* — 3a’+ a(ma) =0,

where a(ma) is a complicated function.

@ For certain values of the mass, a(ma) > 0, and the
cosmological constant A may be set to zero.

@ For a given mass, the value of the radius a depends on
the state of the quantized scalar field with the result that
a takes discrete values.
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Concluding remarks

@ The “exact uncertainty” approach for particles can be
generalized and used to derive bosonic field equations.

S

@ Non-classical fluctuations are added to ~ SF -

@ It is not necessary to use a classical canonical theory
as the starting point (“Hamilton-Jacobi quantization” ).

@ A theory of interacting classical and quantum fields can
be formulated using ensembles on configuration space.

@ In particular, it is possible to study systems where
quantum matter fields couple to a classical spacetime.
The theory that you get is fundamentally different from
semiclassical gravity.
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Coupling of a quantized scalar field to a classical
gravitational field

@ The ensemble Hamiltonian is the sum of two parts,

Hyn = /d3x/DhPN [Heon + Fs) -

@ H.p Is the contribution to the ensemble Hamiltonian that
describes classical gravity with a scalar field,

1 [68Y 1,00 06
HDhHh*Zﬂ(rﬁO) +\/E[2h axf.axj—'—V((_-))].

@ F, is a contribution that results from the quantization of

the scalar field,
£ 1 f15PY
8 VvhR\Pdp)
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Gravitational field: quantum theory

@ To quantize, introduce non-classical momentum
fluctuations = the ensemble Hamiltonian becomes

oP oP
{jh_;j {ihk; '

- - h 1
Hq:Hc—Fg'/Dh/d‘?,XﬁGgm

@ If you define the wavefunctional by W = /PeS/% | you
get the Wheeler-DeWitt equation

2 5 ; B
[h_OG-- ; \/hR]wO.

@ Notice that the exact uncertainty approach specifies a
particular operator ordering for the Wheeler-DeWitt
equation.

irsa: 09080006

Page 45/61




Gravitational field: ensemble Hamiltonian H,

@ An appropriate ensemble Hamiltonian for the
gravitational field is given by

. 1 S §S
H.— [ Dh | d*°xPN |=Giyy— — — VAR .
¢ / / . l2 UK’Oh;j ORy f ]

@ Variation of H, (set 25 = %2 = 0) leads to the equations

1 5S S
d®*xN|=Giy—— —VhAR| =0
/ = [2 i 5y hig ‘F]

s ? (e, 95 Y
/d XNrjhg (PGUHfihk;) —
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Hamilton-Jacobi formulation of gravity (in the metric

representation)
@ Einstein-Hamilton-Jacobi equation

1 5S S
NG VhRl =0
/ X {2 M Sy Shig ‘F}

@ Momentum constraints (invariance under spatial
coordinate transformations)

0S
D, (hﬁ.; r‘?hkj) =" ¢

Notation: R is the curvature scalar and D; the covariant
derivative on a three-dimensional spatial hypersurface
with (positive definite) metric hy,, and

1
Gijx = Tk (hichj + hirhjx — hjhy) .
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Electromagnetic field: quantum theory

@ To quantize, introduce non-classical momentum
fluctuations = the ensemble Hamiltonian becomes

- S % 1 [(6P\?
Ho=He+ = | DA | d°x P .
- '8 / / * P <6A)

@ If you define the wavefunctional by W = /Pe'S/"  the
equations take the form

m% - / d3x {2752 j‘; i 82 (\— x ,E\‘) . (v x ,Zi) w} .

@ The constraint on the wavefunction is

(?”’) _o.
{:'fAk k
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The Hamilton-Jacobi equation

@ Define S = fr:z L(qx.qk)dt and vary S,

L oL
Jos — e oqdt -
Z [ L?qk (0%)] 2

(where Age =6q, +gkAt, p=2L H= rjqkq - L).

JQx

B
meqk — HAt

A

@ Endpoint variation leads to

oS

*H(Ch(

0S 0S
— g,
ot )

OQk o oGk’

@ S is a function of the configuration space variables.

Pirsa: 09080006 Page 49/61




Hamilton-Jacobi formulation of gravity (in the metric
representation)
@ Einstein-Hamilton-Jacobi equation

1 5S 6S
NGy VBl —0
/ X {2 M Sy Shig ‘ﬁ}

@ Momentum constraints (invariance under spatial

remrriRAata francfAarmaatiane

@ Variation of H, (set 25 = %2 = 0) leads to the equations

1 5S 6S
d&xN| -G — —  VBR| =0
/ * [2 M Shy ok ‘f]

s (pe, 92 Y
/d XNrjhg (PGUHJhm) —
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Remarks

@ The interpretation of the equation

3 Sl (‘)S -
/d XNth (PGUHth) == !

as a contlnmty equation is only possible if dh"” Is linear

Ig! Guk." 5P "

@ Then, you can write
0S
0hy

where the gauge transformation (Dx N, + D;Ny) = o hy
has been included in the expression for oh;;.

rjhg = (NGukf g i DIN'..' % 3 DjN;) ot

@ In this way, you get the remaining six Einstein equations.
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Gravitational field: ensemble Hamiltonian H,

@ An appropriate ensemble Hamiltonian for the
gravitational field is given by

. 1 5S S
H.— | Dh | d*°xPN |=Giyy— — — VhR]| .
¢ / / X l2 Uk.-'(}hfj ORy \T ]

@ Variation of H, (set 25 = %2 = 0) leads to the equations

1 5S S
d®*xN|=Giy—— —VhAR| =0
/ = [2 i Sy hig ‘F]

s (pe, )
/d XNrjhg (PGUHr‘;hm) —
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and




Hamilton-Jacobi formulation of gravity (in the metric

representation)
@ Einstein-Hamilton-Jacobi equation

1 5S 6S
FxN|-G——- - VhEl =0
/ X {2 kar)h;j Ohy \/7 }

@ Momentum constraints (invariance under spatial
coordinate transformations)

0S
D, (h,’;{ rihkj) —= ¢ |

Notation: R is the curvature scalar and D; the covariant
derivative on a three-dimensional spatial hypersurface
with (positive definite) metric hy,, and

1
Gij = " - (hichj + hihjc — hjhyg) .
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Gravitational field: ensemble Hamiltonian H,

@ An appropriate ensemble Hamiltonian for the
gravitational field is given by

. 1 S S
H.— | Dh | d*>xPN |=Giy— — — VhR]| .
¢ / / X l2 ”k"'(}hfj Ry \f ]

@ Variation of H, (set 25 = %2 = 0) leads to the equations

1 5S S
d®*xN|=Giy——— —VAR| =0
f = [2 i Sy hig ‘f]

S L T
/d XNrjhg (PGUHr‘;hm) —0
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Remarks

Pi

IIIII

: 09080006

@ The interpretation of the equation

5S
Bx N (PG~ _ 0
/ = t’)hU ( Uk hk,.')

as a continuity equation is only possible if "ﬂh"" Is linear
'S
Ig! Guk." (;hm =

@ Then, you can write
0S
ohy

where the gauge transformation (Dx N, + D;Ny) = o hy
has been included in the expression for oh;;.

rjhg = (NGukf g D;M ¥ 3 DjN;) ot

@ In this way, you get the remaining six Einstein equations.
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Gravitational field: quantum theory

@ To quantize, introduce non-classical momentum
fluctuations = the ensemble Hamiltonian becomes

oP oP
{jhu {Shk; ‘

- - h 1
Hq:Hc—Fg'/Dh/dSXﬁGHH

@ If you define the wavefunctionalby W = /PeS/% | you
get the Wheeler-DeWitt equation

2 o -
[h_(’e-- ; \/ER]IUO.

@ Notice that the exact uncertainty approach specifies a
particular operator ordering for the Wheeler-DeWitt
equation.
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Remarks

Pi

IIIII

: 09080006

@ The extrinsic curvature tensor can be written as

G 0S

K ijkl r‘!hm

g — 2

The exact uncertainty approach corresponds to

— adding nonclassical fluctuations to the extrinsic
curvature tensor,

— with the fluctuation strength determined by the
uncertainty in the spatial metric.

The approach can also be used in the connection
representation of gravity, because in this formulation the
Hamilton-Jacobi equation is also quadratic in the field
momenta.
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Gravitational field: quantum theory

@ To quantize, introduce non-classical momentum
fluctuations = the ensemble Hamiltonian becomes

oP OP
{jhu Ohy ‘

~ ~ h 1
Hq — He 4 g /Dh /d3XEGﬂkf

@ If you define the wavefunctional by W = /PeS/% | you
get the Wheeler-DeWitt equation

2 o -
[F‘f’e-- ; _ \/ER} W =0.

@ Notice that the exact uncertainty approach specifies a
particular operator ordering for the Wheeler-DeWitt
equation.
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Remarks

@ The interpretation of the equation

5S
Bx N (PG~ _ 0
/ * ohj ( e hm)

as a contlnmty equation is only possible if dh’“ Is linear

Ig! Gu;ﬂf 3P "

@ Then, you can write
0S
Shyy

where the gauge transformation (Dx N, + D;Ny) = o hy
has been included in the expression for oh;;.

@ In this way, you get the remaining six Einstein equations.
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Gravitational field: quantum theory

@ To quantize, introduce non-classical momentum
fluctuations = the ensemble Hamiltonian becomes

oP OP
{jhu ORy ‘

~ ~ h 1
Hq:Hc—Fg'/Dh/dSXﬁGHH

@ If you define the wavefunctional by W = /PeS/% | you
get the Wheeler-DeWitt equation

il - ; v’ER}wo.

@ Notice that the exact uncertainty approach specifies a
particular operator ordering for the Wheeler-DeWitt
equation.
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Remarks

Pi

IIIII

: 09080006

@ The extrinsic curvature tensor can be written as

G 0S

K ijkl f‘.ihm

j— 2

The exact uncertainty approach corresponds to

— adding nonclassical fluctuations to the extrinsic
curvature tensor,

— with the fluctuation strength determined by the
uncertainty in the spatial metric.

The approach can also be used in the connection
representation of gravity, because in this formulation the
Hamilton-Jacobi equation is also quadratic in the field
momenta.
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