Title: The null energy condition and its violators
Date: Jul 18, 2009 11:30 AM

URL.: http://pirsa.org/09070033

Abstract: TBA

Pirsa: 09070033 Page 1/123



Alberto Nicolis
Columbia University

The null energy condition
and its violators

w/ Rattazzi and Trincherini, to appear

also: w/ Dubovsky, Gregoire, Rattazzi, ‘05
w/ Creminelli, Luty, Senatore, ‘06




Energy conditions in GR

6“E>Of’

@ several ways to make it covariant: weak,
strong, dominant, null (...?)

@ different contractions of TH- L,




Assumed to prove good things...




Assumed to prove good things...

o NS

@ positive energy theorem




Assumed to prove good things...

3 EFQ'S
@ positive energy theorem

@ 2nd law of black-hole thermodynamics




Assumed to prove good things...

3 h‘"QS
@ positive energy theorem

@ 2nd law of black-hole thermodynamics

.. and bad ones:




Assumed to prove good things...

3 h{s
@ positive energy theorem

@ 2nd law of black-hole thermodynamics

.. and bad ones:

@ singularity theorems
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Are they obeyed by all
well-behaved physical systems?

@ The "null” one (NEC) stands out as the most
robust

o T,,n"n” >0 for all null n*%s
@ saturated by a c.c. 1, < g,,,,

@ all the others violated or fixed by a suitable

C.C. @ ambiguous somewhat
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@ NEC closely related to the "dominant” one (DEC)

DEC = NEC + p >0

@ more covariantly

T, u”  time-like, future-directed

for all time-like, future-directed u*'’s

@ ~v no superluminal flow of energy-momentum
for any observer.
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@ For cosmology: NEC @ (p+p) =0

@ Friedmann egs. H P+ Pp
@ NEC C$ Expansion?
Big Bang

Need UV-completion

o For black holes: NEC/DEC E==> 2nd law

@ crucial for thermodynamic/holographic
Inferpretation



holographic cosmology
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Can one construct a sensible NEC-violating QFT?

o Difficult! Usually:

stability E==p» NEC

@ Simplest example

£ =+1(0¢0)% — V()

@ I want to qualify the “usually”




@ Neglect gravity for the moment

@ Well defined QFT question

@ Whatever we gef, will translate info an
"Einstein frame” statement
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o Dl&f? needs spontaneous Lorentz breaking
Tyw 7 Mo

@ There are light Golstones!

@ Their dynamics largely model-independent

® Those are the guys to worry about
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Consider a system of scalars

L= F(¢',00",00d". ...)

@ Includes any mixture of fluids and solids
@ At low energies stop at the o' level

@ Enough fo see Lorentz breaking




T ot
F(¢',00")
. *_}F(QI_BJJ)

Bt=a

- o Ja
po 0'¢
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£ F(¢'., 00 Yy Pl

B' = g,¢'9"¢’

@ Lorentz breaking solution: 0, o #* 0




L — F(¢',8¢') — F(¢o', B"™)

BIJ - a;;-,(_"jl OH @f

@ Lorentz breaking solution: OHOI = 0

@ Stress tensor: Tﬁib’ ~ Fj_] f“)# @1 dl,o"’




L — F(¢',0¢') — F(¢', B')

B' = g,¢' 0" ¢’

@ Lorentz breaking solution: aﬂof #= 0
@ Stress tensor: Tﬂlf ~ F[J ("))u cﬁj dl,@"’

a Kinetic action for fluctuations o&! — &! + 7!




L — F(¢',0¢") — F(¢', B")

BIJ — a}uc-)l OH @f

@ Lorentz breaking solution: aﬁcbf = 0
@ Stress tensor: T#L’ ~ F[_] 6)}u Gf)j aUOJ

o Kinetic action for fluctuations ! — ¢! + 7!

L~ [Frme +2Fx oo od | @r o n”’
| £ 1 J IK.JL Yy I |




Thorough (=boring) analysis...

(Dubovsky, Gregoire, Nicolis, Rattazzi 2005)

Theorem:




Thorough (=boring) analysis...

(Dubovsky, Gregoire, Nicolis, Rattazzi 2005)

Theorem:

Stability and




Thorough (=boring) analysis...

(Dubovsky, Gregoire, Nicolis, Rattazzi 2005)

Theorem:

Isotropy
Stability and




Thorough (=boring) analysis...

(Dubovsky, Gregoire, Nicolis, Rattazzi 2005)

Theorem:

Isofropy
Stability and or

subluminality
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(Dubovsky, Gregoire, Nicolis, Rattazzi 2005)

Theorem:

Isotropy
Stability and or

subluminality

NEC !
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@ Conversely, there are stable systems with
anistropic and superluminal NEC-violating
solutions

@ useless for cosmology

@ fo evade the theorem, tfry to evade the
assumptions
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Rewind... Consider a system of scalars

L = F(¢!,8¢%,004 . .. .)

@ Includes any mixture of fluids and solids

@ At low energies stop at the o' level
> i, e, W S NS

@ Enough fo see Lorentz breaking
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Why stop at the 94’ level?

@ Most relevant at low energies

@ Higher derivatives problematic (when
important):

@ classically...

B
2z H9)

(00)" + — (80)* — (0x)* + M*°

@ ... and quantum-mechanically: ;}f
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@ Suppose the system is degenerate at lowest
order in spatial derivatives

L ~72—0-(Vr)?

o

@ Higher derivative terms

(O¢)* — &2, (V)2 (Vin)’

W—I

negligible at low energies




Ist Caveat: the ghost-condensate
(Arkani-Hamed, Cheng, Luty, Mukohyama 2003)

@ Suppose the system is degenerate at lowest
order in spatial derivatives

—

L~w?—0-(Vn)

o

@ Higher derivative terms

(Og)2 —="%2%, (Va), (V'n)
W

leading gradient energy
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@ Consistent derivative expansion (w/ non-
relativistic scaling w ~ k°)

@ no ghost-like new d.o.f.

@ allows consistent NEC-violating cosmological
scenarios: bounce, “starting the universe”,
w<-1 now

(Creminelli, Luty, Nicolis, Senatore 2006,
Creminelli, Senatore 2007,
Creminellis talk, yesterday)
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2nd Caveat: the Galileon

(Nicolis, Rattazzi, Trincherini 2008) ‘

LR

g
L Al

e

LN

@ The (classical) problem is having higher-
derivative eom

@ Is there a higher-derivative Lagrangian that
yields two-derivative eom?




@ For simplicity assume purely two-derivative
eom

SC A=
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@ For simplicity assume purely two-derivative
eom

5L
;—_ — £(0,0,T)
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@ For simplicity assume purely two-derivative

eom

= J{ L0, )

@ Invariant under

w{z) — 5lE) Fe b, "

@ Analogous to z(t) — z(t) + xo + vot
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Galilean-invariant terms

£(r1) S aQn—Z -71-”'

@ Simplest: Y =x
@ Next to simplest: L% = (9n)°
@ Less trivial (DGP): L) = ('f??r_)z (o

@ Invariance:
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In general:

Exactly one invariant at each order in 7T

Galilean invariant 3 Cayley-invariant

Lagragian term of matrix 9,0, m

=5 D invariants

D=1 (mechanics): T. I

D=4 (us:  m, (Om)%, ... O On(0°w)®




Galilean Invariants

(M2 ox - ox — 2[l)| @x - I - 9x — [I1?] @x - Ox + 28x - 1% - )
= !.[ " ox - 97 — 3 I[|Jf':" - - or — 3[H][{II"] % - O + 6{H] &7 - [I* - O
+2(I%| 9= - = + 3[IT7| O -1 - O —6ax - IT" - O)

HHU — f’)'“(')yﬂ‘ [ ] = TI‘{ }

(Nicolis, Rattazzi, Trincherini 2008)




Quantum mechanically

@ Galilean invariance protects the structure of
the Lagrangian

@ large classical non-linearities possible within
EFE

@ i.e., small radiative corrections and
fluctuations perturbative

(Nicolis, Rattazzi 2CC4)
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Can the galileon violate the NEC
without instabilities?

(Nicolis, Rattazzi, Trincherini, in preparation)

@ higher-derivative Lagrangian with healthy
two-derivative eom

@ classical non-linear solutions inside the EFT

@ possible exception to the no go theorem
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transformation + Poincare’ to conformal
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Interesting NEC-violating cosmological solution

@ Convenient to promote galilean
transformation + Poincare’ to conformal
group

m(x) — w(Ax) + log A
m(z) — n(x + bx* — (b- x)x) — 2b,xH

@ i.e., promote the galileon to a dilaton

27,
Guv — € Ty

@ galiean invariant tferms become conformally
invariant terms (upon straightforward
modifications) -- same good features
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@ Just by symmetry, "de Sitter” solution

— ES A 1
F“(tt)
Hgt

@ Spontaneous breaking

SO(4,2) — SO(4,1)

@ scale Invariance + conservation:

P

| O
p 7 74

1
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@ YES! We can choose Lagrangian coefficients
to violate NEC with no instabilities

@ Fluctuations live in a fictitious deSitter space

@ exactly luminal
@ scale invariant '?!

@ No. They are massive m ~ Hj
(implied by broken time translation)
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With gravity: starting the universe 2

H x —(p+p) ~ 1/t

H ) ]‘f‘wi':s

Solution modified at late times
Derivatives grow... strong coupling

Reheating?
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Final Thoughts

@ Two consistent NEC-violating EFTs

@ Effective Lagrangian for cosmological
adiabatic perturbations

@ only two possibilities
(in cosmology, w/ one dof)
(Creminelli, Luty, Nicolis, Senatore 2006)

@ No superluminality, still...
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@ Ghost condensate: no Lorentz-invariant phase

=$ Lorentz-invariant
UV completion?
@ Galileon: superluminality for other solutions
(w/ localized sources)

@ also certain scattering amplitude foo soft

@ probably no standard Lorentz
invariant UV completion
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Recurrent connection: I\jEf and superluminality

@ GR: DEC (~~NEC) = no superluminal flow
@ GR: NEC for matter implies gf:'s

@ our no-go theorem: NEC (+ stability) implies
superluminality for matter

@ Galileon: certain solutions violate NEC,
others are superiuminal

Deep? Accidental?




