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Abstract: We propose a holographic description of four dimensiona single scalar inflationary universes, in particular asymptotically de Sitter
cosmologies and power-law inflation. We show how cosmological observables such as the primordial power spectrum and non-gaussianities are
encoded in correlation functions of athree dimensional QFT.
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Introduction

Introduction

m Over the past decade siriking new observations have
transformed cosmology from a qualitative to a quantiitative
science.

m New observational data are expected over the next decade that

will lead to an era of precision cosmology.

m This presents a unique window to physics at the Planck scale
and a challenge for fundamental theory.
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Introduction

Holography

m During the same period new ideas have dominated fundamental
theory: holographic dualities.

Holography states that a theory which includes gravity can be
described by a theory with no gravity is one fewer dimension.

m |t is natural to ask how cosmology fits into the framework of
holography.

m The purpose of this work is to propose a concrete holographic
framework for inflationary cosmology.
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Introduction

Holography for cosmology

Any holographic proposal for cosmology should specify

what the dual QFT is
how it can be used to compute cosmological cbservables

Having defined the duality,

m the new description should recover established resulis in the
regime where the weakly coupled gravitational description is valid

m new results should follow by using the duality in the regime
where gravity is strongly coupled (Planck scale physics).
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Cosmological Observables
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Cosmological Observabiles

Cosmological Perturbations

We start by reviewing standard inflationary cosmology and the
cosmological observables we would like to compute holographically.

m We will discuss single field (for simplicity) four dimensional
inflationary models,

-1 /dm —G(—5 R~ (90) — 2V(s))

m We assume a spatially flat background (for simplicity) and perturb

ds? = —di? + &(1)[6; + hy(t.X)]dx' dx’
¢ = (1) + (L X)
where hj = (. X)éji + 9idjx(Z.X) + vi(Z. x)

B - Is transverse fraceless and we form the gauge invariant
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Cosmological Observables

First order formalism

For background solutions with scalar field ~(t) having only isolated
zeros one can show that:

m the background equations of motion are equivalent to first order
equations K, T

=——— = = = ka0 =
aja=H(xp), ro=—73H. 2h_v_4(2H2 (H))

® The equations for perturbations take the form:

0 = (+(@BH+é¢/e)C+a?q
o ;'Ji_f—:—SH':.,}f—a_qu*g

where ¢ = 2(H'/H)? is the slow-roll parameter. We are not
assuming that ¢ is small.
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Cosmological Observables

Power spectrum

In the inflationary paradigm, cosmological perturbations are assumed
to originate at sub-horizon scales as quantum fluctuations.

m Quantiising the perturbations in the usual manner,

(EG)S(E—T) = 16D
Vit @ma(t.—G)) = 2|yg(t) M.
where [l; is the transverse traceless projection operator and
Cq(f) and ~4( 1) are the mode functions.
m [he superhorizon power specira are obtained by
g | 2q°

Ps(q) = 2-215q(0) = Pi(q) = —5 1 7q(0) E

where ) and (o) are the constant late-time values of the

cosmological mode functions. Initial conditions are set by the
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Cosmological Observables

Power spectrum through response functions

In preparation to the holographic discussion, we rewrite the power
spectrum as follows.

m We define the response functions as

¢ =9¢, N =Ey;

where I1¢ and I'IH are the canonical momentum densities.

m We use the the Wronskian relations
. 9 e o -
e < PO -

m to obtain
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Cosmological Observables

Power spectrum

In the inflationary paradigm, cosmological perturbations are assumed
to originate at sub-horizon scales as quantum fluctuations.

m Quantiising the perturbations in the usual manner,

()(E—-§) = IGDP

Fi(t @t —q)) = 2|74(1) " Mija-

where [l is the transverse traceless projection operator and
Cql(t) and ~4(f) are the mode functions.
m [he superhorizon power specira are obtained by
g 2 2q°
Ps(q) = 9.215q(0) ~. Pdq)= 2 17q(0) 7

where ~,.0) and (4o are the constant late-time values of the

cosmological mode functions. Initial conditions are set by the
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Cosmological Observables

Power spectrum through response functions

In preparation to the holographic discussion, we rewrite the power
spectrum as follows.

m We define the response functions as

I —0C n;, :E“-,}'.

where ¢ and I'I,JF are the canonical momentum densities.

m We use the the Wronskian relations
= T T e
Ik = 2ea (‘*.-q‘*.‘q — %q*-.\q)
=% - < ¥ ¥

m fo obtain

(g™ = —2m[Q(q)], |vq| > = —4Im[E(q)].
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Cosmological Observables

Cosmological observables: scalar power spectrum

Ps(q) = As(q.) (q/q.)™ "ol )nia/a-)

m Scalar amplitude As
As = (2.445 +0.096) x 10~ °

q. = 0.002Mpc—"' is the pivot scale.
m Scalar index n;. A scale invariant spectrum corresponds to
ns = 1. Observationally,

ns — 0.960 +£0.013
m Scalar running as = dns/d In q. Observationally
—0.068 < as < 0.012
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Cosmological Observables

Cosmological observables

m lensor power spectrum F;:

Pt(Q) — Ag(q,) (q q_}__)”t(@]

Only upper limits on A; and n;.
m lensor-to-scalar ratio r = P;/ Ps. Observationally,

r < 0.22(95%C.L.)
m Non-gaussianity. These are related to higher-point functions, e.g.
(5:$858) = (27)°0(G1 + G2 + Ga) i F(qh. @2. @)

Observations impose constrainis on ;.
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The domain-wall/cosmology comespondence

Domain-wall/cosmology correspondence

The springboard for our discussion is a correspondence between
cosmologies and domain-wall spacetimes.

m Domain-wall spacetime:

ds® = dr®+ &dx'dx’

& = &(r)

m This solves the field equations that follow from

1 = =] = -
Spw = > /d4xx_.'g[—;;—zﬁ—(U‘-’D)z——EV(d})].
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The domain-wall/cosmology comespondence

Domain-wall/cosmology correspondence

m One can prove the following:

Domain-wall/Cosmology correspondence

For every domain-wall solution of a model with potential V there is a
FRW solution for a model with potential (V = —V). :

m [he correspondence also applies to open and closed FRW
universes which correspond to curved domain-walls.

m [he correspondence can be understood as analytic continuation
for the metric. The flip in the sign of V guarantiees that the scalar
field remains real.

m An equivalent way to state the correspondence is

E = +ik. kO = 7
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The :amam—wajbr:::smmngy comesponoences

Domain-wall/cosmology correspondence

The springboard for our discussion is a correspondence between
cosmologies and domain-wall spacetimes.

m Domain-wall spacetime:

ds® = dr?+ & dx'dx’

® = &(r)

m This solves the field equations that follow from

1 = - -
Spw = > /d4Xx_.'g [_;;—ER + (EJ(D)E +2V(D)].
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The domain-wall/cosmology comespondence

Domain-wall/cosmology correspondence

m One can prove the following:

Domain-wall/Cosmology correspondence

For every domain-wall solution of a model with potential V there is a
FRW solution for a model with potential (V = — V).

m [he correspondence also applies to open and closed FRW
universes which correspond to curved domain-walls.

m [he correspondence can be understood as analytic continuation
for the metric. The flip in the sign of V guaraniees that the scalar
field remains real.

m An equivalent way to state the correspondence is
&—tix kD = Fd
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The domain-wall/cosmology commespondence

Domain-wall/cosmology correspondence

The springboard for our discussion is a correspondence between
cosmologies and domain-wall spacetimes.

m Domain-wall spacetime:

ds® = dr?+ &4dx'dx’

& = ()

m This solves the field equations that follow from

1 ] = -
Spw = > /d4XM. g[_ﬁﬂ + (qu))z +2V(D)].
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The domain-wall/cosmology comespondence

Fake supersymmetry [Freedman,

Domain-wall spacetimes have remarkable properties. Provided the

scalar field ®(r) has only isolated zeroes, the following properties
hold Town:s :

The spacetime admits a covariantly constant spinor,
Doc—0 D, =D, +W(®),

where W(®), the fake superpotential, is determined by the
solution. The spinor ¢ is called fake Killing spinor.

The existence of fake Killing spinors guaraniees perturbative and
non-perturbative stability of all non-singular domain-wall
spacetimes.

All domain-wall spacetimes solve first order "BPS" equations.
These follow from the fake Killing spinor equation.
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The domain-wall/cosmology comespondence

Domain-wall/cosmology correspondence

The springboard for our discussion is a correspondence between
cosmologies and domain-wall spacetimes.

m Domain-wall spacetime:

ds®> = dr* + & dx'dx’

® = &)

m This solves the field equations that follow from

1 e L= -
Spw = > /d"'xx.-g[—;_;—zﬂ + (0(1))2 +2V(D)].
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The ZDmEJﬂ—'ﬂ’E.IL":-CSfT?GIEg}’ comesponoencs

Fake supersymmetry [rreedman, !

Domain-wall spacetimes have remarkable properties. Provided the

scalar field ®(r) has only isolated zeroes, the following properties
hold [K¢ :

The spacetime admits a covariantly constant spinor,
Due=0. D,=D,+W(®),

where W(®), the fake superpotential, is determined by the
solution. The spinor ¢ is called fake Killing spinor.

The existence of fake Killing spinors guaraniees perturbative and
non-perturbative stability of all non-singular domain-wall
spacetimes.

All domain-wall spacetimes solve first order "BPS" equations.
These follow from the fake Killing spinor equation.
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The domain-wall/cosmology comespondence

Fake pseudo-susy for cosmologies

The DW/cosmology correspondence |mplles that there is an analogue
of these properties for cosmologies :

Cosmologies admit a covariantly constant spinor,
D,e =0, D, =D, +iH(®)I,
where H(®) is the Hubble function. The spinor ¢ is called fake

pseudo-Killing spinor.

The first order equations discussed earlier are the "BPS”
equations that follow from fake pseudo-Killing spinors.

Implications of this new fermionic symmeiry are to a large extent
unexplored.
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The domain-wall/cosmology comespondence

Domain-walls and holography

Domain-wall spacetimes enter prominently in holography. They
describe holographic RG flows.

m The AdS,. ; metric is the unique metric whose isometry group is
the same as the conformal group in d dimensions. This is the
main reason why the bulk dual of a CFT is AdS.

m The domain-wall spacetimes are the most general solutions
whose isometry group is the Poincaré group in d dimensions.

Thus, if a QF T has a holographic dual the bulk solution must be
of the domain-wall type.
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The domain-wall/cosmology comespondence

Fake pseudo-susy for cosmologies

The DW/cosmology correspondence |mplles that there is an analogue
of these properties for cosmologies '

Cosmologies admit a covariantly constant spinor,
D, e =0, D, —0, + i),

where H(®) is the Hubble function. The spinor ¢ is called fake
pseudo-Killing spinor.

The first order equations discussed earlier are the "BPS”
equations that follow from fake pseudo-Killing spinors.

Implications of this new fermionic symmetry are to a large extent
unexplored.
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The domain-wall/cosmology comespondence

Domain-walls and holography

Domain-wall spacetimes enter prominently in holography. They
describe holographic RG flows.

m The AdS,. s metric is the unique metric whose isometry group is
the same as the conformal group in d dimensions. This is the
main reason why the bulk dual of a CFT is AdS.

m The domain-wall spacetimes are the most general solutions
whose isometry group is the Poincaré group in d dimensions.

Thus, if a QF T has a holographic dual the bulk solution must be
of the domain-wall type.
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The domain-wall/cosmology comespondence

Holographic RG flows

There are two different types of domain-wall spacetimes whose
holographic interpretation is fully understood.

The domain-wall is asymptotically AdSy.. 1,
A(r) —r. ®(r) — 0. as. r—og

This corresponds to a QFT that in the UV approaches a fixed
point. The fixed point is the CFT which is dual to the AdS
spacetime approached as r — ~.
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The domain-wall/cosmology comespondence

Holographic RG flows

There are two different types of domain-wall spacetimes whose
holographic interpretation is fully understood.

The domain-wall is asymptotically AdSy. 1,
Alr)—r.  ®(r)—0, as r—oc

This corresponds to a QFT that in the UV approaches a fixed
point. The fixed point is the CFT which is dual to the AdS
spacetime approached as r — ~.

— The rate at which ®(r) approaches zero signifies whether the QFT
Is a relevant deformation of the CFT or the CFT in a non-conformal
vacuum.
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The domain-wall/cosmology comespondence

Holographic RG flows

H The domain-wall has the following asymptotics
A(r) — nlogr. ®(r) — Vv2nlogr. as I — oc

This case has only been understood very recently
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The domain-wall/cosmology comespondence

Holographic RG flows

The domain-wall has the following asymptotics
A(r) — nlogr.  &(r) — V2nlogr. as r— x

This case has only been understood very recently

— Specific cases of such spacetimes are ones obtained by taking

the near-horizon limit of the non-conformal branes (DO, D1. F1,
D2. D4).
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The domain-wall/cosmology comespondence

Holographic RG flows

The domain-wall has the following asymptotics
A(r) — nlogr. ®(r) — V2nlogr. as I — oc

This case has only been understood very recently

— Specific cases of such spacetimes are ones obtained by taking
the near-harizon limit of the non-conformal branes (DO, D1, F1,
D2, D4).

— These solutions describe QFT's with a dimensionful coupling
constant in the regime where the dimensionality of the coupling
constant drives the dynamics.
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The domain-wall/cosmology comespondence

Domain-wall/cosmology correspondence

Let us see how the correspondence acts on the domain-walls
describing holographic RG flows.

Asymptotically AdS domain-walls are mapped to inflationary
cosmologies that approach de Sitter spacetime at late times,

ds® — ds? — —dt? + ldx'dx’. as [ — oc

The second type of domain-walls is mapped to solutions that
approach power-law scaling solutions at late times,

ds® — ds? = —di® + t2"dx'dx’. as [— o0
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The domain-wall/cosmology comespondence

Holography: a primer

The holographic dictionary for cosmology will be based on the
standard holographic dictionary, so we now briefly review standard
holography:
There is 1-1 correspondence between local gauge invariant
operators O of the boundary QF T and bulk supergravity modes
o.

— The bulk metric corresponds to the energy momentum tensor of
the boundary theory.

— Bulk scalar fields correspond to boundary scalar operators, i.e.
F,uUF#U. i’_**i'_‘. etc.

Carrelation functions of gauge invariant operators can be
extracted from the asymptotics of bulk solutions.
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The :ammﬂwaib'msmnlngy comesponoences

Domain-wall/cosmology correspondence

Let us see how the correspondence acts on the domain-walls
describing holographic RG flows.

Asymptotically AdS domain-walls are mapped to inflationary
cosmologies that approach de Sitter spacetime at late times,

ds® — ds? — —di? + 2ldx'dx’. as [—»oc

The second type of domain-walls is mapped to solutions that
approach power-law scaling solutions at late times,

ds? — ds? = —di® + t2"dx'dx’. as [—oc
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The domain-wall/cosmology comespondence

Holography: a primer

The holographic dictionary for cosmology will be based on the
standard holographic dictionary, so we now briefly review standard
holography:

There is 1-1 correspondence between local gauge invariant
operators O of the boundary QF T and bulk supergravity modes
d.

— The bulk metric corresponds to the energy momentum tensor of
the boundary theory.

— Bulk scalar fields correspond to boundary scalar operators, i.e.
F,LWF”V. f;i'_‘. etc.

Carrelation functions of gauge invariant operators can be
extracted from the asymptotics of bulk solutions.
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The domain-wall/cosmology comespondence

Asymptotic solutions

To understand the holographic computations we need to know a few
things about the structure of solutions of Einstein’s theory with a
negative cosmological constant.

m For the metric, the most general asymptotlc form (in 4 bulk
dimensions) looks like -

ds? = dr? + €% gj(x.r)dx'dx/

= : _3 _
gii(x. r) = G()ij(X) + € grz)ii( X) + € ga)ii( x) +

B g(g)(X) is the metric of the spacetime where the boundary theory
lives and (as such) it is also the source of the boundary energy

momentum fensor. Page 40/106
—
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The domain-wall/cosmology comespondence

Asymptotic solutions

To understand the holographic computations we need to know a few
things about the structure of solutions of Einstein’s theory with a
negative cosmological constant.

m For the metric, the most general asymptotlc form (in 4 bulk
dimensions) looks like

ds? = dr? + % gj(x.r)dx' dx/
gii(x. r) = Goyi(X) + € = grz)i(x) + € gayii(x) +

— The metric with gj(x.r) = n; is the AdS,;.; metric.

B g(g)(X) is the metric of the spacetime where the boundary theory
lives and (as such) it is also the source of the boundary energy
momentum tensor. =
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The domain-wall/cosmology comespondence

Asymptotic solutions

To understand the holographic computations we need to know a few
things about the structure of solutions of Einstein’s theory with a
negative cosmological constant.

m For the metric, the most general asymptotlc form (in 4 bulk
dimensions) looks like

ds? = dr? + €% gj(x.r)dx' dx/
gil(x. r) = Gyi(X) + € ge2yi(X) + €7 gay(x) +

— The metric with gj(x.r) = n; is the AdS,;.; metric.
— The metric with gye)i(X) = n; is an Asymptotically AdS;.+ metric.

B g(g)(X) is the metric of the spacetime where the boundary theory
lives and (as such) it is also the source of the boundary energy
momentum tensor. -
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The domain-wall/cosmology commespondence

Asymptotic solutions

To understand the holographic computations we need to know a few

things about the structure of solutions of Einstein’s theory with a
negative cosmological constant.

m For the metric, the most general asymptotlc form (in 4 bulk
dimensions) looks like

ds? = dr? + €% gj(x.r)dx' dx/
gi(x. r) = G)ii(X) + € ' g2)i(x) + € grayi(x) +

— The metric with gj(x.r) = n; is the AdS,;.; metric.
— The metric with gig)i(Xx) = n; is an Asymptotically AdS;.+ metric.
— The metric with general g(o)(x) is an Asymptotically locally AdSy.
metric.
B g(o)(X) is the metric of the spacetime where the boundary theory
lives and (as such) it is also the source of the boundary energy
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The domain-wail/cosmology comespondence

1-point functions

m Matier fields, e.g. scalar fields. have a similar asympiotic
expansion

ma) = (*-"tu) + ... + ®8 (rjon_a) + doa_g)) + )

where A is the dimension of the dual operator, related to the
mass of ® via m* = A(A — 3).

Page 44/106
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The domain-wall/cosmology commespondence

Asymptotic solutions

To understand the holographic computations we need to know a few

things about the structure of solutions of Einstein’s theory with a
negative cosmological constant.

m For the metric, the most general asymptotlc form (in 4 bulk
dimensions) looks like *

ds? = dr? + % gj(x.r)dx' dx/
gii(x. r) = G)ii(X) + €% gez)i(x) + € grayi(x) +

— The metric with gj(x.r) = n; is the AdS,;.; metric.
— The metric with gie)i(X) = n; is an Asymptotically AdS;.+ metric.
— The metric with general g(o)(Xx) is an Asymptotically locally AdS,.-
metric.
B g(g)(X) is the metric of the spacetime where the boundary theory
lives and (as such) it is also the source of the boundary energy
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The domain-wall/cosmology commespondence

1-point functions

m Matier fields, e.g. scalar fields. have a similar asympioiic
expansion

= _(3-A A3 -
Wer) =+ (*-"{u) — " (riea—s) + dea—a) + )

where A is the dimension of the dual operator, related to the
mass of ® via m* = A(A — 3).

Page 46/106
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The domain-wall/cosmology comespondence

1-point functions

m Matier fields, e.g. scalar fields. have a similar asympiotic
expansion

_(3-A 2A_3
e = F ("—"{u) + ... + €22 (rYon_a) + d2a_z)) + )

where A is the dimension of the dual operator, related to the
mass of ® via m® = A(A — 3).

m Using the formalism of holographic renormalization, we then find
a precise relation between caorrelation functions and asympitotics

3
(Tij) = 5,2 903)ii- (O) =—(2A —3)o2a-3)
— Caorrelators satisfy the expected Ward identities.
\"4 T,J, = —(O) ﬂ'{,’r.‘!{g}. Tf — /. = 3)¢_‘.3{0] O =
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The domain-wall/cosmology comespondence

Higher-point functions

m Higher-point functions are obtained by differentiating the 1-point
functions w.r.i. sources and then setting the sources to their
background value

"-i{n_”gfﬁ'!.-'-j*, (XT } i-

Trh (X1 ) T"zfz(xg) e T}”j”(xn) h f-ig(ﬂ}:'z,&(XEJ == ‘-ig{ﬂifnjn(xn) :.Qrc'}:’?
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The domain-wall/cosmology comespondence

1-point functions

m Matier fields, e.g. scalar fields. have a similar asympiotic
expansion

= _(3-A A3 -
) —ct (*—"{u) + ...+ P2 (rpon_g) +den_g)) + )

where A is the dimension of the dual operator, related to the
mass of ® via m* = A(A — 3).

m Using the formalism of holographic renormalization, we then find
a precise relation between carrelation functions and asymptotics

<
Tf}" = ﬁg{a‘w’* (O) = _(2& - 3)’-"'{2_\—3';

— Caorrelators satisfy the expected Ward identities.
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The domain-wall/cosmology comespondence

Higher-point functions

m Higher-point functions are obtained by differentiating the 1-point
functions w.r.i. sources and then setting the sources to their
background value

r'ig(ﬂ'}';zf.E(Xg) — I';g{ﬂ}-"‘nfn (XH) ;gtﬂ::"?

Tij (X1) Tip (X2) - - - Tinjn(Xn)) ~
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The domain-wall/cosmology comespondence

1-point functions

m Matier fields, e.g. scalar fields. have a similar asympiotic
expansion

_(3—-A A3 -
&(x.r)—e & F (*-"{u) + o+ BRI (rpop 3y + O 3)) + )

where A is the dimension of the dual operator, related to the
mass of ® via m? = A(A — 3).

m Using the formalism of holographic renormalization, we then find
a precise relation between carrelation functions and asympitotics

3
(Tj) = 5. 39@i-  (O) =—(2A —3)d(2a-3)

— Caorrelators satisfy the expected Ward identities.
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The domain-wall/cosmology comespondence

Higher-point functions

m Higher-point functions are obtained by differentiating the 1-point
functions w.r.i. sources and then setting the sources to their
background value

Fi{n_T}g(S'I*(XT } _
09(0)ioix(%2) - - - 9G(0)injn(Xn) | giey=n

Tijy (%) Tigp (%2) - - Tigjo (X)) ~
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The domain-wall/cosmology comespondence

1-point functions

m Matier fields, e.g. scalar fields. have a similar asympiotic
expansion

&’(X- r) = e (‘-”{u) £ e (r’-'{zﬁx—a) + d2a—_3)) + )

where A is the dimension of the dual operator, related to the
mass of ® via m* = A(A — 3).

m Using the formalism of holographic renormalization, we then find
a precise relation between carrelation functions and asympitotics

3 _
. Tfj — &—‘29{-3-.”}:‘ (O = —(2& — S)f.'-',rg_\_a;.

— Caorrelators satisfy the expected Ward identities.
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The domain-wall/cosmology comespondence

Higher-point functions

m Higher-point functions are obtained by differentiating the 1-point
functions w.r.i. sources and then setting the sources to their
background value

{'{{n_T}giaif-_}H lixd| } |
= = |
09(0)ip(X2) - - - 09(0)injn ( Xn) | Gioy=n

Tiojy (%) T (X2) - - - Tigjy (X)) ~
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The domain-wall/cosmology comespondence

Higher-point functions

m Higher-point functions are obtained by differentiating the 1-point
functions w.r.i. sources and then setting the sources to their
background value

‘-ﬂn_”gf_ﬁ:s-ﬁ“{" ) _
r_igm},é&(}(g) e f.ig{ﬂjfnjn(xn) -H'Q'rc'}:’?

7}‘-,!"1 (X1 ) T"z}’z(xz) o T}.nfn{xn) =

m Thus to solve the theory we need to know g(3). o2a_3) as a
function of g(g). o(q)-
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The domain-wail/cosmology comespondence

Higher-point functions

m Higher-point functions are obtained by differentiating the 1-point
functions w.r.i. sources and then setting the sources to their
background value

f-“{”_ngfa-:..'-;e (X1) |
09(0)irip(X2) - - - 09(0)injn (Xn) | gi0r=n

Tij, (x1) Tipy (X2) - - - Tij(Xn)) ~

m Thus to solve the theory we need to know g(3). o2a_3) as a
function of g(g). o(g)-

— This can be obtained perturbatively: 2-point functions are
obtained by solving linearized fluctuations, 3-point functions by
solving quadratic fluctuations etc.
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The domain-wail/cosmoiogy comespondence

Correlation functions for holographic RG flows

m [o compute 2-point functions we perturb around the domain-wall

ds®> = dr? + 0[5, + hy(r.x")]dx dx!

® = o(r)+do(r.x")
where hj = & (r, x))65 + didp (r. x) +~ji(r. x")

W ;i Is transverse traceless and we form the gauge invariant
combination { = —'/2 + (H/2)de and H = —W /2, with W the
fake superpotential.
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The domain-wall/cosmology comespondence

Correlation functions for holographic RG flows

m The linearized equations are given by [2iz
O — (@l G
o — ::'j e SH;-,}—C_}'EG_EA“,};.

m Comparing with the cosmological perturbations, we find that the
equations are mapped to each provided

q=—Iq
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The domain-wall/cosmology commespondence

Correlation functions for holographic RG flows

m [o compute 2-point functions we perturb around the domain-wall

ds® = dr* + &g + hy(r, x')]|dx dx!

® — o(r)+dp(r,x")
where hj = ¥(r. x')dj + didpx (r. X') + ~j(r.x")
W ;i is transverse traceless and we form the gauge invariant
combination { = —¢'/2 + (H/%)dp and H = —W /2, with W the

fake superpotential.
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The domain-wall/cosmology comespondence

Higher-point functions

m Higher-point functions are obtained by differentiating the 1-point
functions w.r.i. sources and then setting the sources to their
background value

’-i{”_Tjgts-:.e'- i (X1) {

(e} liila)--- KEilOn)) ~ - = |
iy (X1) Tipip (X2) iin (Xn) 09(0)inp (X2) - - - 9(0)injin (Xn) | Gi0y=n

m Thus to solve the theory we need to know g(3). o2a_3) as a
function of g(g). o(0)-
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The dom am—waib'l::usmnlngy comesponoences

1-point functions

m Matier fields, e.g. scalar fields. have a similar asympitotic
expansion

- _(3-A 2A—3 '
e = ("—"[u) + ...+ P2 (rdon_3)+ dea_gz)) + )

where A is the dimension of the dual operator, related to the
mass of ® via m* = A(A — 3).

m Using the formalism of holographic renormalization, we then find
a precise relation between carrelation functions and asympiotics

3 |
(Tj) = 5 39@i-  (O) =—(2A —3)o2a-3)

— Caorrelators satisfy the expected Ward identities.
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The domain-wall/cosmology comespondence

Higher-point functions

m Higher-point functions are obtained by differentiating the 1-point
functions w.r.i. sources and then setting the sources to their
background value

fi{n_TJQ[Sﬁ (XT } |
r_ig(ﬂ},fz&(}(g) =" ’.ig(ﬂ}fnjn(xn) i.Q'r-f}l:’?

i (X%1) Ty (X2) - - - Tiju(Xa)) ~
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The domain-wall/cosmology comespondence

Higher-point functions

m Higher-point functions are obtained by differentiating the 1-point
functions w.r.i. sources and then setting the sources to their
background value

;j‘{n—T]gw = (x1) |
f-gg(ﬂ}.‘z,{-;(xﬂ e "-ig(ﬂifnjn(xﬂ) ?Q'tm:’?

Tij, (0a) Tip(X2) - - - Tijo(Xa)) ~

m Thus to solve the theory we need to know g(3). o2a_3) as a
function of g(q). o(q)-

— This can be obtained perturbatively: 2-point functions are
obtained by solving linearized fluctuations, 3-point functions by
solving quadratic fluctuations etc.
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The domain-wall/cosmology comespondence

Correlation functions for holographic RG flows

m [o compute 2-point functions we perturb around the domain-wall

ds®> = dr? + A5, + hi(r.x")]|dx dx!

® = o(r)+oo(r.x"
where hj = & (r. x')d5 + 99 (r. x') + ~ii(r. x")

W ;i Is transverse traceless and we form the gauge invariant
combination { = —'/2 + (H/$)dp and H = —W /2, with W the
fake superpotential.
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Correlation functions for holographic RG flows

Pi

IIIII

The domain-wall/cosmology comespondence

m The linearized equations are given by =iz

g — [SH——F f‘) q"e

o ;',}-—SH —gPe Ay,

ij>

2A

m Comparing with the cosmological perturbations, we find that the

equations are mapped to each provided

qg=—Iq

: 09070032
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The domain-wail/cosmology comespondence

Correlation functions for holographic RG flows

One can now exiract the correlators from the asymptotics of the
linearized solution. It is convenient to work in terms of response
functions [F |

S =Qc, M =Ey

where [1¢, 1} are radial canonical momentum densities.
The 2-point {unctlon of the energy momentum tensor is then given by

(Ti(q) Tk(—q)) = A(q)Nji + B(q)mijjmu-
where
A@Q) = —4[E(9)]y

B@ = — [2@)],.
4 (0)

The subscript indicates that one should pick the term with appropriate

“scaling in the asymptotic expansion.




The domain-wall/cosmology comespondence

Coarrelation functions for holographic RG flows

m The linearized equations are given by ==

0 = (+(BH+¢/e)—FPe 2

- S
= {','—SH ij—q € iji-

m Comparing with the cosmological perturbations, we find that the
equations are mapped to each provided

qg=—iq
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The domain-wail/cosmology comespondence

Correlation functions for holographic RG flows

One can now exiract the correlators from the asympitotics of the
linearized solution. It is convenient to work in terms of response
functions [F | -

i< =0c. M =Ey

where [1¢. 1} are radial canonical momentum densities.
The 2-point IJUHC’[]OT'I of the energy momentum tensor is then given by

Ti(9) Tu(—q)) = A(q)Njix + B(q)mjjmu-
where
A(g) = —4[[:(6;}]{0)

B@) — —[2@)]q-

The subscript indicates that one should pick the term with appropriate

“scaling in the asymptotic expansion.




The domain-wall/cosmology comespondence

1-point functions

m Matier fields, e.g. scalar fields. have a similar asympiotic
expansion

ox.r)—="F ("—"{u) e e (rdea-3) + 9@a—3)) + )

where A is the dimension of the dual operator, related to the
mass of ® via m* = A(A — 3).

m Using the formalism of holographic renormalization, we then find
a precise relation between carrelation functions and asympitotics

3
(Tj) = 2,2 9)ii (O) = —(2A —3)o@a—_3)

— Caorrelators satisfy the expected Ward identities.

Pirsa: 09070032 T: TU = O T‘_:JJ"’__’{G} p -)rf‘r = [A = 3)(:}{01 \ o Page 69/106




The domain-wall/cosmology comespondence

1-point functions

m Matier fields, e.g. scalar fields. have a similar asympiotic
expansion

- _(3-A A3 -
&)+ "" (*-"{u) + ... + €22 (rjon_z) + d2a_z)) + )

where A_is the dimension of the dual operator, related to the
mass of ® via m* = A(A — 3).

Page 70/106
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The domain-wall/cosmology commespondence

1-point functions

m Matier fields, e.g. scalar fields. have a similar asympiotic
expansion

S _(3-A 2A—3 -
M) —="* (‘-”{u) e " (réea—s) + dea-a)) + )

where A is the dimension of the dual operator, related to the
mass of ® via m* = A(A — 3).

m Using the formalism of holographic renormalization, we then find
a precise relation between carrelation functions and asympiotics

3
| Tf’f E ﬁg{-g};;- 0 = _(2& == 3)“-'-‘-:2;\.—31.

— Caorrelators satisfy the expected Ward identities.
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The domain-wall/cosmology comespondence

Higher-point functions

m Higher-point functions are obtained by differentiating the 1-point
functions w.r.i. sources and then setting the sources to their
background value

o gayiji (x1) |
09(0)iio(X2) - - - 09(0)injn (Xn) | g0r=n

(Tiojy (1) Tiop (X2) - - - Tigjo (X)) ~

m Thus to solve the theory we need to know g(3). o2a_3) as a
function of g(g). o(0)-

— This can be obtained perturbatively: 2-point functions are
obtained by solving linearized fluctuations, 3-point functions by
solving quadratic fluctuations etc.
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The domain-wall/cosmology comespondence

Carrelation functions for holographic RG flows

m [o compute 2-point functions we perturb around the domain-wall

ds®> = dr? + A5, + hy(r.x")]dx dx!

® = o(r)+do(r.x"
where hj = & (r, x)65 + idp (r. x) + ~ji(r. x")

W jj Is transverse traceless and we form the gauge invariant
combination { = —'/2 + (H/$)dp and H = —W /2, with W the
fake superpotential.
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The domain-wall/cosmology comespondence

Correlation functions for holographic RG flows

m The linearized equations are given by (-
0 = (+(BH+¢/e)(—gPe 2
g — :,}' 5 SH;-,};—EJEG_EA“,}

m Comparing with the cosmological perturbations, we find that the
equations are mapped to each provided

q=—Iiq
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The domain-wall/cosmology comespondence

Correlation functions for holographic RG flows

One can now exiract the correlators from the asymptotics of the
linearized solution. It is convenient to work in terms of response
functions [F |

S =Qc, M =Ey

where [1¢. 1} are radial canonical momentum densities.
The 2-point {unctlon of the energy momentum tensor is then given by

Ti(q) Tu(—9q)) = A(g)Nij + B(q)mjjmw-
where
A(G) = —4[!::(@}][0)

= e
B(q) = 4 [-Q(C”Lg}*

The subscript indicates that one should pick the term with appropriate

“scaling in the asymptotic expansion.




Holography for Cosmoilogy

Qutline

Holography for Cosmology
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Wesakiy coupled gravily

Holography for Cosmology

Holography for cosmology

Applying the analytic continuation,
=t g=—Iqg

one finds a direct relation between:

m power spectra and holographic 2-point functions,

== —1 _2q° —1
=4 =5 (SImB(—:‘q))‘ R (ImA(—f'q)

m non-Gausianities and holographic higher-point functions.

irsa: 09070032
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Holography for Cosmology Weakly coupled gravily

Example 1: power-law cosmology

m Consider the potential
V() = Voexp(—v/2/nryp)
m The corresponding solution is
ds® = —di? + (t/ty)"dx'dx’. ko =V2nInt/f

m When n = 7 this solution is related via the DW/cosmology
correspondence to the near-horizon limit of a stack of D2 branes.
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Holography for Cosmology Wesakly coupied gravity

Example 1: power-law cosmology

m The holographic 2-point functions have been computed for any n

2w
4°12(g) sinwo

A(q) =2nB(q) = — K2

wherec =(3n—-1)/(n—1) > 3/2.
m Using the analytic continuation one obtains

16 412
IDE{C]J = F slg) = (rT 2q3 20

which is the correct answer.
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Wesakily coupled gravity

Holography for Cosmology

Example 2: Asymptotically dS cosmologies

m These resulis essentially follow from earlier work

m The corresponding domain-walls are asympitotically AdS and the
boundary theory is either a deformation of the CFT or the CFT in
a non-trivial state.

m The slow-roll parameter is related to the beta function of the
boundary theory.
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Wesakly coupled gravily

Holography for Cosmology

Analytic continuation in QF T variables

m The analytic continuation

-4
ted
|

o |
©

=i g = —iq.
translates in QFT language to

N — iN. qg— —Iqg
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Wesakiy coupled gravily

Holography for Cosmology

The proposal

A given inflationary model, based on a single scalar model, can
be mapped to a domain-wall via the domain-wall/cosmology
correspondence.

B As we discussed. these domain-walls are the ones with
operational gauge/gravity duality, I.e. there is a dual QFT via the
usual gauge/gravity duality.

The analytic continuation that enters in the DW/cosmology

correspondence can be expressed entirely in terms of QFT
variables.

We now apply this analytic continuation to the QFT dual of the
domain-wall to obtain the QFT dual of the inflationary model.
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Holography for Cosmology

The proposal

Holographic
RG Flow

¥ 3
Domain Wall/

Cosmology
correspondence

v

Cosmology

Pirsa: 09070032
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Holography for Cosmology e e

Pseudo-QFT

We operationally define the pseudo-QF T as follows:

m we do the computation in the QFT dual to the domain-wall and
then analytically continue parameters and momenta
appropriately.

Perhaps a more fundamental perspective is to consider the QFT
action with complex parameters as the fundamental object.

m Then the resulis on different real domains will be applicable to
DW/cosmology as appropriate.

— The supergravity realization of the DW/cosmology
correspondence works this way.
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Holography for Cosmology g —

Domain-wall/Cosmology correspondence in SUGRA

m In some cases, one can embed the DW/cosmology
correspondence in supergravity [E

— In these cases, there is a common supergravity action with
complex-valued fields, which becomes AdS supergravity or dS
supergravity, depending on the reality conditions imposed on the
fields.

— Domain-wall solutions of AdS SUGRA are mapped to
cosmological solutions of dS SUGRA.

— Cosmologies can be supersymmeiric solutions of dS SUGRA
and fake susy Is genuine susy in this contexi.
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Beyond weak gravitational description

Qutline

Beyond weak gravitational description
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Beyond weak gravitational description

Beyond weak gravitational description

m So far the discussion was on the gravitational side.

m We inferred a QF T description using the AdS/CFT
correspondence and analytic continuation, but all computations
were done on the gravitational side.

m When gravity is sirong coupled the QFT description is weakly
coupled. so one may use the duality.

m This allows us to compute the late time behavior of the response
functions and therefore the power spectra etc when the early
time behavior is strongly coupled/stringy.
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Holographic phenomenology for cosmology

Beyond weak gravitational description

Holographic phenomenology for cosmology

m The boundary theory will be a combination of gauge fields,
fermions and scalars and it should admit a large N expansion.

m To exiract predictions we need to compute the coefficienis A and
B,
Tii(9) Tu(—9q)) = A(q)Nj + B(q)mjjmH-
analytically continue the result and insert in the formulae for the
power specira.

m One can then look for a holographic theory that models well the
observations.
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Beyond weak gravitational description

Beyond weak gravitational description

m So far the discussion was on the gravitational side.

m We inferred a QF T description using the AdS/CFT
correspondence and analytic continuation, but all computations
were done on the gravitational side.

m When gravity is sirong coupled the QFT description is weakly
coupled. so one may use the duality.

m This allows us to compute the late time behavior of the response
functions and therefore the power spectra etc when the early
time behavior is strongly coupled/stringy.
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Holographic phenomenology for cosmology

Beyond weak gravitational description

Holographic phenomenology for cosmology

m The boundary theory will be a combination of gauge fields.
fermions and scalars and it should admit a large N expansion.

m To exiract predictions we need to compuie the coefficients A and
B,
Ti(9) Tw(—9q)) = A(q)Nj + B(q)mjimw-
analytically continue the result and insert in the formulae for the
power spectra.

m One can then look for a holographic theory that models well the
observations.
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Beyond weak gravitational description

Qutline

Beyond weak gravitational description
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Holographic phenomenology for cosmology

Beyond weak gravitational description

Holographic phenomenology for cosmology

m The boundary theory will be a combination of gauge fields.
fermions and scalars and it should admit a large N expansion.

m To exiract predictions we need to compuie the coefficienis A and
B,
Ti(9) Tw(—9q)) = A(q)Nje + B(q)wjm-
analytically continue the result and insert in the formulae for the
power spectra.

m One can then look for a holographic theory that models well the
observations.
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Holographic phenomenology for cosmology

Beyond weak gravitational description

Holographic phenomenology for cosmology

m As a starting point one can consider the strong coupling version
of asymptotically dS cosmologies and power-law cosmology.

m In this talk we focus on QFI's dual to the latter. These are
super-renormalizable QFTs that depend on a single dimensionful
coupling. For example, the g7,, coupling constant.

m The leading coniribution to the 2-point function of the energy
momentum tensor is at 1-loop. Since T; has dimension 3,

A@) ~ N2, B(g) ~ N°g

— A generic such holographic model has a scale
invariant spectrum!
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Holographic phenomenology for cosmology

Beyond weak gravitational description

Fixing the parameters of the holographic model

m N is fixed by comparing the amplitude of the power spectra with

the holographic value. Recall that it is A—'. B~ that enter in the
specira.

— Smallness of the amplitude implies N > 1, so the large N
expansion is justified.

m g5, is fixed by the tilt of the spectrum. More precisely, the form
of the leading correction is determined by dimensional analysis

Ns — | = 3Geff — ::g%MN:’;q

where # is a model depended constant.
— |In these theories the scalar index runs

an _
g — dlnsq —b e — 'T]] ~ 0.04
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Holographic phenomenology for cosmology

Beyond weak gravitational description

Holographic phenomenology for cosmology

m As a starting point one can consider the strong coupling version
of asympitotically dS cosmologies and power-law cosmology.

m In this talk we focus on QF I's dual to the latter. These are
super-renormalizable QFTs that depend on a single dimensionful
coupling. For example, the g7,, coupling constant.

m The leading coniribution to the 2-point function of the energy
momentum tensor is at 1-loop. Since T; has dimension 3,

A@) ~ N, B(@) ~ N3F

— A generic such holographic model has a scale
invariant spectrum!
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Holographic phenomenology for cosmology

Beyond weak gravitational description

Fixing the parameters of the holographic model

m N is fixed by comparing the amplitude of the power spectra with
the holographic value. Recall that itis A—'. B~ that enter in the
specira.

— Smallness of the amplitude implies N > 1, so the large N

expansion is justified.

m g3, is fixed by the tilt of the spectrum. More precisely, the form
of the leading correction is determined by dimensional analysis

Ns — | = 7Ger = f:g’i%MN /q

where # is a model depended constant.
— |In these theories the scalar index runs

_ dns .- =
g — d]n q =t ﬂs — ‘T) = 004
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Holographic phenomenology for cosmology

Beyond weak gravitational description

Other cosmological observables

m The tensor-to-scalar ratio is given by

_._ImB(—ig)
F = A(—ig)

In these models, vectors and scalars have A = B and conformally
coupled scalars and fermions have B=0 to leading order. It
follows that with appropriaiely chosen field content one can

achieve
r < 022

® Once N and Q%M (at some scale) and the field content are fixed.
all other cosmological observables such as non-Gaussianities
etc uniquely follow by straightforward computations.
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Holographic phenomenology for cosmology

Beyond weak gravitational description

Fixing the parameters of the holographic model

m N is fixed by comparing the amplitude of the power spectra with

the holographic value. Recall that itis A—'. B~ that enter in the
specira.

— Smallness of the amplitude implies N > > 1, so the large N
expansion is justified.

m g5, is fixed by the tilt of the spectrum. More precisely, the form
of the leading correction is determined by dimensional analysis

Ns — | = 7Gefr = IZQaE/MN /q

where # is a model depended constant.
— |In these theories the scalar index runs

dns _
{ = =] —| — 'T ~ i
kg d]n q . ﬂs ) O 04
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Holographic phenomenology for cosmology

Beyond weak gravitational description

Other cosmological observables

m [he tensor-to-scalar ratio is given by

 __ImB(—iq)
F = Al—ig)

In these models, vectors and scalars have A = B and conformally
coupled scalars and fermions have B=0 to leading order. It
follows that with appropriaiely chosen field content one can

achieve
r < 0.22

m Once N and g%, (at some scale) and the field content are fixed,
all other cosmological observables such as non-Gaussianities
etc uniquely follow by straightforward computations.
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Holographic phenomenology for cosmology

Beyond weak gravitational description

— These models are extremely predictive!
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Conciusions

Qutline

B Conclusions
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Conclusions

Conclusions

m | have presented a concrete proposal for holography for
cosmology.

m When gravity is weakly coupled, holography correctly reproduces
standard resulis for cosmological observables.

m When gravity is strongly coupled, one finds new models that
have a QF T description.

m We initiated a holographic phenomenological approach to
cosmology.
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Conclusions

Holographic phenomenology

m Generic holographic models lead to a scale invariant spectrum.

m One can find models that fit all current observations. This fixes
the parameters of the model, N. g_E;M, and constrains the field
content.

m Further cosmological cbservables are compuiable, essentially
with no further adjustable parameters.
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Conclusions

m Further develop holographic phenomenology.

m Uitilize connection of cosmological observables to QFT
correlators to find more efficient ways to perform bulk
computations (e.g. computations of non-gausianities).
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Conciusions

m Further develop holographic phenomenology.

m Uitilize connection of cosmological observables to QFT
correlators to find more efficient ways to perform bulk
computations (e.g. computations of non-gausianities).

B Understand better the analytic continuation on the QFT side. Do
"pseudo-QFT"s exist?

m Understand betier the analytic continuation in the bulk. What is
the meaning of the relation with dS supergraviiies and the M~
and /I* theories? What are the implications of
pseudo-supersymmetry?
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