Title: Dark Matter in Holographic Geometry

Date: Jul 17, 2009 04:00 PM

URL: http://pirsa.org/09070026

Abstract: TBA

Pirsa: 09070026 Page 1/55

Holographic DM

ARF

utline

istory

elics

ectrum

ecays

iscussion

ımmary

Dark Matter in Holographic Geometry

Andrew R. Frey

McGill University

with Jim Cline and Rebecca Danos to appear shortly

Pirsa: 09070026

Motivation

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

iscussion

ımmary

Exploring a Corner of the Landscape

- Looking for UV understanding of our EFT
- Generic constraints possible, generic predictions harder
- So hammer on specific class of models
- Pointer to interesting cases for details
- Eventually connect to dark matter modeling

Also a nice case study of traditional holography in cosmology

Pirsa: 09070026 Page 3/55

Motivation

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

iscussion

ımmary

Exploring a Corner of the Landscape

- Looking for UV understanding of our EFT
- Generic constraints possible, generic predictions harder
- So hammer on specific class of models
- Pointer to interesting cases for details
- Eventually connect to dark matter modeling

Also a nice case study of traditional holography in cosmology

Pirsa: 09070026 Page 4/55

Outline

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

iscussion

ımmary

- Mistory of Holography & String Cosmology
- 2 Reheating and Kaluza-Klein Relics
- 3 The Spectrum & Dark Matter Candidates
- 4 Interactions and Decay Rates
- **5** Discussion of Results

History of Holography & String Cosmology

Holographic DM

ARF

utline

istory

S Throats

elics

pectrum

ecays

iscussion

ımmary

In place of the normal obligatory review:

AdS_5 and Compactification

• Two roles for AdS_5

(Maldacena; Randall & Sundrum)

- Dual gravity to CFT
- Warping for hierarchies
- Similar timing
- Build RS with D3 (Verlinde)
 - Just put branes on torus
 - Infinite throat, moduli

Pirsa: 09070026 Page 6/55

Holographic DM

ARF

utline

istory

S Throats

iffation

elics

pectrum

ecays

iscussion

ımmary

Early Flux Compactifications

- M-theory on CY_4 with fluxes (Beckers)
- Dualized to IIB strings (Dasgupta, Rajesh, & Sethi)
- Crossed flux stabilizes complex structure, not Kähler

Holographic Catalyst

- Dual of confinement (Klebanov & Strassler)
 - Finite warping at smooth tip
 - Same class of geometry
- Connection (Giddings, Kachru, & Polchinski)
 - Throats glue to bulk CY
 - D3 and D7 allowed

History of Holography & String Cosmology

Holographic DM

ARF

utline

istory

S Throats
iffation

elics

pectrum

ecays

iscussion

ımmary

In place of the normal obligatory review:

AdS_5 and Compactification

Two roles for AdS₅

(Maldacena; Randall & Sundrum)

- Dual gravity to CFT
- Warping for hierarchies
- Similar timing
- Build RS with D3 (Verlinde)
 - Just put branes on torus
 - Infinite throat, moduli

Pirsa: 09070026 Page 8/55

Holographic DM

ARF

utline

istory

S Throats

iflation

elics

pectrum

ecays

iscussion

ımmary

Early Flux Compactifications

- M-theory on CY_4 with fluxes (Beckers)
- Dualized to IIB strings (Dasgupta, Rajesh, & Sethi)
- Crossed flux stabilizes complex structure, not Kähler

Holographic Catalyst

- Dual of confinement (Klebanov & Strassler)
 - Finite warping at smooth tip
 - Same class of geometry
- Connection (Giddings, Kachru, & Polchinski)
 - Throats glue to bulk CY
 - D3 and D7 allowed

Holographic DM

ARF

utline

istory

S Throats

iffation

elics

pectrum

ecays

scussion

*ı*mmary

Early Flux Compactifications

- M-theory on CY_4 with fluxes (Beckers)
- Dualized to IIB strings (Dasgupta, Rajesh, & Sethi)
- Crossed flux stabilizes complex structure, not Kähler

Holographic Catalyst

- Dual of confinement (Klebanov & Strassler)
 - Finite warping at smooth tip
 - Same class of geometry
- Connection (Giddings, Kachru, & Polchinski)
 - Throats glue to bulk CY
 - D3 and D7 allowed

Holographic DM

story

S Throats

KS Throat Geometry

External & internal warping

$$ds^2 = e^{2A} dx_\mu dx^\mu + e^{-2A} d\tilde{s}^2$$

Locally conifold geometry

$$d\tilde{s}^2 = e^{-2kz} \left[dz^2 + \frac{1}{k^2} d\hat{s}^2 \right]$$

•
$$d\hat{s}^2$$
 is $T^{1,1} \sim S^3 \times S^2$

Spacetime and radius form AdS₅

$$ds_5^2 = e^{-2kz} dx_\mu dx^\mu + dz^2$$

- Dual to CFT with log corrections
- Smooth tip with finite S^3 at z_0

Inflation in the Throat

Holographic DM

ARF

utline

istory

S Throats

iflation

...

SOUTHIN

ecavs

iscussion

ımmary

Kähler and brane moduli stabilized by quantum or α' physics Drives inflation (which will yield our relics)

Brane Inflation

- Motion driven by stabilization (Baumann et al)
- Interaction dual to chiral VEVs
- Generally from deformed throat (Baumann et al)
 - Classification from CFT
 - Duality controls deformations (Corrections only at log level)
 - Stabilization gives key ones

Pirea: 00070026

Inflation in the Throat

Holographic DM ARF

utline

istory

S Throats

.

pectrum

ecays

iscussion

ımmary

Kähler and brane moduli stabilized by quantum or α' physics Drives inflation (which will yield our relics)

Brane Inflation

- Motion driven by stabilization (Baumann et al)
- Interaction dual to chiral VEVs
- Generally from deformed throat (Baumann et al)
 - Classification from CFT
 - Duality controls deformations (Corrections only at log level)
 - Stabilization gives key ones

Pirsa: 09070026 Page 13/55

Reheating and Kaluza-Klein Relics

Holographic DM

ARF

utline

istory

elics

ngular Ki revious

pectrum

ecays

iscussion

ımmarv

Many Modes Excited in Reheating

- Inflaton couples to many sectors, not just SM
- KK modes typically excited
- Must spread or tunnel through extra dimensions

 Can energy get stuck in closed strings?

(Barnaby, Burgess, & Cline; ARF, Mazumdar, & Myers; Chialva, Shiu, & Underwood; Kofman & Yi; ...)

Angular KK Modes as Relics

Holographic DM

ARF

utline

istory

elics

ngular KK

revious

pectrum

ecays

scussion

ımmary

Approximate isometries of throats lead to relics (Kofman & Yi)

Isometries of KS Throat

- $T^{1,1}$ has $SU(2)^2/U(1)$ isometry
- Broken by bulk effects
- Angular modes localized at tip
- Potentially long-lived
- Similar for other throats

Conflicting views of relics

- Overclose the universe
- Relics thermalize:
 DM candidate (Chen & Tye)
- Page 15/55

Angular KK Modes as Relics

Holographic DM

ARF

ngular KK

Approximate isometries of throats lead to relics (Kofman & Yi)

Isometries of KS Throat

- $T^{1,1}$ has $SU(2)^2/U(1)$ isometry
- Broken by bulk effects
- Angular modes localized at tip
- Potentially long-lived
- Similar for other throats

Conflicting views of relics

- Overclose the universe
- Relics thermalize: DM candidate (Chen & Tye)
- Assume TeV scale DM

Previous Studies

Holographic DM

ARF

utline

istory

elics ngular KK **revious**

pectrum

ecays

iscussion

ımmary

- Thermalization estimated in reheating papers
 (Kofman & Yi; Chialva, Shiu, & Underwood; von Harling, Hebecker, & Noguchi)
- KK modes as glueballs without angular charge (von Harling & Hebecker)
- Graviton KK modes:
 - More detailed thermal history (Chen & Tye; Dufaux, Kofman, & Peloso)
 - Interactions and decays not generic among KK modes
- Classification of angular KK modes (Berndsen, Cline, & Stoica)
 - Tentative identification of lightest long-lived state
- All considered only classical throat deformations
- We will reconsider angular KK modes and scan decay rates

Pirsa: 09070026 Page 17/55

The Spectrum & Dark Matter Candidates

Holographic DM

ARF

utline

istory

elics

pectrum

K Modes

ecave

iscussion

ummary

Angular charges

- Classify states & deformations by $SU(2) \times SU(2)/U(1)$ charge
- Total spins j, l and $r = (j_3 l_3)/2$
- Sum $j_3 + l_3$ constrained (for ex, = 0 for scalars)

States of interest

- Light states: moduli, D-brane ("SM") degrees of freedom:
 Decay products and possible end states of thermalization
- KK modes: charged and uncharged (intermediate states)

The Spectrum & Dark Matter Candidates

Holographic DM

ARF

utline

istory

elics

pectrum

K Modes

erave

iscussion

ımmary

Angular charges

- Classify states & deformations by $SU(2) \times SU(2)/U(1)$ charge
- Total spins j, l and $r = (j_3 l_3)/2$
- Sum $j_3 + l_3$ constrained (for ex, = 0 for scalars)

States of interest

- Light states: moduli, D-brane ("SM") degrees of freedom:
 Decay products and possible end states of thermalization
- KK modes: charged and uncharged (intermediate states)

Moduli and Other Light States

Holographic DM

ARF

utline

istory

elics

sectrum

ight Modes K Modes

ecays

scussion

ımmary

Supergravity states

- Graviton, of course
- Universal volume modulus & axion
- Kähler moduli, possibly some charged
- Deformation modulus lifted by flux Like other complex structure moduli (May be lighter than warped scale)
- Possibly charged gauge fields
- Spread through bulk of CY

rsa: 09070026 Page 20/55

Moduli and Other Light States

Holographic DM

ARF

utline

istory

elics

pectrum

ight Modes

K Modes

ecays

iscussion

ımmary

$$w = e^{-kz_0}$$

D3-brane Standard Model

- Drawn to tip of throat
- Brane scalars as SUSY partners
- Fermions from 10D superspace

$$\mathcal{L} = -\frac{\mu_3}{2} w^3 \bar{\Theta} \partial\!\!\!/ \Theta$$

Gauge fields

$D7 ext{-}\mathsf{brane}$ Standard Model

- 4-cycle from bulk to z₁
- Normalization dominated by bulk
- KK couplings by throat
- Page 21/55

Moduli and Other Light States

Holographic DM

ARF

utline

istory

elics

pectrum

ight Modes

K Modes

ecays

scussion

ımmary

$$w = e^{-kz_0}$$

D3-brane Standard Model

- Drawn to tip of throat
- Brane scalars as SUSY partners
- Fermions from 10D superspace

$$\mathcal{L} = -\frac{\mu_3}{2} w^3 \bar{\Theta} \partial\!\!\!/ \Theta$$

Gauge fields

D7-brane Standard Model

- 4-cycle from bulk to z₁
- Normalization dominated by bulk
- KK couplings by throat
- Consider scalars & fermions 22/55

Holographic DM

ARF

utline

istory

elics

sectrum ight Modes K Modes

ecays

iscussion

ımmary

Finding a DM Candidate

- Want lightest charged state for DM candidate
- Known spectrum of $T^{1,1}$ KK masses (Ceresole et al)
- Mass from flux (or quantum/lpha') model-dependent
- Use lightest KK mass as proxy DM candidate

$T^{1,1}$ Breathing Mode

- KK mass at BF bound for (1,0,0)
- Simple structure but couples generally
- Graviton modes much heavier
- Wavefunction

Page 23/55

Holographic DM

ARF

utline

istory

elics

ight Mode K Modes

ecavs

scussion

ımmary

Finding a DM Candidate

- Want lightest charged state for DM candidate
- Known spectrum of $T^{1,1}$ KK masses (Ceresole et al)
- Mass from flux (or quantum/ α') model-dependent
- Use lightest KK mass as proxy DM candidate

- KK mass at BF bound for (1,0,0)
- Simple structure but couples generally
- Graviton modes much heavier
- Wavefunction (also for uncharged)

$$\delta \gamma^{\star} \propto w^{1+
u_{\star}} e^{(2+
u_{\star})z} \; , \; \; \nu_{\star}^2 = 4 + m_5^2$$

Holographic DM

ARF

utline

istory

elics

ight Modes

K Modes

ecays

iscussion

ımmary

Finding a DM Candidate

- Want lightest charged state for DM candidate
- Known spectrum of $T^{1,1}$ KK masses (Ceresole et al)
- Mass from flux (or quantum/ α') model-dependent
- Use lightest KK mass as proxy DM candidate

- KK mass at BF bound for (1,0,0)
- Simple structure but couples generally
- Graviton modes much heavier
- Wavefunction (also for uncharged)

$$\delta \gamma \propto w^{1+
u} \; e^{(2+
u)z} \; , \;\;
u^2 = 4 + m_5^2$$

Holographic DM

ARF

utline

istory

elics

sectrum ight Modes IK Modes

ecave

iscussion

ımmary

Finding a DM Candidate

- Want lightest charged state for DM candidate
- Known spectrum of $T^{1,1}$ KK masses (Ceresole et al)
- Mass from flux (or quantum/ α') model-dependent
- Use lightest KK mass as proxy DM candidate

- KK mass at BF bound for (1,0,0)
- Simple structure but couples generally
- Graviton modes much heavier
- Wavefunction (also for uncharged)

$$\delta \gamma^{\star} \propto w^{1+
u_{\star}} e^{(2+
u_{\star})z} \; , \; \; \nu_{\star}^2 = 4 + m_5^2$$

Holographic DM

ARF

utline

istory

elics

ight Modes

ecavs

iscussion

ımmary

Finding a DM Candidate

- Want lightest charged state for DM candidate
- Known spectrum of $T^{1,1}$ KK masses (Ceresole et al)
- Mass from flux (or quantum/ α') model-dependent
- Use lightest KK mass as proxy DM candidate

- KK mass at BF bound for (1,0,0)
- Simple structure but couples generally
- Graviton modes much heavier
- Wavefunction (also for uncharged)

$$\delta \gamma \propto w^{1+
u} \; e^{(2+
u)z} \; , \; \;
u^2 = 4 + m_5^2$$

Interactions and Decay Rates

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

fixings UGRA G-brane

iscussion

ımmary

Decays need some access to symmetry breaking

Isometry Breaking by Throat Deformation

- The compactification breaks the isometry
- Deformations controlled by dual CFT
- Focus on non-classical, growing deformations
- KK scatters from deformation, loses charge, decays

Background Isometry Breaking

- Brane positions break some isometries
- Moduli with nontrivial angular motion in throat
 Spread through bulk with explicit breaking

Pirea: 00070026

Interactions and Decay Rates

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

fixings UGRA G-brane 17-brane

iscussion

ımmary

Decays need some access to symmetry breaking

Isometry Breaking by Throat Deformation

- The compactification breaks the isometry
- Deformations controlled by dual CFT
- Focus on non-classical, growing deformations
- KK scatters from deformation, loses charge, decays

Background Isometry Breaking

- Brane positions break some isometries
- Moduli with nontrivial angular motion in throat
 Spread through bulk with explicit breaking

Pirsa: 09070026 Page 29/55

Mass Mixing from Deformation

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

lixings

UGRA

ISCHISSION

ımmary

Deformation by Breathing Mode

- $T^{1,1}$ breathing has relevant deformations Charge (1,0,0), (0,1,0), or $(1/2,1/2,\pm 1)$
- Not allowed in classical compactification
- Supersymmetric (Baumann et al)
- Protected by dual CFT
- Leading for us: $\Delta \gamma \approx w^4 e^{2kz}$

Other Deformations

- All supergravity fields support deformations
- Classically allowed have larger prefactors but are irrelevant
- Different KK states scatter from different deformations
- Tabulate rules to modify decay rates

Mass Mixing from Deformation

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

lixings

3-brane

17-brane

ISCUSSION

ımmary

Deformation by Breathing Mode

- $T^{1,1}$ breathing has relevant deformations Charge (1,0,0), (0,1,0), or $(1/2,1/2,\pm 1)$
- Not allowed in classical compactification
- Supersymmetric (Baumann et al)
- Protected by dual CFT
- Leading for us: $\Delta \gamma \approx w^4 e^{2kz}$

Other Deformations

- All supergravity fields support deformations
- Classically allowed have larger prefactors but are irrelevant
- Different KK states scatter from different deformations
- Tabulate rules to modify decay rates

Page 31/55

Mass Mixing from Deformation

Holographic DM

ARF

utline

istory

elics

pectrum

ecavs

lixings

13-brane

iscussion

ımmary

Quadratic Terms in Potential

• Scan for $\delta \gamma^* \Delta \gamma \delta \gamma$ terms in potential

$$U \propto \int d^6y \sqrt{\tilde{g}} \tilde{R} - \frac{g_s}{12} \int d^6y \sqrt{\tilde{g}} e^{4A} G_{mnp} \left(\bar{G} - i \tilde{\star}_6 \bar{G} \right)^{\widetilde{mnp}}$$

- KS flux about constant $G_{z\theta\phi} \sim kG_{\theta\phi\psi}$
- Finally $U \approx k^2 w^4 \gamma^*(x) \gamma(x)$ KK mixing
- Coefficient model-dependent, up to 100
- Similarly mixing with moduli: for universal

$$U \approx (M_s^4/kM_p)w^{5+\nu_{\star}}u(x)\gamma^{\star}(x) , \nu_{\star} < 4$$

through
$$e^{-4A} \rightarrow e^{-4A} + u$$

Holographic DM

ARF

utline

istory

elics

pectrum

ecavs

lixings UGRA

G-brane

ımmarv

Decays to Moduli

- 1 KK/2 moduli couplings vanish before deformation
 Otherwise a tadpole for KK mode
- \bullet So γ^* decay to charged moduli suppressed
- Two decays to uncharged moduli:
 - ullet Cubic vertex from $\delta\gamma\Delta\gamma u^2$ term
 - Mix with u, decay by $u(\partial u)^2$ term

$$\Gamma \approx \frac{M_s^8}{M_p^4 k^3} w^{9+2\nu_*} \approx 10^{-89-26\nu_*} s^{-1}$$

Holographic DM

ARF

utline

istory

elics

pectrum

ecavs

fixings UGRA

G-brane

lecureia.

ımmary

Decays to Moduli

- 1 KK/2 moduli couplings vanish before deformation
 Otherwise a tadpole for KK mode
- \bullet So γ^* decay to charged moduli suppressed
- Two decays to uncharged moduli:
 - Cubic vertex from $\delta\gamma\Delta\gamma u^2$ term
 - Mix with u, decay by $u(\partial u)^2$ term

$$\Gamma \approx \frac{M_s^8}{M_p^4 k^3} w^{9+2\nu_{\star}} \approx 10^{-89-26\nu_{\star}} s^{-1}$$

Holographic DM

ARF

utline

istory

elics

sectrum

ecavs

fixings UGRA

Laborator Control

T home

SCUSSION

ımmary

Decay to Universal Axion

- Sketchily $C_4 \sim a(x) \tilde{J}^2 \propto e^{-4kz}$ (ARF, Torroba, Underwood, Douglas)
- Angular legs couple to $\delta \gamma$ and $\Delta \gamma \delta \gamma^*$
- Induced dimension-5 couplings

$$\frac{M_s^4}{M_p^2} \frac{p_1 \cdot p_2}{k^3} w^{1+\nu} \gamma a^2 \,, \, \frac{M_s^4}{M_p^2} \frac{p_1 \cdot p_2}{k^3} w^{5+\nu_{\star}} \gamma^{\star} a^2$$

Gives weak lower bound for decay rate

$$\Gamma \approx \frac{M_s^8}{k^3 M_p^4} w^{13+2\nu_{\star}} \approx 10^{-141-26\nu_{\star}} s^{-1} \quad (\nu > \nu_{\star} + 2)$$

$$\Gamma \approx \frac{M_s^8}{k^3 M_n^4} w^{9+2\nu} \approx 10^{-89-26\nu} s^{-1} \quad (\nu < \nu_{\star} + 2)$$

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

lixings UGRA

to bear

SCUSSION

ımmary

Decay to Universal Axion

- Sketchily $C_4 \sim a(x) ilde{J}^2 \propto e^{-4kz}$ (ARF, Torroba, Underwood, Douglas)
- Angular legs couple to $\delta \gamma$ and $\Delta \gamma \delta \gamma^*$
- Induced dimension-5 couplings

$$\frac{M_s^4}{M_p^2} \frac{p_1 \cdot p_2}{k^3} w^{1+\nu} \gamma a^2 \,, \, \frac{M_s^4}{M_p^2} \frac{p_1 \cdot p_2}{k^3} w^{5+\nu_{\star}} \gamma^{\star} a^2$$

Gives weak lower bound for decay rate

$$\Gamma \approx \frac{M_s^8}{k^3 M_p^4} w^{13+2\nu_{\star}} \approx 10^{-141-26\nu_{\star}} s^{-1} \quad (\nu > \nu_{\star} + 2)$$

$$\Gamma \approx \frac{M_s^8}{k^3 M_n^4} w^{9+2\nu} \approx 10^{-89-26\nu} s^{-1} \quad (\nu < \nu_{\star} + 2)$$

Decays to Supergravity Modes

Holographic DM

ARF

utline

istory

elics

ectrum

ecavs

lixings UGRA

3-brane

17-brane

iscussion

ımmary

Decays to Charged Axions

- Can directly couple to $\delta \gamma^*$
- Take wavefunction as e^{-4kz} or constant in z
- Appears as dimension 5 "off-diagonal kinetic term"

$$\frac{M_s^4}{M_p^2} \frac{p_1 \cdot p_2}{k^3} w^{1+\nu_\star} \gamma^\star(x) a(x) \tilde{a}(x)$$

Replace $w^{1+
u_\star} o w^5$ for $u_\star > 4$ for constant wavefunction

$$\Gamma \approx \frac{M_s^8}{k^3 M_p^4} w^{5+2\nu_{\star}} \approx 10^{-37-26\nu_{\star}} s^{-1}$$

Still plenty long for TeV scale throats

Decays to Supergravity Modes

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

fixings UGRA

13-brane

iscussion

ımmary

Decays to Charged Axions

- Can directly couple to $\delta \gamma^*$
- Take wavefunction as e^{-4kz} or constant in z
- Appears as dimension 5 "off-diagonal kinetic term"

$$\frac{M_s^4}{M_p^2} \frac{p_1 \cdot p_2}{k^3} w^{1+\nu_\star} \gamma^\star(x) a(x) \tilde{a}(x)$$

Replace $w^{1+\nu_{\star}} \to w^5$ for $\nu_{\star} > 4$ for constant wavefunction

$$\Gamma \approx \frac{M_s^8}{k^3 M_p^4} w^{5+2\nu_\star} \approx 10^{-37-26\nu_\star} s^{-1}$$

Still plenty long for TeV scale throats

Holographic DM

ARE

utline

istory

elics

pectrum

erave

fixings

13-brane

7-brane

SCHSSION

ımmary

Brane Position Breaks Isometry

Direct coupling to scalar kinetic term

$$\frac{k^3}{M_s^4} w^{-1} p_1 \cdot p_2 \gamma^*(x) \phi(x)^2$$

Check against fermion interaction

$$w\bar{\Theta}\Gamma^{mnp}\Theta \mathrm{Re}\left(iG-\tilde{\star}_{6}G\right)_{mnp}$$

• Yukawa coupling $(k/M_s)^4 \gamma^* \bar{\Theta} \Theta$

$$\Gammapprox rac{wk^9}{M_s^8}pprox 10^{27}s^{-1}$$

Extremely fast!

Holographic DM

ARF

utline

istory

elics

pectrum

ecave

fixings

13-brane

7-brane

SCHSSION

ımmarv

Brane Position Breaks Isometry

Direct coupling to scalar kinetic term

$$\frac{k^3}{M_s^4} w^{-1} p_1 \cdot p_2 \gamma^*(x) \phi(x)^2$$

Check against fermion interaction

$$w\bar{\Theta}\Gamma^{mnp}\Theta \mathrm{Re}\left(iG-\tilde{\star}_{6}G\right)_{mnp}$$

• Yukawa coupling $(k/M_s)^4 \gamma^* \bar{\Theta} \Theta$

$$\Gamma \approx \frac{wk^9}{M_s^8} \approx 10^{27} s^{-1}$$

Extremely fast!

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

fixings HGRA

3-brane

7-brane

iscussion

ımmary

No Direct Coupling to Brane

- Brane doesn't break enough symmetry
- Or centrifugal barrier blocks $\delta \gamma^*$ from tip
- Decays through similar couplings of uncharged KK mode
- Scalar and fermion estimates again the same

$$\Gamma pprox rac{w^5 k^9}{M_s^8} pprox 10^{-25} s^{-1}$$

Just around observational limit!

Holographic DM

ARF

utline

istory

elics

sectrum

ecavs

fixings UGRA

13-brane

17-brane

iscussion

ımmary

No Direct Coupling to Brane

- Brane doesn't break enough symmetry
- Or centrifugal barrier blocks $\delta \gamma^*$ from tip
- Decays through similar couplings of uncharged KK mode
- Scalar and fermion estimates again the same

$$\Gamma \approx \frac{w^5 k^9}{M_s^8} \approx 10^{-25} s^{-1}$$

Just around observational limit!

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

fixings UGRA

7-brane

iscussion

ımmary

Scalars vs Fermions

- D7 scalars have similar dimension 5 coupling
- Additionally couple to volume modulus
- Fermions also have flux-induced Yukawa
 But form unknown with warping
- Estimate: multiply dim 5 coupling by cutoff $w_1k\equiv ke^{-kz_1}$
- No flux-induced Yukawa with volume modulus But possibly light complex structure

Pirsa: 09070026

Holographic DM

ARF

utline

istory

elics

pectrum

ecave

fixings

7-brane

ISCUSSION

ımmary

Brane Breaks Isometries

• Angular integral of $\delta \gamma^*$ nonvanishing

$$\frac{k^3}{M_s^4} w \left(\frac{w}{w_1}\right)^{\nu_{\star}} p_1 \cdot p_2 \gamma^{\star} |\chi|^2$$

Small due to radial separation

$$\Gamma \approx \frac{k}{w} \left(\frac{M_s}{M_p}\right)^{8/3} \left(\frac{w}{w_1}\right)^{6+2\nu_\star} \approx 10^{-9-18\nu_\star} s^{-1}$$

or for fermions

$$\Gamma \approx \frac{k}{w} \left(\frac{M_s}{M_p}\right)^{8/3} \left(\frac{w}{w_1}\right)^{4+2\nu_\star} \approx 10^{9-18\nu_\star} s^{-1}$$

For $\nu_{\star} \lesssim 2$, maybe observable or even fast

Holographic DM

ARF

utline

istory

elics

pectrum

ecave

fixings

o home

7-brane

ISCUSSION

ımmary

Brane Breaks Isometries

• Angular integral of $\delta \gamma^*$ nonvanishing

$$\frac{k^3}{M_s^4} w \left(\frac{w}{w_1}\right)^{\nu_{\star}} p_1 \cdot p_2 \gamma^{\star} |\chi|^2$$

Small due to radial separation

$$\Gamma \approx \frac{k}{w} \left(\frac{M_s}{M_p}\right)^{8/3} \left(\frac{w}{w_1}\right)^{6+2\nu_\star} \approx 10^{-9-18\nu_\star} s^{-1}$$

or for fermions

$$\Gamma \approx \frac{k}{w} \left(\frac{M_s}{M_p}\right)^{8/3} \left(\frac{w}{w_1}\right)^{4+2\nu_\star} \approx 10^{9-18\nu_\star} s^{-1}$$

For $\nu_{\star} \lesssim 2$, maybe observable or even fast

Holographic DM

ARF

utline

istory

elics

pectrum

ecavs

fixings UGRA

0-brane 17-brane

iscussion

ımmary

Brane Isometric Enough

- Similar coupling via kinetic terms
- Coupling via uncharged KK or modulus
- ullet Or directly by integrating against $\Delta\gamma$
- Modulus usually suppressed but couples outside throat
- ullet For decays to fermions, scale by $(w_1/w)^2$

$$\Gamma \approx kw^3 \left(\frac{w}{w_1}\right)^{10+2\nu_\star} \left(\frac{M_s}{M_p}\right)^{8/3} \approx 10^{-97-18\nu_\star} s^{-1}$$

Oľ

$$\Gammapprox kw^3\left(rac{w}{w_1}
ight)^{6+2
u}\left(rac{M_s}{M_p}
ight)^{8/3}pprox 10^{-61-18
u}s^{-1}$$

Holographic DM

ARF

utline

istory

elics

sectrum

ecavs

fixings UGRA

17-brane

scussion

ımmary

Brane Isometric Enough

- Similar coupling via kinetic terms
- Coupling via uncharged KK or modulus
- ullet Or directly by integrating against $\Delta\gamma$
- Modulus usually suppressed but couples outside throat
- For decays to fermions, scale by $(w_1/w)^2$

$$\Gamma \approx kw^3 \left(\frac{w}{w_1}\right)^{10+2\nu_\star} \left(\frac{M_s}{M_p}\right)^{8/3} \approx 10^{-97-18\nu_\star} s^{-1}$$

or

$$\Gamma \approx kw^3 \left(\frac{w}{w_1}\right)^{6+2\nu} \left(\frac{M_s}{M_p}\right)^{8/3} \approx 10^{-61-18\nu} s^{-1}$$

Discussion of Results

Holographic DM

ARI

utline

istory

elics

pectrum

ecays

iscussion

omparison

ımmary

Taking $w\sim 10^{-13}$, $k\sim M_s$, $M_s\sim 10^{16}GeV$, $w_1\sim 10^{-4}$ We find

- Decays within supergravity slower due to spread wavefunctions
- D3-brane decays fast
- Symmetry breaking D7-branes have potentially observable decays

Comparison to Previous Results

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

iscussion omparison uture

ımmary

Classical Decays

(Berndsen, Cline, & Stoica)

- Considered just inflationary throat
- Allowed only irrelevant deformations (classically allowed)
- Found decay $\Gamma \sim w^{7.4} k M_s^4/M_p^4$
- Several of our decays faster

Gravitons Only

(Dufaux, Kofman, & Peloso)

- Roughly similar D3 couplings computed
- No decays to gravitons allowed by orthogonality

Comparison to Previous Results

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

iscussion iomparison uture

ımmary

Classical Decays

(Berndsen, Cline, & Stoica)

- Considered just inflationary throat
- Allowed only irrelevant deformations (classically allowed)
- Found decay $\Gamma \sim w^{7.4} k M_s^4/M_p^4$
- Several of our decays faster

Gravitons Only

(Dufaux, Kofman, & Peloso)

- Roughly similar D3 couplings computed
- No decays to gravitons allowed by orthogonality

Discussion and Future Directions

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

iscussion omparison uture

ımmary

- Many models have very long-lived KK modes
- D3-type Standard Models on verge of being ruled out
- Fermionic couplings (including fermionic DM)
- Cosmic history:
 - Return to reheating in brane and other inflation models
 - Does angular motion affect tunneling rates?
 - Trace out thermal history, as done for gravitons
- Can holography teach us about compactifications beyond tree level?

Pirsa: 09070026

Discussion and Future Directions

Holographic DM

ARF

utline

istory

elics

sectrum

ecays

iscussion omparison uture

ımmary

- Many models have very long-lived KK modes
- D3-type Standard Models on verge of being ruled out
- Fermionic couplings (including fermionic DM)
- Cosmic history:
 - Return to reheating in brane and other inflation models
 - Does angular motion affect tunneling rates?
 - Trace out thermal history, as done for gravitons
- Can holography teach us about compactifications beyond tree level?

Pirsa: 09070026 Page 52/55

Summary

Holographic DM

ARF

utline

istory

elics

pectrum

ecays

scussion

ımmary

- Mistory of Holography & String Cosmology
- 2 Reheating and Kaluza-Klein Relics
- 3 The Spectrum & Dark Matter Candidates
- 4 Interactions and Decay Rates
- **5** Discussion of Results

No Signal VGA-1

Pirsa: 09070026 Page 54/55

No Signal

VGA-1

Pirsa: 09070026 Page 55/55