Title: Holography in String Gas Cosmology

Date: Jul 16, 2009 04:00 PM

URL: http://pirsa.org/09070025

Abstract: I will review the string gas scenario of structure formation, stressing the role which holography plays. I will also discuss another way of obtaining a scale-invariant spectrum of cosmological perturbations (with specific signatures in the bispectrum) which may be realizable in scenarios based on the AdS/CFT correspondence which can resolve the cosmological singularity.

Pirsa: 09070025 Page 1/127

String Cosmology

R. Brandenberger

troduction

tring gas

Mariabas

floduli stabilization : SGC

olography ir tring Therlodynamics

ormalism

ppincation to

The State of the S

pecific Hea

tructure

lerturbistions

fuctuations in String las Cosmology vs.

mahada

Pirsa: 09070025

Holography in String Gas Cosmology

Robert Brandenberger McGill University & CERN

July 16, 2009

Outline

String Cosmology

R. Brandenberger

troduction

tring gas

rinoples

eatures

foduli stabilization s SGC

olography in tring Therlodynamics

ormalism

pplication to

peone Heat

tructure

lerturbations

luctuations in String las Cosmology vs. vitation

malysis

- Introduction
- String Gas Cosmology
 - Principles
 - Features of String Gas Cosmology
 - Moduli stabilization in SGC
- 3 Holography in String Thermodynamics
 - Formalism
 - Application to a String Gas
 - Specific Heat
- String Gas Cosmology and Structure Formation
 - Review of the Theory of Cosmological Perturbations
 - Fluctuations in String Gas Cosmology vs. Inflation
 - Analysis
- Discussion
- 6 Conclusions

Plan

String Cosmology

 R. Brandenberger

troduction

tring gas

nnoples

entures.

foduli stabilization s SGC

olography in tring Therlodynamics

crmaism

pplication to

pecific Heat

tructure

lerturbations

loctuations in String Las Cosmology vs.

malusia

Pirsa: 09070025

1 Introduction

2 String Gas Cosmology

Principles

Features of String Gas Cosmology

Moduli stabilization in SGC

3 Holography in String Thermodynamics

Formalism

Application to a String Gas

Specific Heat

String Gas Cosmology and Structure Formation

Review of the Theory of Cosmological Perturbations

Fluctuations in String Gas Cosmology vs. Inflation

Analysis

5 Discussion

6 Conclusions

Page 4/127

Goal

String Cosmology

Brandenberger

troduction

Pirsa: 09070025

Goal: Alternative to inflation based on holographic thermodynamics.

Goal

String Cosmology

R. Brandenberger

itroduction

tring gas

Manufalan

.

foduli stabilization s SGC

olography in tring Therlodynamics

ormalism

pplication to

peofic Heat

tructure

ferturbation:

luctuations in Strin las Cosmology vs.

malysis

Pirsa: 09070025

Goal: Alternative to inflation based on holographic thermodynamics.

$$C_V(R) \sim R^2$$
 (1)

Realization: String gas cosmology on a compact space (Nayeri, R.B. & Vafa, *Phys. Rev. Lett.* 2006).

Motivation

String Cosmology

R. Brandenberger

troduction

tring gas

Virtninkas

eatures

foduli stabilization : SGC

olography ir tring Therlodynamics

ormalism

bring Gas

ideofic Heat

tructure

erturbetions

fuctuations in String las Cosmology vs.

inalysis

- Current paradigm of early universe cosmology: inflationary universe scenario (non-holographic).
- Inflation has been phenomenologically successful:

Motivation

String Cosmology

Brandenberger

- Current paradigm of early universe cosmology: inflationary universe scenario (non-holographic).
- Inflation has been phenomenologically successful:

String Cosmology

R. Brandenberger

troduction

tring gas

rinoples

wateres

foduli stabilization s SGC

clography in tring Therrodynamics

crmaism

bying Car

peofic Heat

tructure

Griturbations

las Cosmology vs.

maked

....

Pirsa: 09070025

Credit: NASA/WMAP Science Team

String Cosmology

R. Brandenberger

troduction

tring gas

autores

foduli stabilization r SGC

olography in tring Therrodynamics

ormalism

hing Class

Section States

tructure

Perturbations

fuctuations in Strin les Cosmology vs.

inalysis

Pirsa: 09070025

Credit: NASA/WMAP Science Team

Motivation

String Cosmology

R. Brandenberger

itroduction

tring gas

victorial and

anti-man

foduli stabilizatio

olography in tring Therlodynamics

ormalism

pplication to

pecfic Heat

tructure

lerturbistions

luctuations in String las Cosmology vs.

inalysia

- Current paradigm of early universe cosmology: inflationary universe scenario (non-holographic).
- Inflation has been phenomenologically successful:
- However, inflation faces conceptual problems:

Conceptual Problems of Inflationary Cosmology

String Cosmology

R. Brandenberger

troduction

tring gas

110000

foduli stabilization s SGC

olography ir tring Therrodynamics

ormalism

pplication to

pacific Heat

tructure

Terturbations

fluctuations in Strin, las Cosmology vs. Itlation

malysis

- Nature of the scalar field φ (the "inflaton")
- Conditions to obtain inflation (initial conditions, slow-roll conditions, graceful exit and reheating)
- Amplitude problem
- Trans-Planckian problem
- Singularity problem
- Cosmological constant problem
- Applicability of General Relativity

String Cosmology

R. Brandenberger

troduction

tring gas

and the last

....

foduli stabilization s SGC

olography in tring Therrodynamics

ormalism

ppincation to

peone Heat

tructure

Grturbistions

luctuations in Strin las Cosmology vs.

inalysis

Pirsa: 09070025

- Success of inflation: At early times scales are inside the Hubble radius → causal generation mechanism is possible.
 - **Problem:** If time period of inflation is more than $70H^{-1}$, then $\lambda_p(t) < I_{pl}$ at the beginning of inflation
 - Page 13/127

onclusions

String Cosmology

R. Brandenberger

troduction

tring gas

on risks

....

floduli stabilizatlor s SGC

olography ir tring Therlodynamics

ormalism

pplication to

peofic Heat

tructure

Ferturbations

luctuations in String las Cosmology vs.

inalysis

- Success of inflation: At early times scales are inside the Hubble radius → causal generation mechanism is possible.
 - **Problem:** If time period of inflation is more than $70H^{-1}$ then $\lambda_p(t) < I_{pl}$ at the beginning of inflation
 - Page 14/127

String Cosmology

 R. Brandenberger

troduction

tring gas

.....

....

foduli stabilizatio s SGC

olography in tring Therrodynamics

ormalism

pplication to

ipecitic Heal

tructure

enturbations

luctuations in String las Cosmology vs. eflation

inalysis.

- Success of inflation: At early times scales are inside the Hubble radius → causal generation mechanism is possible.
- **Problem:** If time period of inflation is more than $70H^{-1}$, then $\lambda_p(t) < I_{pl}$ at the beginning of inflation

String Cosmology

R. Brandenberger

troduction

tring gas

foduli stabilization

olography ir tring Therlodynamics

crmalsm

opplication to

pecific Heat

tructure

lerturbations

loctuations in String las Cosmology vs. station

inalysis

- Success of inflation: At early times scales are inside the Hubble radius → causal generation mechanism is possible.
- **Problem:** If time period of inflation is more than $70H^{-1}$, then $\lambda_p(t) < I_{pl}$ at the beginning of inflation
- new physics MUST enter into the calculation of the fluctuations.

Trans-Planckian Window of Opportunity

String Cosmology

R. Brandenberger

troduction

tring gas

.....

foduli stabilization s SGC

olography ir tring Theriodynamics

CITTAION

pplication to

peofic Hea

tructure

enurbations

fuctuations in String las Cosmology vs.

inalysis

Pirsa: 09070025

- If evolution in Period I is non-adiabatic, then scale-invariance of the power spectrum will be lost [J. Martin and RB, 2000]
- Planck scale physics testable with cosmological observations!

Page 17/127

Singularity Problem

String Cosmology

R. Brandenberger

itroduction

tring gas

-

foduli stabilization s SGC

olography in tring Therlodynamics

ormalism

pplication to

pacific Heat

tructure

lerturbations

fuctuations in Strin las Cosmology vs. station

malysis

Pirsa: 09070025

- Standard cosmology: Penrose-Hawking theorems → initial singularity → incompleteness of the theory.
- Inflationary cosmology: In scalar field-driven inflationary models the initial singularity persists [Borde and Vilenkin] → incompleteness of the theory.

Penrose-Hawking theorems:

- Ass: i) Einstein action, 2) weak energy conditions
 ρ > 0, ρ + 3p ≥ 0
- space-time is geodesically incomplete.

Applicability of GR

String Cosmology

R. Brandenberger

itroduction

tring gas

foduli stabilizatio i SGC

olography ir tring Therlodynamics

ermalism

pplication to:

peofic Heat

tructure

Serturbistions

fuctuations in String las Cosmology vs. inflation

inalysis

- In all approaches to quantum gravity, the Einstein action is only the leading term in a low curvature expansion.
- Correction terms may become dominant at much lower energies than the Planck scale.
- Correction terms will dominate the dynamics at high curvatures.
- The energy scale of inflation models is typically $\eta \sim 10^{16} \text{GeV}.$
- $\rightarrow \eta$ too close to m_{pl} to trust predictions made using GR.

Zones of Ignorance

String Cosmology

R. Brandenberger

troduction

tring gas

'rinoples

eatures

foduli stabilization r SGC

olography in tring Therlodynamics

ormalism

pplication to

and the same

pectic Heat

tructure

lerturbations

loctuations in String las Cosmology vs.

. ...

inalysis

Motivation

String Cosmology

R. Brandenberger

itroduction

tring gas

de la constante

.....

foduli stabilizatio : SGC

olography in tring Therlodynamics

pplication to

peofic Heat

tructure

erturbations

fuctuations in String las Cosmology vs. itlation

malysis

- Current paradigm of early universe cosmology: inflationary universe scenario (non-holographic).
- Inflation has been phenomenologically successful:
- However, inflation faces conceptual problems:
- We need a new paradigm of early universe cosmology based on new fundamental physics. Can such a paradigm be based on holographic principles?

Message

String Cosmology

 R. Brandenberger

itroduction

tring gas

-

foduli stabilizatio

olography ir tring Therlodynamics

ormalism

pplication to

peone Heat

tructure

erturbations

luctuations in Strin Las Cosmology vs. sflation

- Holographic scaling of correlation functions emerges from String Gas Cosmology (SGC) [R.B. and C. Vafa, 1989]
- New structure formation scenario emerges from SGC [A. Nayeri, R.B. and C. Vafa, 2006].
- String Gas Cosmology makes testable predictions for cosmological observations
- Blue tilt in the spectrum of gravitational waves [R.B., A. Nayeri, S. Patil and C. Vafa, 2007]

Motivation

String Cosmology

R. Brandenberger

troduction

tring gas

W. Carlot

....

foduli stabilizatio s SGC

olography in tring Therlodynamics

ermalism

pplication to

pecific Heat

tructure

erturbations

fuctuations in String Las Cosmology vs. rifation

inalysis

- Current paradigm of early universe cosmology: inflationary universe scenario (non-holographic).
- Inflation has been phenomenologically successful:
- However, inflation faces conceptual problems:
- We need a new paradigm of early universe cosmology based on new fundamental physics. Can such a paradigm be based on holographic principles?

Message

String Cosmology

 R. Brandenberger

troduction

tring gas

Marriedan

....

foduli stabilization

olography ir tring Therlodynamics

ormalism

oplication to a

ipeofic Heat

tructure

erturbations

fuctuations in String las Cosmology vs. sflation

malysis

- Holographic scaling of correlation functions emerges from String Gas Cosmology (SGC) [R.B. and C. Vafa, 1989]
- New structure formation scenario emerges from SGC [A. Nayeri, R.B. and C. Vafa, 2006].
- String Gas Cosmology makes testable predictions for cosmological observations
- Blue tilt in the spectrum of gravitational waves [R.B., A. Nayeri, S. Patil and C. Vafa, 2007]

Plan

String Cosmology

 R. Brandenberger

troduction

tring gas

moples

entures

foduli stabilization s SGC

olography in tring Therlodynamics

formalism

tring Class

Industrial Library

Eructure

Perturbations

luctuations in Strin. las Cosmology vs.

inalysis

Pirsa: 09070025

1 Introduction

String Gas Cosmology

Principles

Features of String Gas Cosmology

Moduli stabilization in SGC

3 Holography in String Thermodynamics

Formalism

Application to a String Gas

Specific Heat

4 String Gas Cosmology and Structure Formation

Review of the Theory of Cosmological Perturbations

Fluctuations in String Gas Cosmology vs. Inflation

Analysis

Discussion

6 Conclusions

R.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

String Cosmology

 R. Brandenberger

troduction

tring gas

rinciples

eatures

foduli stabilization

olography in tring Therlodynamics

crmaism

pplication to

pecific Hest

tructure

Perturbiations

fluctuations in String Las Cosmology vs. sflation

inalysis

Pirsa: 09070025

Idea: make use of the new symmetries and new degrees of freedom which string theory provides to construct a new theory of the very early universe.

Assumption: Matter is a gas of fundamental strings Assumption: Space is compact, e.g. a torus. Key points:

- New degrees of freedom: string oscillatory modes
- Leads to a maximal temperature for a gas of strings,
 the Hagedorn temperature
- New degrees of freedom: string winding modes
- Leads to a new symmetry: physics at large R is equivalent to physics at small R

R.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

String Cosmology

 R. Brandenberger

troduction

tring gas

foduli stabilization s SGC

olography in tring Therlodynamics

ormalism

tring Gas

peofic Heat

tructure

erturbations

luctuations in Strin las Cosmology vs. Iffation

icalysis

Pirsa: 09070025

Idea: make use of the new symmetries and new degrees of freedom which string theory provides to construct a new theory of the very early universe.

Assumption: Matter is a gas of fundamental strings

Assumption: Space is compact, e.g. a torus. Key points:

- New degrees of freedom: string oscillatory modes
- Leads to a maximal temperature for a gas of strings,
 the Hagedorn temperature
- New degrees of freedom: string winding modes
- Leads to a new symmetry: physics at large R is equivalent to physics at small R

R.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

String Cosmology

 R. Brandenberger

stroduction

tring gas

rinciples

autores

foduli stabilization s SGC

olography ir tring Therlodynamics

ormalism

pplication to

peofic Hest

tructure

Terturbistions

luctuations in String Las Cosmology vs. Infation

malysis

Pirsa: 09070025

Idea: make use of the new symmetries and new degrees of freedom which string theory provides to construct a new theory of the very early universe.

Assumption: Matter is a gas of fundamental strings

Assumption: Space is compact, e.g. a torus.

Key points:

- New degrees of freedom: string oscillatory modes
- Leads to a maximal temperature for a gas of strings,
 the Hagedorn temperature
- New degrees of freedom: string winding modes
- Leads to a new symmetry: physics at large R is equivalent to physics at small R

R.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

String Cosmology

 R. Brandenberger

itroduction

tring gas

rinciples

eatures

foduli stabilization : SGC

olography ir tring Therlodynamics

crmalsm

pplication to

nectic Hea

tructure

erturbations

luctuations in String Las Cosmology vs. Illation

malysis

Pirsa: 09070025

Idea: make use of the new symmetries and new degrees of freedom which string theory provides to construct a new theory of the very early universe.

Assumption: Matter is a gas of fundamental strings

Assumption: Space is compact, e.g. a torus.

Key points:

- New degrees of freedom: string oscillatory modes
- Leads to a maximal temperature for a gas of strings, the Hagedorn temperature
- New degrees of freedom: string winding modes
- Leads to a new symmetry: physics at large R is equivalent to physics at small R

T-Duality

String Cosmology

R. Brandenberger

stroduction

tring gas

Minciples:

11111111111

Inded stabilization

foduli stabilization sGC

olography ir tring Therrodynamics

crmalsm

pplication to

neofic Heat

tructure

erturbations

fluctuations in String Les Cosmology vs. sflation

inalysis

Pirsa: 09070025

T-Duality

- Momentum modes: $E_n = n/R$
- Winding modes: $E_m = mR$
- Duality: $R \rightarrow 1/R \ (n,m) \rightarrow (m,n)$
- Mass spectrum of string states unchanged
- Symmetry of vertex operators
- Symmetry at non-perturbative level → existence of D-branes

Adiabatic Considerations

R.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

String Cosmology

R. Brandenberger

stroduction

tring gas

rinciples

AUSTO PROPER

foduli stabilization

olography in tring Therlodynamics

cumareti

pplication to

pecific Heat

tructure

Terturbations

luctuations in String las Cosmology vs. eflation

inalysis

Pirsa: 09070025

Temperature-size relation in string gas cosmology

Singularity Problem in Standard and Inflationary Cosmology

String Cosmology

Brandenberger

Pirsa: 09070025

Temperature-size relation in standard cosmology

Adiabatic Considerations

R.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

String Cosmology

R. Brandenberger

stroduction

tring gas

rinciples

foduli stabilization s SGC

olography in tring Therlodynamics

ormaism

pplication to a

peofic Heat

tructure

lerturbations

luctuations in String las Cosmology vs.

imalysis

Pirsa: 09070025

Temperature-size relation in string gas cosmology

Singularity Problem in Standard and Inflationary Cosmology

String Cosmology

R. Brandenberger

troduction

tring gas

'rinciples

foduli stabilization

olography in tring Theriodynamics

crmalism

pplication to a

and the second

tri leti inc

erturbations

luctuations in Strin Las Cosmology vs.

Mation

imalysis

Pirsa: 09070025

Temperature-size relation in standard cosmology

Adiabatic Considerations

R.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

String Cosmology

R. Brandenberger

stroduction

tring gas

nnapies

Austropie

foduli stabilization

olography in tring Therlodynamics

ormalem

pplication to a

pechic Heat

tructure

Terturbations

luctuations in Strin. Las Cosmology vs.

inalysis

Pirsa: 09070025

Temperature-size relation in string gas cosmology

Singularity Problem in Standard and Inflationary Cosmology

String Cosmology

Brandenberger

Pirsa: 09070025

Temperature-size relation in standard cosmology

Dynamics

String Cosmology

R. Brandenberger

troduction

tring gas

rinciples.

AUST INSE

floduli stabilization

olography in tring Therlodynamics

crmalsm

tring Clas

peofic Heat

tructure

Serturbations

luctuations in String Las Cosmology vs.

makeri

Pirsa: 09070025

Assume some action gives us R(t)

Dynamics II

String Cosmology

 R. Brandenberger

troduction

tring gas

rinciples

AUTOMA

foduli stabilization

olography in tring Therlodynamics

crmalsm

pplication to

peofic Heat

tructure

lerturbations

luctuations in Strin las Cosmology vs.

inalysis

Pirsa: 09070025

We will thus consider the following background dynamics for the scale factor a(t):

Dimensionality of Space in SGC

String Cosmology

R. Brandenberger

troduction

tring gas

Managed and

entures

foduli stabilization : SGC

olography in tring Therrodynamics

cemaism

pplication to a

ipeonic Heat

tructure

ferturbations

luctuations in String las Cosmology vs. sitution

inalysis

Pirsa: 09070025

- Begin with all 9 spatial dimensions small, initial temperature close to T_H → winding modes about all spatial sections are excited.
- Expansion of any one spatial dimension requires the annihilation of the winding modes in that dimension.

- Decay only possible in three large spatial dimensions.
- dynamical explanation of why there are exactly three large spatial dimensions.

Page 39/127

Dynamics II

String Cosmology

R. Brandenberger

stroduction

tring gas

rinciples

Automa.

foduli stabilization

olography in tring Therrodynamics

ormalism

pplication to

Insultin Hass

tructure

lerturbations

luctuations in Strin Las Cosmology vs. eflation

inalysia

Pirsa: 09070025

We will thus consider the following background dynamics for the scale factor a(t):

Dimensionality of Space in SGC

String Cosmology

 R. Brandenberger

itroduction

tring gas

vinciples

leatures.

foduli stabilization s SGC

olography ir tring Therlodynamics

comalem

pplication to

peone Hea

tructure

erturbistions

luctuations in String las Cosmology vs.

inalysis

Pirsa: 09070025

- Begin with all 9 spatial dimensions small, initial temperature close to T_H → winding modes about all spatial sections are excited.
- Expansion of any one spatial dimension requires the annihilation of the winding modes in that dimension.

- Decay only possible in three large spatial dimensions.
- dynamical explanation of why there are exactly three large spatial dimensions.

Vote: this argument assumes constant dilaton (F. Danos A. Page 41/127

String Cosmology

 R. Brandenberger

troduction

tring gas

floduli stabilization t SGC

olography in tring Therlodynamics

ormalism

ppincation to

SHAPE SHAPE

tructure

Grturbistions

luctuations in Strin. las Cosmology vs.

inalysis

Pirsa: 09070025

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

- winding modes prevent expansion
- momentum modes prevent contraction
- $\circ \to V_{eff}(R)$ has a minimum at a finite value of $R \to R_{-}$.
- in heterotic string theory there are enhanced symmetry states containing both momentum and winding which are massless at R_{min}
- $o \rightarrow V_{eff}(R_{min}) = 0$
- size moduli stabilized in Einstein gravity background

- enhanced symmetry states
- ullet o harmonic oscillator potential for heta
- shape moduli stabilized

Dimensionality of Space in SGC

String Cosmology

 R. Brandenberger

stroduction

tring gas

Marinday.

-

foduli stabilization : SGC

olography ir tring Theriodynamics

ermalism

pplication to

peonic Heat

tructure

Terturbistions

luctuations in String las Cosmology vs. iffation

inalysis

Pirsa: 09070025

- Begin with all 9 spatial dimensions small, initial temperature close to T_H → winding modes about all spatial sections are excited.
- Expansion of any one spatial dimension requires the annihilation of the winding modes in that dimension.

- Decay only possible in three large spatial dimensions.
- dynamical explanation of why there are exactly three large spatial dimensions.

Note: this argument assumes constant dilaton [R. Danos, A. Frey and A. Mazumdar]

String Cosmology

R. Brandenberger

stroduction

tring gas

....

foduli stabilization 1 SGC

olography in tring Therlodynamics

crmalsm

trino Con

tructure

erturbations

luctuations in Strin. kas Cosmology vs.

inalysis

Pirsa: 09070025

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

- winding modes prevent expansion
- momentum modes prevent contraction
- $\circ \to V_{eff}(R)$ has a minimum at a finite value of
 - $R_+ \rightarrow R_{min}$
- in heterotic string theory there are enhanced symmetry states containing both momentum and winding which are massless at R_{min}
- $O \rightarrow V_{eff}(R_{min}) = 0$
- size moduli stabilized in Einstein gravity background

- enhanced symmetry states
- harmonic oscillator potential for θ
- shape moduli stabilized

String Cosmology

R. Brandenberger

stroduction

tring gas

.

foduli stabilization 1 SGC

olography ir tring Therlodynamics

crmalsm

tring Class

inecitic Heat

tructure

ferturbistions

luctuations in String las Cosmology vs.

inalysis

Pirsa: 09070025

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

- winding modes prevent expansion
- momentum modes prevent contraction
- $V_{eff}(R)$ has a minimum at a finite value of R, $\to R_{min}$
- in heterotic string theory there are enhanced symmetry states containing both momentum and winding which are massless at R_{min}
- $\circ \rightarrow V_{eff}(R_{min}) = 0$
- size moduli stabilized in Einstein gravity background

- enhanced symmetry states
- ullet ightarrow harmonic oscillator potential for heta
- shape moduli stabilized

String Cosmology

R. Brandenberger

troduction

tring gas

vinciples

floduli stabilization s SGC

olography ir tring Therlodynamics

ermalism

application to

ipeofic Heal

tructure

'erturbations

luctuations in String las Cosmology vs.

inalysis

Pirsa: 09070025

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

- winding modes prevent expansion
- momentum modes prevent contraction
- ullet $V_{eff}(R)$ has a minimum at a finite value of $R, \rightarrow R_{min}$
- in heterotic string theory there are enhanced symmetry states containing both momentum and winding which are massless at R_{min}
- $\circ \to V_{eff}(R_{min}) = 0$
- size moduli stabilized in Einstein gravity background

- enhanced symmetry states
- ullet \rightarrow harmonic oscillator potential for heta
- → shape moduli stabilized

Dilaton stabilization in SGC

String Cosmology

R. Brandenberger

stroduction

tring gas

rinciples

-

floduli stabilization 1 SGC

olography in tring Therrodynamics

ormalism

pplication to

STATE OF THE OWNER, THE

tructure

ferturbations

loctuations in Strin. ias Cosmology vs.

makesis

Pirsa: 09070025

The only remaining modulus is the dilaton

- Make use of gaugino condensation to give the dilaton a potential with a unique minimum
- diltaton is stabilized
- Dilaton stabilization is consistent with size stabilization
 [R. Danos, A. Frey and R.B., 2008]

Dilaton stabilization in SGC

String Cosmology

R. Brandenberger

stroduction

tring gas

vinciples

foduli stabilization 1 SGC

clography in tring Therrodynamics

crmalism

bring Cas

pectic Heat

tructure

erturbations

luctuations in String las Cosmology vs.

inalysis

Pirsa: 09070025

- The only remaining modulus is the dilaton
- Make use of gaugino condensation to give the dilaton a potential with a unique minimum
- → diltaton is stabilized
- Dilaton stabilization is consistent with size stabilization
 [R. Danos, A. Frey and R.B., 2008]

Dilaton stabilization in SGC

String Cosmology

R. Brandenberger

stroduction

tring gas

rinoples

eatures

foduli stabilization 1 SGC

olography in tring Therlodynamics

crmalem

bles Car

pecific Heat

tructure

erturbations

fuctuations in String Las Cosmology vs. sflation

inalysis

Pirsa: 09070025

- The only remaining modulus is the dilaton
- Make use of gaugino condensation to give the dilaton a potential with a unique minimum
- → diltaton is stabilized
- Dilaton stabilization is consistent with size stabilization
 [R. Danos, A. Frey and R.B., 2008]

Plan

String Cosmology

 R. Brandenberger

troduction

tring gas

rinoples

And it was below a

Foduli stabilization : SGC

olography in tring Therlodynamics

crmatem

tring Gas

ALCOHOLD IN

pecific Heat

tructure

enturbations

luctuations in String las Cosmology vs. station

inalysis

Pirsa: 09070025

1 Introduction

String Gas Cosmology

Principles

Features of String Gas Cosmology

Moduli stabilization in SGC

3 Holography in String Thermodynamics

Formalism

Application to a String Gas

Specific Heat

String Gas Cosmology and Structure Formation

Review of the Theory of Cosmological Perturbations

Fluctuations in String Gas Cosmology vs. Inflation

Analysis

Discussion

6 Conclusions

Partition Function

String Cosmology

R. Brandenberger

troduction

tring gas

foduli stabilizatio s SGC

olography in tring Therlodynamics

ormalism

trion Cas

Interestin blace

tructure

lerturbations

luctuations in String las Cosmology vs.

inalysis

Pirsa: 09070025

Starting point: partition function of a string gas:

$$Z = \sum_{s} e^{-\beta\sqrt{-g_{00}}H(s)}. \tag{2}$$

The free energy follows:

$$F = -\frac{1}{\beta} ln Z. \tag{3}$$

The action follows from the free energy:

$$S = \int dt \sqrt{-g_{00}} F[g_{ij}, \beta]. \tag{4}$$

The action is used to determine the energy-momentum tensor.

Page 51/127

String Cosmology

Brandenberger

Pirsa: 09070025

$$T^{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g_{\mu\nu}}.$$
 (5)

$$\langle T^{\mu}{}_{\nu}\rangle = 2 \frac{g^{\mu\lambda}}{\sqrt{-g}} \frac{\delta \ln Z}{\delta g^{\nu\lambda}} \tag{6}$$

$$\langle T^{\mu}_{\nu} \rangle \langle T^{\sigma}_{\lambda} \rangle = 2 \frac{g^{\mu \alpha}}{\sqrt{-g}} \frac{\partial}{\partial g^{\alpha \nu}} \left(\frac{g^{\sigma \delta}}{\sqrt{-g}} \frac{\partial \ln Z}{\partial g^{\delta \lambda}} \right)$$

$$+ 2 \frac{g^{\sigma \alpha}}{\sqrt{-g}} \frac{\partial}{\partial g^{\alpha \lambda}} \left(\frac{G^{\mu \delta}}{\sqrt{-g}} \frac{\partial \ln Z}{\partial g^{\delta \nu}} \right) . \tag{7}$$

Page 52/127

String Cosmology

R. Brandenberger

troduction

tring gas

Winciples

ANT PAR

fieduli stabilization r SGC

olography in tring Therlodynamics

ormalism

pplication to

tructure

Terturbistions

luctuations in String las Cosmology vs.

1 3 3

inalysis

Pirsa: 09070025

 $T^{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g_{\mu\nu}} \,. \tag{5}$

The thermal expectation value is

$$\langle T^{\mu}{}_{\nu}\rangle = 2\frac{g^{\mu\lambda}}{\sqrt{-g}} \frac{\delta \ln Z}{\delta g^{\nu\lambda}} \tag{6}$$

The fluctuations of the energy-momentum tensor are

String Cosmology

R. Brandenberger

stroduction

tring gas

moples

foduli stabilization

olography in tring Therlodynamics

ormalism

pplication to bring Gas

pecific Hea

tructure

Terturbations

fuctuations in String las Cosmology vs.

inalysis

Pirsa: 09070025

$$T^{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g_{\mu\nu}} \,. \tag{5}$$

The thermal expectation value is

$$\langle T^{\mu}{}_{\nu} \rangle = 2 \frac{g^{\mu\lambda}}{\sqrt{-g}} \frac{\delta \ln Z}{\delta g^{\nu\lambda}} \tag{6}$$

The fluctuations of the energy-momentum tensor are

$$\langle T^{\mu}{}_{\nu}T^{\sigma}{}_{\lambda}\rangle - \langle T^{\mu}{}_{\nu}\rangle\langle T^{\sigma}{}_{\lambda}\rangle = 2\frac{g^{\mu\alpha}}{\sqrt{-g}}\frac{\partial}{\partial g^{\alpha\nu}}\left(\frac{g^{\sigma\delta}}{\sqrt{-g}}\frac{\partial \ln Z}{\partial g^{\delta\lambda}}\right) + 2\frac{g^{\sigma\alpha}}{\sqrt{-g}}\frac{\partial}{\partial g^{\alpha\lambda}}\left(\frac{G^{\mu\delta}}{\sqrt{-g}}\frac{\partial \ln Z}{\partial g^{\delta\nu}}\right). \tag{7}$$

Correlation Functions

String Cosmology

 R. Brandenberger

troduction

tring gas

vinciples.

...

foduli stabilization

olography ir tring Therlodynamics

ormalism

pplication to

pechic Heal

tructure

terturbations

luctuations in String Las Cosmology vs.

malusia

Pirsa: 09070025

The scalar metric fluctuations are determined by the energy density correlation function

$$\langle \delta \rho^2 \rangle = \langle \rho^2 \rangle - \langle \rho \rangle^2 \tag{8}$$

$$= -\frac{1}{R^6} \frac{\partial}{\partial \beta} \left(F + \beta \frac{\partial F}{\partial \beta} \right) = \frac{T^2}{R^6} C_V. \tag{9}$$

The Specific heat capacity is given by

$$C_V = (\partial E/\partial T)|_V, \tag{10}$$

where

$$E \equiv F + \beta \left(\frac{\partial F}{\partial \beta}\right), \tag{11}$$

String Cosmology

R. Brandenberger

stroduction

tring gas

Ministration.

waterway

foduli stabilization s SGC

olography in tring Therlodynamics

ormalism

pplication to

nactic Heat

fructure

Verturbations

luctuations in String las Cosmology vs.

inalysis

Pirsa: 09070025

$$T^{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g_{\mu\nu}} \,. \tag{5}$$

The thermal expectation value is

$$\langle T^{\mu}{}_{\nu}\rangle = 2\frac{g^{\mu\lambda}}{\sqrt{-g}} \frac{\delta \ln Z}{\delta g^{\nu\lambda}} \tag{6}$$

The fluctuations of the energy-momentum tensor are

$$\langle T^{\mu}{}_{\nu}T^{\sigma}{}_{\lambda}\rangle - \langle T^{\mu}{}_{\nu}\rangle\langle T^{\sigma}{}_{\lambda}\rangle = 2\frac{g^{\mu\alpha}}{\sqrt{-g}}\frac{\partial}{\partial g^{\alpha\nu}}\left(\frac{g^{\sigma\delta}}{\sqrt{-g}}\frac{\partial \ln Z}{\partial g^{\delta\lambda}}\right) + 2\frac{g^{\sigma\alpha}}{\sqrt{-g}}\frac{\partial}{\partial g^{\alpha\lambda}}\left(\frac{G^{\mu\delta}}{\sqrt{-g}}\frac{\partial \ln Z}{\partial g^{\delta\nu}}\right). \tag{7}$$

Correlation Functions

String Cosmology

 R. Brandenberger

troduction

tring gas

frinciples.

death man

foduli stabilization s SGC

olography ir tring Therrodynamics

ormalism

pplication to

neofic Heat

tructure

Terturbations

luctuations in String las Cosmology vs.

inalysis

Pirsa: 09070025

The scalar metric fluctuations are determined by the energy density correlation function

$$\langle \delta \rho^2 \rangle = \langle \rho^2 \rangle - \langle \rho \rangle^2 \tag{8}$$

$$= -\frac{1}{R^6} \frac{\partial}{\partial \beta} \left(F + \beta \frac{\partial F}{\partial \beta} \right) = \frac{T^2}{R^6} C_V. \tag{9}$$

The Specific heat capacity is given by

$$C_V = (\partial E/\partial T)|_V, \tag{10}$$

where

$$E \equiv F + \beta \left(\frac{\partial F}{\partial \beta}\right), \tag{11}$$

Gravitational Waves

String Cosmology

R. Brandenberger

itroduction

tring gas

Marietae

....

foduli stabilization : SGC

olography ir tring Therrodynamics

ormalism

pplication to

ipectic Heat

tructure

erturbations

luctuations in String las Cosmology vs.

snatior

imalysis

Pirsa: 09070025

The spectrum of gravitational waves is determined by the off-diagonal pressure fluctuations:

$$\langle \delta T^{i_j^2} \rangle = \langle T^{i_j^2} \rangle - \langle T^{i_j} \rangle^2, \qquad (12)$$

with $i \neq j$.

$$\langle \delta T^{i}{}_{j}^{2} \rangle = \frac{1}{\beta R^{3}} \frac{\partial}{\partial \ln R} \left(-\frac{1}{R^{3}} \frac{\partial F}{\partial \ln R} \right) = \frac{1}{\beta R^{2}} \frac{\partial p}{\partial R},$$
 (13)

The pressure is given by

$$p \equiv -\frac{1}{V} \left(\frac{\partial F}{\partial \ln R} \right) = T \left(\frac{\partial S}{\partial V} \right)_{E}. \tag{14}$$

String Gas In the Hagedorn Phase I

String Cosmology

R. Brandenberger

troduction

tring gas

Management

....

floduli stabilization t SGC

olography ir tring Therrodynamics

ormalism

itring Gas

pechic Heat

tructure

lerturbations

loctuations in String las Cosmology vs.

malvala

Pirsa: 09070025

Starting point: the following expression for the entropy:

$$S(E,R) = \ln \Omega(E,R) \tag{15}$$

in terms of the density of states $\Omega(E, R)$.

Close to the Hagedorn temperature (see Deo, Jain and Tan, 1992)

$$\Omega(E,R) \simeq \beta_H e^{\beta_H E + n_H V} [1 + \delta \Omega_{(1)}(E,R)], \qquad (16)$$

where

$$\delta\Omega_{(1)}(E,R) = -\frac{(\beta_H E)^5}{5!} e^{-(\beta_H - \beta_1)(E - \rho_H V)} \ll 1$$
 (17)

deep in the Hagedorn phase and

$$\beta_H - \beta_1 \sim \frac{l_s^3}{R^2}$$
 for $R \gg l_s$.

String Gas In the Hagedorn Phase I

String Cosmology

Brandenberger

Pirsa: 09070025

Starting point: the following expression for the entropy:

$$S(E,R) = \ln \Omega(E,R) \tag{15}$$

in terms of the density of states $\Omega(E,R)$. Close to the Hagedorn temperature (see Deo, Jain and Tan, 1992)

$$\Omega(E,R) \simeq \beta_H e^{\beta_H E + n_H V} [1 + \delta \Omega_{(1)}(E,R)], \qquad (16)$$

where

$$\delta\Omega_{(1)}(E,R) = -\frac{(\beta_H E)^5}{5!} e^{-(\beta_H - \beta_1)(E - \rho_H V)} \ll 1$$
 (17)

deep in the Hagedorn phase and

$$\beta_H - \beta_1 \sim \frac{l_s^3}{R^2} \text{ for } R \gg l_s$$
 (18)

String Gas In the Hagedorn Phase II

String Cosmology

R. Brandenberger

stroduction

tring gas

'rinciple:

ALIST STORE

foduli stabilization SGC

olography ir tring Therlodynamics

ormalism

itring Gas

ipeotic Heat

tructure

lerturbistions

luctuations in String las Cosmology vs.

.

Pirsa: 09070025

$$\rightarrow S(E,R) \simeq \beta_H E + n_H V + \ln \left[1 + \delta \Omega_{(1)} \right], \qquad (19)$$

and

$$I_s^3 \delta\Omega_{(1)} \simeq -\frac{R^2}{T_H} \left(1 - \frac{T}{T_H} \right). \tag{20}$$

String Cosmology

R. Brandenberger

stroduction

tring gas

1000

foduli stabilizatio

olography in tring Therrodynamics

ermalism

pplication to

cecific Heat

tructure

Perturbations

loctuations in String Sas Cosmology vs.

imalysis

Pirsa: 09070025

The correlation functions of interest are:

$$C_V \approx \frac{R^2/l_s^3}{T(1-T/T_H)}, \qquad (21)$$

and

$$\langle \delta T^{i}{}_{j}^{2} \rangle \simeq \frac{T(1 - T/T_{H})}{l_{s}^{3} R^{4}} \ln^{2} \left[\frac{R^{2}}{l_{s}^{2}} (1 - T/T_{H}) \right].$$
 (22)

- holographic scaling of the correlation functions!
- The factor (1 T/T_H) arises in denominator vs.
 numerator because different derivatives are taker

String Cosmology

 R. Brandenberger

stroduction

tring gas

Maninha

floduli stabilization s SGC

olography in tring Theriodynamics

crmalism

tring Gas

pecific Heat

tructure

erturbations

luctuations in String las Cosmology vs.

inalysis

Pirsa: 09070025

The correlation functions of interest are:

$$C_V \approx \frac{R^2/l_s^3}{T(1-T/T_H)}, \qquad (21)$$

and

$$\langle \delta T_{j}^{i}^{2} \rangle \simeq \frac{T(1 - T/T_{H})}{I_{s}^{3} R^{4}} \ln^{2} \left[\frac{R^{2}}{I_{s}^{2}} (1 - T/T_{H}) \right].$$
 (22)

- holographic scaling of the correlation functions!
- The factor (1 T/T_H) arises in denominator vs.
 numerator because different derivatives are taken

String Cosmology

R. Brandenberger

stroduction

tring gas

foduli stabilizatio s SGC

olography ir tring Theriodynamics

ormalism

pplication to

cecific Heat

tructure

erturbations

lactuations in Strin kas Cosmology vs.

imalysis

Pirsa: 09070025

The correlation functions of interest are:

$$C_V \approx \frac{R^2/l_s^3}{T(1-T/T_H)}, \qquad (21)$$

and

$$\langle \delta T^{i}{}_{j}^{2} \rangle \simeq \frac{T(1 - T/T_{H})}{l_{s}^{3} R^{4}} \ln^{2} \left[\frac{R^{2}}{l_{s}^{2}} (1 - T/T_{H}) \right].$$
 (22)

- holographic scaling of the correlation functions!
- The factor (1 T/T_H) arises in denominator vs.
 numerator because different derivatives are take

String Gas In the Hagedorn Phase II

String Cosmology

R. Brandenberger

stroduction

tring gas

nnoples

eatures

foduli stabilization : SGC

olography in tring Therrodynamics

ormalism

ipplication to a itring Gas

pecific Heat

tructure

Serturbations

fuctuations in String las Cosmology vs.

materia

Pirsa: 09070025

$$\rightarrow S(E,R) \simeq \beta_H E + n_H V + \ln \left[1 + \delta \Omega_{(1)} \right], \qquad (19)$$

and

$$I_s^3 \delta\Omega_{(1)} \simeq -\frac{R^2}{T_H} \left(1 - \frac{T}{T_H} \right). \tag{20}$$

String Cosmology

R. Brandenberger

stroduction

tring gas

-

foduli stabilization s SGC

olography ir tring Theriodynamics

ormalism

tring Gas

ipecific Heat

tructure

enturbelions

fuctuations in String las Cosmology vs. sflation

inalysis

Pirsa: 09070025

The correlation functions of interest are:

$$C_V \approx \frac{R^2/l_s^3}{T(1-T/T_H)}, \qquad (21)$$

and

$$\langle \delta T^{i}{}_{j}^{2} \rangle \simeq \frac{T(1 - T/T_{H})}{l_{s}^{3} R^{4}} \ln^{2} \left[\frac{R^{2}}{l_{s}^{2}} (1 - T/T_{H}) \right].$$
 (22)

- holographic scaling of the correlation functions!
- The factor (1 T/T_H) arises in denominator vs. numerator because different derivatives are taken

String Cosmology

R. Brandenberger

troduction

tring gas

'rinciples

....

foduli stabilization : SGC

olography ir tring Therlodynamics

ormalism

bring Gas

pecific Heat

tructure

ferturbations

loctuations in String las Cosmology vs.

imalysis

Pirsa: 09070025

The correlation functions of interest are:

$$C_V \approx \frac{R^2/l_s^3}{T(1-T/T_H)}, \qquad (21)$$

and

$$\langle \delta T^{i}{}_{j}^{2} \rangle \simeq \frac{T(1 - T/T_{H})}{l_{s}^{3} R^{4}} \ln^{2} \left[\frac{R^{2}}{l_{s}^{2}} (1 - T/T_{H}) \right].$$
 (22)

- holographic scaling of the correlation functions!
- The factor (1 T/T_H) arises in denominator vs.
 numerator because different derivatives are taken.

Plan

String Cosmology

R. Brandenberger

troduction

tring gas

vincioles

eatures

foduli stabilization : SGC

olography in tring Theriodynamics

ormalism

tring Class

peonic Heat

tructure

Terrturbations

luctuations in String las Cosmology vs. station

inalysis

Pirsa: 09070025

1 Introduction

2 String Gas Cosmology

Principles

Features of String Gas Cosmology

Moduli stabilization in SGC

3 Holography in String Thermodynamics

Formalism

Application to a String Gas

Specific Heat

String Gas Cosmology and Structure Formation

Review of the Theory of Cosmological Perturbations

Fluctuations in String Gas Cosmology vs. Inflation

Analysis

5 Discussion

6 Conclusions

Theory of Cosmological Perturbations: Basics

String Cosmology

R. Brandenberger

stroduction

tring gas

1000

foduli stabilization

olography in tring Therlodynamics

ormalism

pplication to

ideofic Heat

tructure

^terturbations

fuctuations in String Las Cosmology vs. Infation

malysis

Pirsa: 09070025

Cosmological fluctuations connect early universe theories with observations

- Fluctuations of matter → large-scale structure
- Fluctuations of metric → CMB anisotropies
- N.B.: Matter and metric fluctuations are coupled

Key facts:

- 1. Fluctuations are small today on large scales
- fluctuations were very small in the early universe
- can use linear perturbation theory
- 2. Sub-Hubble scales: matter fluctuations dominate
- Super-Hubble scales: metric fluctuations dominate

Theory of Cosmological Perturbations: Basics

String Cosmology

 R. Brandenberger

troduction

tring gas

....

foduli stabilizatio

olography ir tring Therrodynamics

ormalism

pplication to trino Gas

pecific Heat

tructure

ferturbations |

lictuations in Strin las Cosmology vs. iffation

inalysis

Pirsa: 09070025

Cosmological fluctuations connect early universe theories with observations

- Fluctuations of matter → large-scale structure
- Fluctuations of metric → CMB anisotropies
- N.B.: Matter and metric fluctuations are coupled

Key facts:

- 1. Fluctuations are small today on large scales
- fluctuations were very small in the early universe
- → can use linear perturbation theory
- 2. Sub-Hubble scales: matter fluctuations dominate
- Super-Hubble scales: metric fluctuations dominate

Quantum Theory of Linearized Fluctuations

V. Mukhanov, H. Feldman and R.B., Phys. Rep. 215:203 (1992)

String Cosmology

R. Brandenberger

troduction

tring gas

foduli stabilization

olography ir tring Therlodynamics

ormalism

pplication to

peofic Heat

tructure

ferturbations

luctuations in String las Cosmology vs. Inflation

malysis

Pirsa: 09070025

Step 1: Metric including fluctuations

$$ds^2 = a^2[(1+2\Phi)d\eta^2 - (1-2\Phi)d\mathbf{x}^2]$$
 (23)

$$\varphi = \varphi_0 + \delta \varphi \tag{24}$$

Note: Φ and $\delta \varphi$ related by Einstein constraint equations

Step 2: Expand the action for matter and gravity to second order about the cosmological background:

$$S^{(2)} = \frac{1}{2} \int d^4x ((v')^2 - v_i v'^i + \frac{z''}{z} v^2)$$
 (25)

$$v = a(\delta\varphi + \frac{\zeta}{2}\Phi) \tag{26}$$

$$z = a \frac{\varphi_0}{H}$$

Page 71/127

onclusions

Quantum Theory of Linearized Fluctuations

V. Mukhanov, H. Feldman and R.B., Phys. Rep. 215:203 (1992)

String Cosmology

R. Brandenberger

stroduction

tring gas

No. of Contract

-

foduli stabilization s SGC

olography ir tring Therlodynamics

ormalism

pplication to

peofic Heat

tructure

ferturbations.

fluctuations in String Las Cosmology vs. station

malysis

Pirsa: 09070025

Step 1: Metric including fluctuations

$$ds^2 = a^2[(1+2\Phi)d\eta^2 - (1-2\Phi)d\mathbf{x}^2]$$
 (23)

$$\varphi = \varphi_0 + \delta \varphi \tag{24}$$

Note: Φ and $\delta\varphi$ related by Einstein constraint equations Step 2: Expand the action for matter and gravity to second order about the cosmological background:

$$S^{(2)} = \frac{1}{2} \int d^4x \left((v')^2 - v_{,i} v^{,i} + \frac{z''}{z} v^2 \right)$$
 (25)

$$v = a(\delta\varphi + \frac{z}{a}\Phi) \tag{26}$$

$$z = a \frac{\varphi_0'}{\mathcal{H}}$$

R. Brandenberger

itroduction

tring gas

-

foduli stabilizatio

olography in tring Therlodynamics

ormalism

polication to

Separation Library

tructure

^terturbations

luctuations in String las Cosmology vs. sflation

inalysis

Pirsa: 09070025

Step 3: Resulting equation of motion (Fourier space)

$$v_k'' + (k^2 - \frac{z''}{z})v_k = 0 (28)$$

Features:

- oscillations on sub-Hubble scales
- squeezing on super-Hubble scales $v_k \sim z$

Quantum vacuum initial conditions:

$$V_k(\eta_i) = (\sqrt{2k})^{-1}$$
 (29)

R. Brandenberger

stroduction

tring gas

foduli stabilizatio s SGC

olography ir tring Therlodynamics

ormalism

pplication to

necific Heat

tructure

erturbations

fuctuations in String Las Cosmology vs. Iflation

malysis

Pirsa: 09070025

Step 3: Resulting equation of motion (Fourier space)

$$v_k'' + (k^2 - \frac{z''}{z})v_k = 0 (28)$$

Features:

- oscillations on sub-Hubble scales
- squeezing on super-Hubble scales $v_k \sim z$

$$v_k(\eta_i) = (\sqrt{2k})^{-1} \tag{29}$$

R. Brandenberger

stroduction

tring gas

foduli stabilizatio

olography in tring Therlodynamics

ormalism

pplication to

inecific Heat

tructure

ferturbations

luctuations in String las Cosmology vs. iflation

inalysis

Pirsa: 09070025

Step 3: Resulting equation of motion (Fourier space)

$$v_k'' + (k^2 - \frac{z''}{z})v_k = 0 (28)$$

Features:

- oscillations on sub-Hubble scales
- squeezing on super-Hubble scales $v_k \sim z$

Quantum vacuum initial conditions:

$$V_k(\eta_i) = (\sqrt{2k})^{-1}$$
 (29)

Structure formation in inflationary cosmology

String Cosmology

R. Brandenberger

troduction

tring gas

Hnobles

floduli stabilization s SGC

olography ir tring Therlodynamics

crmalism

pplication to

1000

fructure

Ferturbistions

luctuations in String Sas Cosmology vs. Inflation

inalysis

Pirsa: 09070025

N.B. Perturbations originate as quantum vacuum fluctuations.

Page 76/127

R. Brandenberger

stroduction

tring gas

and the same

foduli stabilizatio

olography in tring Ther-

own alsom

bring Cas

pecific Heat

tructure

ferturbations

fuctuations in String las Cosmology vs. effation

inalysis

Pirsa: 09070025

Step 3: Resulting equation of motion (Fourier space)

$$v_k'' + (k^2 - \frac{z''}{z})v_k = 0 (28)$$

Features:

- oscillations on sub-Hubble scales
- squeezing on super-Hubble scales $v_k \sim z$

Quantum vacuum initial conditions:

$$v_k(\eta_i) = (\sqrt{2k})^{-1}$$
 (29)

Structure formation in inflationary cosmology

String Cosmology

R. Brandenberger

troduction

tring gas

rinciples

antime

foduli stabilization s SGC

olography in tring Therlodynamics

ormalism

trion Car

CALL STREET, S

tructure

Serturbations

luctuations in String las Cosmology vs. inflation

inalysis

N.B. Perturbations originate as quantum vacuum fluctuations.

R. Brandenberger

stroduction

tring gas

rinoples

ASTURA

foduli stabilization s SGC

olography in tring Therlodynamics

ormalism

triny Cas

beofic Heat

tructure

erturbations

fuctuations in String las Cosmology vs. station

inalysis

Pirsa: 09070025

Step 3: Resulting equation of motion (Fourier space)

$$v_k'' + (k^2 - \frac{z''}{z})v_k = 0 (28)$$

Features:

- oscillations on sub-Hubble scales
- squeezing on super-Hubble scales $v_k \sim z$

Quantum vacuum initial conditions:

$$v_k(\eta_i) = (\sqrt{2k})^{-1}$$
 (29)

Structure formation in inflationary cosmology

String Cosmology

R. Brandenberger

troduction

tring gas

rinciples

....

floduli stabilization n SGC

olography in tring Therrodynamics

ormalism

pplication to a

Constitute Hann

tructure

Terriurbations

luctuations in String las Cosmology vs. offation

inalysis

N.B. Perturbations originate as quantum vacuum fluctuations.

Background for string gas cosmology

String Cosmology

R. Brandenberger

troduction

tring gas

antique

foduli stabilization

olography in tring Therrodynamics

ormalism

pplication to

pecific Heat

tructure

erturbations

fluctuations in String las Cosmology vs. offation

malysis

Structure formation in string gas cosmology

A. Nayeri, R.B. and C. Vafa, Phys. Rev. Lett. 97:021302 (2006)

String Cosmology

Brandenberger

Pirsa: 09070025

N.B. Perturbations originate as thermal string gas fluctuations.

Page 82/127

Structure formation in inflationary cosmology

String Cosmology

R. Brandenberger

troduction

tring gas

vinciples

SATURDAY.

foduli stabilization s SGC

olography in tring Therlodynamics

ormalism

pplication to

ceofic Heat

tructure

lerturbistions

luctuations in String las Cosmology vs. sitiation

ertalysis

N.B. Perturbations originate as quantum vacuum fluctuations.

Structure formation in string gas cosmology

A. Nayeri, R.B. and C. Vafa, Phys. Rev. Lett. 97:021302 (2006)

String Cosmology

R. Brandenberger

troduction

tring gas

distribution.

foduli stabilization : SGC

olography in tring Theriodynamics

crmaism

pplication to a trino Gas.

pacific Heat

tructure

***erturbations**

fluctuations in String Sas Cosmology vs. nflation

stielysis

Pirsa: 09070025

onclusions

N.B. Perturbations originate as thermal string gas fluctuations.

Page 84/127

Method

String Cosmology

R. Brandenberger

troduction

tring gas

-

foduli stabilization : SGC

olography in tring Therlodynamics

ormalism

pplication to

neofic Heat

Eructure

Serturbations

luctuations in Strin. Las Cosmology vs. -flation

malysis

- Calculate matter correlation functions in the Hagedorn phase (neglecting the metric fluctuations)
- For fixed k, convert the matter fluctuations to metric fluctuations at Hubble radius crossing $t = t_i(k)$
- Evolve the metric fluctuations for $t > t_i(k)$ using the usual theory of cosmological perturbations

Extracting the Metric Fluctuations

String Cosmology

R. Brandenberger

troduction

tring gas

1000

foduli stabilizatio

olography in tring Ther-

-wmalice

oplication to

A STATE OF THE PARTY OF

tri leti ire

Serturbations

luctuations in String Las Cosmology vs.

malueis

Pirsa: 09070025

Ansatz for the metric including cosmological perturbations and gravitational waves:

$$ds^{2} = a^{2}(\eta) \left((1 + 2\Phi) d\eta^{2} - [(1 - 2\Phi) \delta_{ij} + h_{ij}] dx^{i} dx^{j} \right). (30)$$

Inserting into the perturbed Einstein equations yields

$$\langle |\Phi(k)|^2 \rangle = 16\pi^2 G^2 k^{-4} \langle \delta T^0_0(k) \delta T^0_0(k) \rangle, \qquad (31)$$

$$\langle |\mathbf{h}(k)|^2 \rangle = 16\pi^2 G^2 k^{-4} \langle \delta T^i{}_j(k) \delta T^i{}_j(k) \rangle. \tag{32}$$

Power Spectrum of Cosmological Perturbations

String Cosmology

R. Brandenberger

stroduction

tring gas

-

....

foduli stabilization : SGC

olography in tring Therlodynamics

ormalism

pplication to

peofic Heat

tructure

Verturbations

fuctuations in String Las Cosmology vs.

inalysis

Pirsa: 09070025

Key ingredient: For thermal fluctuations:

$$\langle \delta \rho^2 \rangle = \frac{T^2}{R^6} C_V \,. \tag{33}$$

Key ingredient: For string thermodynamics in a compact space

$$C_V \approx 2 \frac{R^2/\ell_s^3}{T(1-T/T_H)}$$
 (34)

Structure formation in inflationary cosmology

String Cosmology

R. Brandenberger

stroduction

tring gas

rinoples

....

flodull stabilization s SGC

olography in tring Therlodynamics

ormalism

tring Cas

Industrial Library

tructure

erturbations

luctuations in String las Cosmology vs. station

stratyara

N.B. Perturbations originate as quantum vacuum fluctuations.

Structure formation in string gas cosmology

A. Nayeri, R.B. and C. Vafa, Phys. Rev. Lett. 97:021302 (2006)

String Cosmology

Brandenberger

Pirsa: 09070025

N.B. Perturbations originate as thermal string gas fluctuations.

Page 89/127

Power Spectrum of Cosmological Perturbations

String Cosmology

R. Brandenberger

troduction

tring gas

.

foduli stabilization s SGC

olography ir tring Theriodynamics

crmalism

pplication to

Salara Maria Maria

tructure

ferturbations

fuctuations in String Jas Cosmology vs.

inalysis

Pirsa: 09070025

Key ingredient: For thermal fluctuations:

$$\langle \delta \rho^2 \rangle = \frac{T^2}{R^6} C_V \,. \tag{33}$$

Key ingredient: For string thermodynamics in a compact space

$$C_V \approx 2 \frac{R^2/\ell_s^3}{T(1 - T/T_H)}$$
 (34)

Power Spectrum of Cosmological Perturbations

String Cosmology

R. Brandenberger

stroduction

tring gas

Maria San

antima.

foduli stabilization s SGC

olography ir tring Therlodynamics

ormalism

pplication to

necific Heat

tructure

Serturbations

kas Cosmology vs.

Inalysis

Pirsa: 09070025

Key ingredient: For thermal fluctuations:

$$\langle \delta \rho^2 \rangle = \frac{T^2}{R^6} C_V \,. \tag{33}$$

Key ingredient: For string thermodynamics in a compact space

$$C_V \approx 2 \frac{R^2/\ell_s^3}{T(1 - T/T_H)}$$
 (34)

R. Brandenberger

troduction

tring gas

rinciples

.....

floduli stabilization i SGC

olography in tring Therlodynamics

ormatom

pplication to

peonic Heat

tructure

lerturbations

luctuations in String las Cosmology vs.

inalysis

Pirsa: 09070025

Power spectrum of cosmological fluctuations

$$P_{\Phi}(k) = 8G^{2}k^{-1} < |\delta\rho(k)|^{2} >$$

$$= 8G^{2}k^{2} < (\delta M)^{2} >_{R}$$

$$= 8G^{2}k^{-4} < (\delta\rho)^{2} >_{R}$$

$$= 8G^{2}\frac{T}{\ell_{s}^{3}} \frac{1}{1 - T/T_{H}}$$
(35)
$$(36)$$

$$= 8G^{2}k^{-4} < (\delta\rho)^{2} >_{R}$$

$$= 8G^{2}\frac{T}{\ell_{s}^{3}} \frac{1}{1 - T/T_{H}}$$
(38)

- scale-invariant like for inflation
- slight red tilt like for inflation

Power Spectrum of Cosmological Perturbations

String Cosmology

R. Brandenberger

stroduction

tring gas

Control on

.....

foduli stabilization : SGC

olography ir tring Therlodynamics

ormalism

ipplication to

necific Heat

tructure

'erturbations

luctuations in String las Cosmology vs.

inalysis

Pirsa: 09070025

Key ingredient: For thermal fluctuations:

$$\langle \delta \rho^2 \rangle = \frac{T^2}{R^6} C_V \,. \tag{33}$$

Key ingredient: For string thermodynamics in a compact space

$$C_V \approx 2 \frac{R^2/\ell_s^3}{T(1-T/T_H)}$$
 (34)

R. Brandenberger

stroduction

tring gas

Minciples

....

floduli stabilization s SGC

olography in tring Therrodynamics

ormalism

pplication to

Industrial Library

A STATE OF THE OWNER.

tructure

Verturbations

luctuations in String las Cosmology vs.

Instreis

Pirsa: 09070025

Power spectrum of cosmological fluctuations

$$P_{\Phi}(k) = 8G^{2}k^{-1} < |\delta\rho(k)|^{2} >$$

$$= 8G^{2}k^{2} < (\delta M)^{2} >_{R}$$

$$= 8G^{2}k^{-4} < (\delta\rho)^{2} >_{R}$$

$$= 8G^{2}\frac{T}{\ell_{s}^{3}} \frac{1}{1 - T/T_{H}}$$
(35)
$$= 8G^{2}\frac{T}{\ell_{s}^{3}} \frac{1}{1 - T/T_{H}}$$
(38)

- scale-invariant like for inflation
- slight red tilt like for inflation

R. Brandenberger

troduction

tring gas

....

foduli stabilization : SGC

olography in tring Therlodynamics

crmalism

pplication to

necific Heat

tructure

lerturbations

loctuations in String ias Cosmology vs.

malusis

Pirsa: 09070025

Power spectrum of cosmological fluctuations

$$P_{\Phi}(k) = 8G^{2}k^{-1} < |\delta\rho(k)|^{2} >$$

$$= 8G^{2}k^{2} < (\delta M)^{2} >_{R}$$

$$= 8G^{2}k^{-4} < (\delta\rho)^{2} >_{R}$$

$$= 8G^{2}\frac{T}{\ell_{s}^{3}} \frac{1}{1 - T/T_{H}}$$
(35)
$$= 8G^{2}\frac{T}{\ell_{s}^{3}} \frac{1}{1 - T/T_{H}}$$
(38)

- scale-invariant like for inflation
- slight red tilt like for inflation

R. Brandenberger

stroduction

tring gas

vinciples.

antimae

SGC

olography ir tring Therlodynamics

crmalsm

tring Gas

peofic Hea

tructure

lerturbations

fuctuations in String las Cosmology vs.

malusis

Pirsa: 09070025

Power spectrum of cosmological fluctuations

$$P_{\Phi}(k) = 8G^{2}k^{-1} < |\delta\rho(k)|^{2} >$$

$$= 8G^{2}k^{2} < (\delta M)^{2} >_{H}$$

$$= 8G^{2}k^{-4} < (\delta\rho)^{2} >_{H}$$

$$= 8G^{2}\frac{T}{\ell_{s}^{3}} \frac{1}{1 - T/T_{H}}$$
(35)
$$= 8G^{2}\frac{T}{\ell_{s}^{3}} \frac{1}{1 - T/T_{H}}$$
(38)

- scale-invariant like for inflation
- slight red tilt like for inflation

Comments

String Cosmology

 R. Brandenberger

itroduction

tring gas

....

foduli stabilizatio

clography in tring Therlodynamics

crmaism

pplication to

ideofic Heat

tructure

erturbations

luctuations in String Las Cosmology vs.

Inalysis

- Evolution for $t > t_i(k)$: $\Phi \simeq \text{const}$ since the equation of state parameter 1 + w stays the same order of magnitude unlike in inflationary cosmology.
- Squeezing of the fluctuation modes takes place on super-Hubble scales like in inflationary cosmology → acoustic oscillations in the CMB angular power spectrum
- In a dilaton gravity background the dilaton fluctuations dominate → different spectrum [R.B. et al, 2006;
 Kaloper, Kofman, Linde and Mukhanov, 2006]

Spectrum of Gravitational Waves

R.B., A. Nayeri, S. Patil and C. Vafa, Phys. Rev. Lett. (2007)

String Cosmology

R. Brandenberger

troduction

tring gas

ASTURBA

foduli stabilization s SGC

olography ir tring Therlodynamics

ormalism

tring Class

neofic Heat

tructure

lerturbations

luctuations in String Las Cosmology vs.

inalysis

Pirsa: 09070025

$$P_h(k) = 16\pi^2 G^2 k^{-1} < |T_{ij}(k)|^2 >$$
 (39)

$$= 16\pi^2 G^2 k^{-4} < |T_{ij}(R)|^2 > \tag{40}$$

$$\sim 16\pi^2 G^2 \frac{T}{\ell_s^3} (1 - T/T_H)$$
 (41)

Key ingredient for string thermodynamics

$$<|T_{ij}(R)|^2> \sim \frac{T}{l_s^3 R^4} (1-T/T_H)$$
 (42)

- scale-invariant (like for inflation)
- slight blue tilt (unlike for inflation)

Spectrum of Gravitational Waves

R.B., A. Nayeri, S. Patil and C. Vafa, Phys. Rev. Lett. (2007)

String Cosmology

R. Brandenberger

stroduction

tring gas

rinciples

.....

foduli stabilization s SGC

olography ir tring Therlodynamics

ormalism

tring Gas

peofic Heat

tructure

Terturbations

luctuations in String las Cosmology vs. eflation

inalysis

Pirsa: 09070025

$$P_h(k) = 16\pi^2 G^2 k^{-1} < |T_{ij}(k)|^2 >$$
 (39)

$$= 16\pi^2 G^2 k^{-4} < |T_{ij}(R)|^2 > \tag{40}$$

$$\sim 16\pi^2 G^2 \frac{T}{\ell_s^3} (1 - T/T_H)$$
 (41)

Key ingredient for string thermodynamics

$$<|T_{ij}(R)|^2> \sim \frac{T}{I_s^3 R^4} (1-T/T_H)$$
 (42)

- scale-invariant (like for inflation)
- slight blue tilt (unlike for inflation)

Requirements

String Cosmology

R. Brandenberger

stroduction

tring gas

aut yes

foduli stabilization s SGC

olography in tring Therlodynamics

ormalism

trion Cas

ideofic Heat

tructure

Ferturbations

luctuations in Strin ias Cosmology vs.

malysis

Pirsa: 09070025

- static Hagedorn phase (including static dilaton) → new physics required.
- holographic scaling C_V(R) ~ R² obtained from a thermal gas of strings provided there are winding modes which dominate.
- Cosmological fluctuations in the IR are described by Einstein gravity.

Note: Specific higher derivative toy model: T. Biswas, R.B., A. Mazumdar and W. Siegel, 2006

Requirements

String Cosmology

R. Brandenberger

itroduction

tring gas

antone

foduli stabilization s SGC

olography in tring Therlodynamics

onnaism

pplication to

ipecific Heat

tructure

erturbations

luctuations in String las Cosmology vs. oflation

inalysis

Pirsa: 09070025

- static Hagedorn phase (including static dilaton) → new physics required.
- holographic scaling C_V(R) ~ R² obtained from a thermal gas of strings provided there are winding modes which dominate.
- Cosmological fluctuations in the IR are described by Einstein gravity.

Note: Specific higher derivative toy model: T. Biswas, R.B., A. Mazumdar and W. Siegel, 2006

Plan

String Cosmology

R. Brandenberger

troduction

tring gas

rifloples

CHALLE CO.

floduli stabilization : SGC

olography in tring Therlodynamics

ormalism

pplication to

Interestin Hass

tructure

Serturbations

luctuations in String las Cosmology vs. Inflation

inalysis

- 1 Introduction
- String Gas Cosmology
 - Principles
 - Features of String Gas Cosmology
 - Moduli stabilization in SGC
- 3 Holography in String Thermodynamics
 - Formalism
 - Application to a String Gas
 - Specific Heat
- String Gas Cosmology and Structure Formation
 - Review of the Theory of Cosmological Perturbations
 - Fluctuations in String Gas Cosmology vs. Inflation
 - Analysis
- Discussion
- 6 Conclusions

Weak Points

String Cosmology

 R. Brandenberger

stroduction

tring gas

nnoples

eatures

foduli stabilization s SGC

olography in tring Therlodynamics

crmalsm

pplication to

peonic Heat

tructure

erturbation:

luctuations in Strin Las Cosmology vs. iffation

inalysis

Pirsa: 09070025

In its present form, the string gas cosmology structure formation scenario faces challenges:

- No consistent effective field theory description of the dynamics (for a toy model, see however R.B., A. Frey and S. Kanno, 2007).
- Keeping the metric flat during the Hagedorn phase is unrealistic.

Question: Is there an improved description of the Hagedorn phase?

Holographic Cosmology V

G. Veneziano, hep-th/0312182

String Cosmology

R. Brandenberger

stroduction

tring gas

and the same

10000

foduli stabilization s SGC

olography in tring Therlodynamics

ormalism

pplication to

neofic Heat

tructure

Perturbations

fuctuations in String Las Cosmology vs. inflation

inalysis

- Hagedorn phase: p = 0 gas of string holes with $r_s = H^{-1}$.
- string hole: black hole on the string correspondence curve $M=M_{\rm s}g_{\rm s}^{-2}$
- satisfies cosmological entropy bound: $\sigma = \sigma_{max} = HM_P^2$
- string holes decay into radiative string states
- \Rightarrow transition between p=0 and $p=1/3\rho$ state

Holographic Cosmology V

G. Veneziano, hep-th/0312182

String Cosmology

R. Brandenberger

stroduction

tring gas

Marinlas

estures

foduli stabilization s SGC

olography in tring Therlodynamics

ormalism

pplication to

pecfic Heat

tructure

Serturbations

luctuations in Strin Las Cosmology vs. iflation

inalysis

- Hagedorn phase: p = 0 gas of string holes with $r_s = H^{-1}$.
- string hole: black hole on the string correspondence curve $M = M_s g_s^{-2}$
- satisfies cosmological entropy bound: $\sigma = \sigma_{max} \equiv HM_P^2$
- string holes decay into radiative string states
- \rightarrow transition between p=0 and $p=1/3\rho$ state

Holographic Cosmology V

G. Veneziano, hep-th/0312182

String Cosmology

 R. Brandenberger

troduction

tring gas

and man

foduli stabilization s SGC

olography in tring Therlodynamics

ormalism

pplication to

ipeofic Heat

tructure

erturbations

fuctuations in String Las Cosmology vs. riflation

inalysis

- Hagedorn phase: p = 0 gas of string holes with $r_s = H^{-1}$.
- string hole: black hole on the string correspondence curve $M = M_s g_s^{-2}$
- satisfies cosmological entropy bound: $\sigma = \sigma_{max} \equiv HM_P^2$
- string holes decay into radiative string states
- \rightarrow transition between p = 0 and $p = 1/3\rho$ state

R. Brandenberger

stroduction

tring gas

vinciples.

Seatt year

Rodull stabilization s SGC

olography in tring Therlodynamics

ormalism

pplication to

HANDS HAND

tructure

erturbistions

fuctuations in String las Cosmology vs. station

inalysis

Pirsa: 09070025

Assume Deep in the Hagedorn phase the universe is almost static

Also: holographic scaling $C_V(R) \sim R^2$.

Page 107/127

Matter Bounce

F. Finelli and R.B., Phys. Rev. D65 (2002); Y. Cai et al, arXiv:0810.4677

String Cosmology

R. Brandenberger

stroduction

tring gas

Visurielas

foduli stabilization s SGC

olography in tring Therlodynamics

or malion

oplication to a

pecific Heal

tructure

Terturbistions

luctuations in Strin. lias Cosmology vs.

inalysis

- Message: In the context of a bouncing cosmology (possibly obtained by AdS/CFT approaches to singularity resolution) there is another way to obtain a scale-invariant spectrum of cosmological perturbations: a matter bounce.
- Matter bounce: bouncing cosmology with a matter-dominated phase of contraction when the relevant scales exit the Hubble radius.
- Statement: In a matter bounce setup, fluctuations which are in their vacuum state on sub-Hubble scales early in the contracting phase evolve into a scale-invariant spectrum of curvature fluctuations on super-Hubble scales at late times.

Space-Time Sketch

String Cosmology

R. Brandenberger

troduction

tring gas

distribution .

last year

foduli stabilization r SGC

olography in tring Therodynamics

ormalism

pplication to

The second second

tructure

lerturbations

luctuations in String ias Cosmology vs.

er shusie

Pirsa: 09070025

Page 109/127

String Cosmology

 R. Brandenberger

stroduction

tring gas

destroyee

foduli stabilization : SGC

olography in tring Therlodynamics

ormalism

trine Con

tructure

Griturbations

loctuations in Strin las Cosmology vs.

malvela

- Vacuum spectrum: P_ζ(k) ~ k²
- need a boosting of IR modes relative to UV modes.
- In a contracting universe the dominant mode of ζ is growing on super-Hubble scales (whereas it is constant in an expanding phase).
- Long wavelengths are super-Hubble for a longer time
 preferential growth of IR modes.
- For a matter-dominated phase of contraction the boost is exactly right to convert a vacuum spectrum into a scale-invariant one.

String Cosmology

R. Brandenberger

stroduction

tring gas

-

austrores

foduli stabilization s SGC

olography ir tring Therlodynamics

ormalism

bulan Can

peone Heat

tructure

Terturbations

toctuations in strin Sas Cosmology vs. inflation

malusi

- Vacuum spectrum: $P_{\zeta}(k) \sim k^2$
- need a boosting of IR modes relative to UV modes.
- In a contracting universe the dominant mode of ζ is growing on super-Hubble scales (whereas it is constant in an expanding phase).
- Long wavelengths are super-Hubble for a longer time
 preferential growth of IR modes.
- For a matter-dominated phase of contraction the boost is exactly right to convert a vacuum spectrum into a scale-invariant one.

Space-Time Sketch

String Cosmology

R. Brandenberger

stroduction

tring gas

rinoples

....

foduli stabilization sGC

olography in tring Therodynamics

ormalism

pplication to

Interesting House

tructure

Perturbations

luctuations in Strin les Cosmology vs. vilation

inalysis

Pirsa: 09070025

Page 112/127

String Cosmology

R. Brandenberger

stroduction

tring gas

rinoples

foduli stabilization s SGC

olography ir tring Theriodynamics

crmalsm

ppincation in

CONTRACTOR OF THE PARTY OF

ipechic Heat

tructure

ferturbations

luctuations in Strin ias Cosmology vs. effation

analysis.

- Vacuum spectrum: $P_{\zeta}(k) \sim k^2$
- need a boosting of IR modes relative to UV modes.
- In a contracting universe the dominant mode of \(\zeta \) is growing on super-Hubble scales (whereas it is constant in an expanding phase).
- Long wavelengths are super-Hubble for a longer time
 preferential growth of IR modes.
- For a matter-dominated phase of contraction the boost is exactly right to convert a vacuum spectrum into a scale-invariant one.

String Cosmology

 R. Brandenberger

stroduction

tring gas

.....

foduli stabilizatio s SGC

olography ir tring Therlodynamics

crmalism

tring Car

neofic Heat

tructure

lerturbations

fuctuations in String Las Cosmology vs. offstion

malysis

- Vacuum spectrum: $P_{\zeta}(k) \sim k^2$
- need a boosting of IR modes relative to UV modes.
- In a contracting universe the dominant mode of ζ is growing on super-Hubble scales (whereas it is constant in an expanding phase).
- Long wavelengths are super-Hubble for a longer time
 preferential growth of IR modes.
- For a matter-dominated phase of contraction the boost is exactly right to convert a vacuum spectrum into a scale-invariant one.

String Cosmology

R. Brandenberger

stroduction

tring gas

vinoples

autores

foduli stabilizatio : SGC

olography ir tring Therrodynamics

ormalism

pplication to

peofic Heat

tructure

Serturbations

fuctuations in Strin las Cosmology vs. iflation

malysis

- Vacuum spectrum: $P_{\zeta}(k) \sim k^2$
- need a boosting of IR modes relative to UV modes.
- In a contracting universe the dominant mode of ζ is growing on super-Hubble scales (whereas it is constant in an expanding phase).
- Long wavelengths are super-Hubble for a longer time
 → preferential growth of IR modes.
- For a matter-dominated phase of contraction the boost is exactly right to convert a vacuum spectrum into a scale-invariant one.

String Cosmology

 R. Brandenberger

stroduction

tring gas

foduli stabilizatio

clography in tring Therrodynamics

ormalism

pplication to

ideofic Heat

tructure

Perturbations

loctuations in String less Cosmology vs. situation

inalysis

- Vacuum spectrum: $P_{\zeta}(k) \sim k^2$
- need a boosting of IR modes relative to UV modes.
- In a contracting universe the dominant mode of ζ is growing on super-Hubble scales (whereas it is constant in an expanding phase).
- Long wavelengths are super-Hubble for a longer time
 → preferential growth of IR modes.
- For a matter-dominated phase of contraction the boost is exactly right to convert a vacuum spectrum into a scale-invariant one.

Plan

String Cosmology

Brandenberger

Conclusions

Page 117/127

Conclusions

String Cosmology

 R. Brandenberger

troduction

tring gas

Mariniae

eatures

foduli stabilization s SGC

olography in tring Therlodynamics

ormalism

pplication to

peolic Heat

tructure

lerturbations

loctuations in String las Cosmology vs. sflation

inalysis

Pirsa: 09070025

onclusions

- String Gas Cosmology: Model of cosmology of the very early universe based on new degrees of freedom and new symmetries of superstring theory.
- SGC → nonsingular cosmology
- SGC → natural explanation of the number of large spatial dimensions.
- Holographic scaling of SGC correlation functions → new scenario of structure formation
- Scale invariant spectrum of cosmological fluctuations (like in inflationary cosmology).
- Spectrum of gravitational waves has a small blue tilt (unlike in inflationary cosmology).
- But we need a better model of the Hagedorn phase

String Cosmology

 R. Brandenberger

stroduction

tring gas

mople

foduli stabilizatio

olography ir tring Therlodynamics

ormalism

pplication to

beofic Heat

tructure

Serturbations

loctuations in Strin las Cosmology vs. iffation

inalysis

- Vacuum spectrum: $P_{\zeta}(k) \sim k^2$
- need a boosting of IR modes relative to UV modes.
- In a contracting universe the dominant mode of ζ is growing on super-Hubble scales (whereas it is constant in an expanding phase).
- Long wavelengths are super-Hubble for a longer time
 → preferential growth of IR modes.
- For a matter-dominated phase of contraction the boost is exactly right to convert a vacuum spectrum into a scale-invariant one.

Plan

String Cosmology

Brandenberger

Pirsa: 09070025

Conclusions

Page 120/127

Conclusions

String Cosmology

 R. Brandenberger

troduction

tring gas

Marinles.

estures

foduli stabilization s SGC

olography in tring Therlodynamics

crmalsm

opplication to

peonic Heat

tructure

erturbations

luctuations in String Las Cosmology vs. stlation

inalysis

- String Gas Cosmology: Model of cosmology of the very early universe based on new degrees of freedom and new symmetries of superstring theory.
- SGC → nonsingular cosmology
- SGC → natural explanation of the number of large spatial dimensions.
- Holographic scaling of SGC correlation functions → new scenario of structure formation
- Scale invariant spectrum of cosmological fluctuations (like in inflationary cosmology).
- Spectrum of gravitational waves has a small blue tilt (unlike in inflationary cosmology).
- But we need a better model of the Hagedorn phase

String Cosmology

R. Brandenberger

stroduction

tring gas

...

foduli stabilizatio

olography in tring Therlodynamics

ormalism

optication to

peofic Hea

tructure

erturbistions

luctuations in String ias Cosmology vs. iflation

inalysis

- Vacuum spectrum: $P_{\zeta}(k) \sim k^2$
- need a boosting of IR modes relative to UV modes.
- In a contracting universe the dominant mode of ζ is growing on super-Hubble scales (whereas it is constant in an expanding phase).
- Long wavelengths are super-Hubble for a longer time
 → preferential growth of IR modes.
- For a matter-dominated phase of contraction the boost is exactly right to convert a vacuum spectrum into a scale-invariant one.

Matter Bounce

F. Finelli and R.B., Phys. Rev. **D65** (2002); Y. Cai et al, arXiv:0810.4677

String Cosmology

 R. Brandenberger

stroduction

tring gas

foduli stabilization s SGC

olography in tring Theriodynamics

ormalism

opplication to a

peofic Heat

tructure

lerturbations

luctuations in Strin las Cosmology vs. station

inalysis

- Message: In the context of a bouncing cosmology (possibly obtained by AdS/CFT approaches to singularity resolution) there is another way to obtain a scale-invariant spectrum of cosmological perturbations: a matter bounce.
- Matter bounce: bouncing cosmology with a matter-dominated phase of contraction when the relevant scales exit the Hubble radius.
- Statement: In a matter bounce setup, fluctuations which are in their vacuum state on sub-Hubble scales early in the contracting phase evolve into a scale-invariant spectrum of curvature fluctuations on super-Hubble scales at late times.

Holographic Cosmology V

G. Veneziano, hep-th/0312182

String Cosmology

 R. Brandenberger

troduction

tring gas

Vinciples

ealures

foduli stabilization s SGC

olography in tring Therlodynamics

ormalism

pplication to

peofic Heat

tructure

Serturbations

fluctuations in String Las Cosmology vs. Inflation

malysis

- Hagedorn phase: p = 0 gas of string holes with $r_s = H^{-1}$.
- string hole: black hole on the string correspondence curve $M = M_s g_s^{-2}$
- satisfies cosmological entropy bound: $\sigma = \sigma_{max} \equiv HM_P^2$
- string holes decay into radiative string states
- \rightarrow transition between p = 0 and $p = 1/3\rho$ state

Holographic Cosmology V

G. Veneziano, hep-th/0312182

String Cosmology

R. Brandenberger

troduction

tring gas

Vincoles

AND TOTAL

foduli stabilization s SGC

olography in tring Therlodynamics

crmalsm

pplication to

Indonesia Library

tructure

Terturbations

loctuations in String las Cosmology vs.

inalysis

- Hagedorn phase: p = 0 gas of string holes with $r_s = H^{-1}$.
- string hole: black hole on the string correspondence curve $M = M_s g_s^{-2}$
- satisfies cosmological entropy bound: $\sigma = \sigma_{max} \equiv HM_P^2$
- string holes decay into radiative string states
- \Rightarrow transition between p=0 and p=1/3p state

Weak Points

String Cosmology

 R. Brandenberger

troduction

tring gas

rinciples

eatures

floduli stabilization s SGC

olography ir tring Therlodynamics

ormalism

pplication to

pechic Heat

tructure

lerturbations

luctuations in String Las Cosmology vs. effation

Pirsa: 09070025

In its present form, the string gas cosmology structure formation scenario faces challenges:

- No consistent effective field theory description of the dynamics (for a toy model, see however R.B., A. Frey and S. Kanno, 2007).
- Keeping the metric flat during the Hagedorn phase is unrealistic.

Question: Is there an improved description of the Hagedorn phase?

Weak Points

String Cosmology

 R. Brandenberger

stroduction

tring gas

rinciples

autores.

foduli stabilization s SGC

olography ir tring Therlodynamics

ermalism

pplication to a

pecific Heat

tructure

enturbations

luctuations in String las Cosmology vs. Hation

malysis

Pirsa: 09070025

In its present form, the string gas cosmology structure formation scenario faces challenges:

- No consistent effective field theory description of the dynamics (for a toy model, see however R.B., A. Frey and S. Kanno, 2007).
- Keeping the metric flat during the Hagedorn phase is unrealistic.

Question: Is there an improved description of the Hagedorn phase?

