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Measure problem

The usual approach: 24 =

PB Sl -

By contrast, in quantum cosmology such relative
probabilities are calculated from the wave function




Probabilities for Observation

Observations are restricted to part of a light cone
extending over a Hubble volume located somewhere
in spacetime.

Probabilities for observations are conditioned on part
of our data D) that describe the local observational
situation.

In quantum cosmology, there 1s a probability that
[} occurs in any spacetime volume

In (very ) large universes the probability may become
significant that our local observational situation is
replicated elsewhere.

All we know is that the universe exhibits at least
one region with data [) somewhere in spacetime.




Probabilities for Observation

Probabilities for observation therefore involve "top-

down” probabilities dit d on D=1

Top-down probabilities are calculated by summing the
bottom-up probabilities of different histories, weighted
by the probability that D occurs at least once
somewhere in spacetime.

The observable 7 can be a local or global property of

the universe.




Probabilities for Observation

Let oy label the different possible histories. Then

where p{ F.og) is the bottom-up probability of F in
the history labeled by og

Focus on D that specify the observational situation to
be somewhere on (possibly many ) spacelike surfaces.

Let pr be the probability that ) occurs in any one of
the Hubble volume on these surfaces. Then




Volume Weighting
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Top-down weighting simplifies if data D are rare in all
histories predicted with any significant probability by

the wave function
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Probabilities for Observation

Let oy label the different possible histories. Then

where p(F.og) is the bottom-up probability of F in

the history labeled by o
Focus on D that specify the observational situation to
be somewhere on (possibly many) spacelike surfaces.

Let pr be the probability that DD occurs in any one of
the Hubble volume on these surfaces. Then




Volume Weighting
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Top-down weighting simplifies if data ) are rare in all
histories predicted with any significant probability by

the wave function
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Replication

Volume weighting only applies when pg < 1/.\;

In histories where [) specifies very large or infinite
spacelike surfaces the more general weighting applies:
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In models where D is common in all histories:

~ relevant regime in models of eternal inflation




Measure problem
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The usual approach: £4 = ’

By contrast, in quantum cosmology such relative
probabilities are calculated from the wave function




Probabilities for Observation

Observations are restricted to part of a light cone
extending over a Hubble volume located somewhere
In spacetime.

Probabilities for observations are conditioned on part
of our data D that describe the local observational
situation.

In guantum cosmology, there i1s a probability that
[} occurs in any spacetime volume

In (very ) large universes the probability may become
significant that our local observational situation is
replicated elsewhere.

All we know i1s that the universe exhibits at least

one region with data D) somewhere in spacetime.




Probabilities for Observation

Let o label the different possible histories. Then

where p(F.dn) is the bottom-up probability of F in
the history labeled by o

Focus on D that specify the observational situation to
be somewhere on (possibly many ) spacelike surfaces.

Let pe be the probability that D occurs in any one of
the Hubble volume on these surfaces. Then




Volume Weighting

Top-down weighting simplifies if data ) are rare in all
histories predicted with any significant probability by

the wave function
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Replication

Volume weighting only applies when pg < 1/.\;

In histories where [) specifies very large or infinite

spacelike surfaces the more general weighting applies:
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" No-Boundary” wave function
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Semiclassical Approximation:
Fuzzy Instantons

In some regions of (mini)superspace the wave

function may be evaluated in the

To leading order in /i the NBWF will then have the
semiclassical form,
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In general the extremal geometries will be




Lorentzian histories in Quantum
Cosmology

'I"-’I' () =~ exp —1'-_r: b,y ) +15; H ' :
The semiclassical wave function specifies Lorentzian

gies if at the boundary
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Measure on Classical Phase Space

A wave function predicts an ensemble of universes that
can be labeled by points in phase space.
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Regularity on disk — slice through phase space




Lorentzian histories in Quantum
Cosmology

'I'-.’- ( | = exp —ip|l0. ) + 2o |0, X .’r;l

The semiclassical wave function specifies Lorentzian
gies if at the boundary
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and have

Phistory x exp|—2Ig/h




Measure on Classical Phase Space

A wave function predicts an ensemble of universes that
can be labeled by points in phase space
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Regularity on disk — slice through phase space




Classical Histories are Real!

Histories on slice are g
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The role of the complex extrema is just to assign
ties to all possible cosmologies.




Singularity Resolution

A subset of the predicted Lorentzian histories may be
singular in the past

WA

but probabilities for late time observables like CMB
fluctuations are calculated directly from the NBWF

— singularity nger a stacle to pres




Model

What is ensemble of homogeneous isotropic universes?




Saddle points

Field equations:

i — — | — -— —
Regularity at SP:  al0) =0 1(0) =1 S0) =
Free parameter at SP (D) = ope
At boundary 7, = X +:Y

— expect countable set of solutions for each oy




Saddle points

For each ©g, tune remaining parameters (7. X.Y ) to
find curves in (b, y) plane along which [ approaches
a constant at large b

This ensures universe obeys Lorentzian Einstein egs at
boundary

— (at most) a unique complex solution for each oy
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Saddle points

Field equations:

a2 —1+a+a?(—0%+p2e2) =0
FE‘EL“&FIT"{ ar SP i i)} = 1{) 21 1) — 'l o ==
Free parameter at SP 0) = O

At boundary 7, = X +:Y

— expect countable set of solutions for each oy




Saddle points

For each ©g, tune remaining parameters (+. X.Y ) to
find curves in (b, y) plane along which I approaches

a constant at large b

This ensures universe obeys Lorentzian Einstesin egs at

boundary

— (at most) a jue complex solution for each oy
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Inflation

The complex saddle points provide Cauchy data for
Lorentzian histories at the boundary a = 6.0 = Y.

Extrapolate backward /forward using the Lorentzian
equations to find behavior at early /late times.
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Inflation

-~ The NBWF selects inflating histories
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Inflating universes . ¢

-qu.

which are exponentially improbable A 3N with a

flat measure on phase space |Gibbons & Turok 06|




Origin and Future

i
classical bounce ‘expansion forever

16}
mutial smeulanty expansion forever

14F

o inital sieulanty recollapse

12¢
no classical solutions
\ §
< j
50 100 150 200 3

— large class of predicted inflationary universes
are regular in the past




Probabilities of Histories

The value of the real part of the Euclidean action of
the saddle points is conserved along the Lorentzian
history and provides its (relative} probability

plog) ~ exp|—-2Ig/h




Probabilities of Histories

exp|—2Ir/h
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The "bottom-up”™ probabilities favor histories with a
small number of e-folds.




E-folds of Inflation

Top-down probabilities:

For sufficiently small pg:
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Probabilities of Histories
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The "bottom-up”™ probabilities favor histories with a
small number of e-folds.




E-folds of Inflation

Top-down probabilities:
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Lorentzian histories in Quantum
Cosmology
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The semiclassical wave function specifies Lorentzian
gies if at the boundary
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The predicted cosmologies are then the integral curves
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Probabilities for Observation

Observations are restricted to part of a light cone
extending over a Hubble volume located somewhere
in spacetime.

Probabilities for observations are conditioned on part
of our data D that describe the local cbservational
situation.

In quantum cosmology, there is a probability that
[ occurs in any spacetime volume

In (very ) large universes the probability may become
significant that our local observational situation is
replicated elsewhere.

All we know is that the universe exhibits at least
one region with data ) somewhere in spacetime.




Probabilities for Observation

Probabilities for cbservation therefore involve "top-

down” probabilities ditioned on D=1

ot

Top-down probabilities are calculated by summing the
bottom-up probabilities of different histories, weighted
by the probability that D occurs at least once
somewhere in spacetime.

The cbservable F can be a local or global property of

the universe,




Singularity Resolution

A subset of the predicted Lorentzian histories may be
singular in the past

AV T are'a

but probabilities for late time observables like CMB
fluctuations are calculated directly from the NEWF

— singularity nger a stacle to pres




Model

What is ensemble of homogeneous isotropic universes?




Probabilities of Histories

The value of the real part of the Euclidean action of
the saddle points is conserved along the Lorentzian
history and provides its (relative) probability

plog) ~ exp|-2Ig/h
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Objectivity

For realistic values of pr and m~ volume weighting
applies in the homog /isotr ensemble

The top-down probabilities are then independent of the
precise value of pr and the data that determine it.




Inhomogeneities

Perturbed metric:

T
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and the scalar field perturbation
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— five scalar degrees of freedom




Complex Perturbations

Constraints: Shirai & Wada 88|

where z_ is the real boundary value of

= Y _H
Semiclassical approximation:
(b, v, expl—I(b,x.,z)/h]
where

is the action of perturbed 1plex saddle-points




Complex Perturbations

Extremum equations (in b, = k,, = 0 gauge):
+4Ha.. — (3m“o* —2/a*) = _2 e
+3H fo— (m?+(n?—1)/a?) fo = —4din—2m?

1S ,"f'.- — 9

Regularity at South Pole: a,, fr, — 0

At boundary: tune phases of (,(U) so that = real

— Can = |Ca(U) and og label ensemble of perturbed
histories.




Evolution Inside Horizon

Inside horizon where n /a H, matter perturbation
decouples and oscillatas:
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Outside Horizon

At horizon crossing n/a ~ H the nature of the
solutions changes:
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— slowly growing matter/ metric perturbations

Gauge-invanant vanable (,, tends to constant value




Qutside Horizon

Real boundary value : means Im|(,| — 0 outside
horizon.

— classicality condition automatically holds:

4
o --n




Probabilities for Observation

1. Probabilities for observing different values of
one particular fluctuation mode In an otherwise
homogeneous/isotropic ensemble, given a local
sbservational situation D

Reduced 4-pt function (a) — 3(a2)? ~ (V, /¢, )?




QOutside Horizon

Real boundary wvalue means lm|(,
horizon.

— classicality condition automatically holds:
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Probabilities for Observation

1. Probabilities for observing different values of
one particular fluctuation mode In an otherwise
homogeneous/isotropic ensemble, given a local
observational situation [

| D 1y ~ | dog Npl(zn. @0 pi

In the dominant background history this reduces to:

Reduced 4-pt function (a}) — 3(a2)* ~ (V. /e, )*




Probabilities for Observation

2. Probabilities for observing different values of a

fluctuation mode in the full ensemble, given a local

observational situation D:

Volume weighting applies to the homogeneous

histories:
" ."_'I—1' X [—[ [ i l = — et L :
|‘ Ea | = /] ..-'.‘-
[ |_ ;:r: J l
If (N 1/pe then




Probabilities for Observation

1. Probabilities for observing different values of
one particular fluctuation mode in an otherwise
homogeneous/isotropic ensemble, given a local
observational situation [):

Reduced 4-pt function (a* ¥} a2)? ~ (V,/e.)?




Outside Horizon

At horizon crossing n/a ~ H the nature of the
solutions changes:

Bl F

— slowly growing matter/ metric perturbations

Gauge-invanant varnable (,, tends to constant value




Outside Horizon

Real boundary value means lm|(,| — U outside
horizon

— classicality condition automatically holds:
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Probabilities for Observation

2. Probabilities for observing different values of a

fluctuation mode in the full ensemble, given a local

observational situation D:
-:q-i——ﬁfn"fj-:q |47/ 3m= N

Volume weighting applies to the homogeneous
histories:

If (N l/pEe then




Probabilities for Observation

1 Probabilities for observing different values of
one particular fluctuation mode In an otherwise
homogeneous/isotropic ensemble, given a local
observational situation [:

Reduced 4-pt function (a}) — 3(a2)* ~ (V. /e, )"




Probabilities for Observation

2. Probabilities for cbserving different values of a

fluctuation mode in the full ensemble, given a local

observational situation D:
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Volume weighting applies to the homogeneous
histories:
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Probabilities for Observation

in models of eternal mfation the observalional

sttuation s commonrn in the dominarid histories
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Probabilities for Observation

1. Probabilities for observing different values of
one particular fluctuation mode In an otherwise
homogeneous/isotropic ensemble, given a local
observational situation [):
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In the dominant background history this reduces to:

Reduced 4-pt function (a>) — 3(a2)* ~ (V. /e, )*




Probabilities for Observation

| 2 Probabilities for observing different values of
one particular fluctuation mode In an otherwise
homogeneous/isotropic ensemble, given a local
observational situation D:

Reduced 4-pt function (a>) — 3(a2)* ~ (V. /e, )"




Probabilities for Observation

2. Probabilities for observing different values of a

fluctuation mode in the full ensemble, given a local
observational situation [:

Volume weighting applies to the homogeneous
histories:




Outlook

Prediction in extensions of the classical ensemble that
include bifurcations from bubble nucleation, Boltzmann
brains etc




