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Eternally inflating multiverse

You are
here

irsa: 09070012 Page 3/45



Spacetime structure Minkowski
AdS bubbles . bubbles

@ Bubbles nucleate and expand at nearly the speed of light.
@ dS, AdS, and Minkowski bubbles
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Spacetime structure Minkowski
AdS bubbles —=a bubbles

Everything that can happen will happen an infinite
number of times. We have to learn how to compare these
infinities. (Otherwise we cannot distinguish probable events from
highly improbable & cannot make any predictions.)

Need a cutoff. Results are strongly cutoff-dependent.
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(The measure problem)



Global time cutoff: Count only observations that
were made before some time t.

Garcia-Bellido, Linde
& Linde (1994); A.V. (1995)

Possible choices of t :

(i) proper time I =T along
geodesics orthogonal to X ;
(ii) scale-factor time, f =Ina.

[ >X =mp steady-state evolution.

The distribution does not depend on the choice of =
-- but depends on what we use as .
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Measure proposals:

A.V. (1995)

® Scale factor cutoff Garcia-Bellido, Linde & Linde (1994)
De Simone, Guth, Salem & A.V. (2008)

® Stationary Linde (2007)
Garriga, Schwartz-Perlov,
® Pocket based A.V. & Winitzki (2005)
Easther, Lim & Martin (20035)
@ (Causal patch Bousso (2006)

Freivogel, Sekino, Susskind & Yeh (2006)

Empirical approach:

Investigate different measure proposals and discard those
which suffer from internal inconsistencies or strongly disagree
withrobservations.
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This talk:
A measure from fundamental theory

Based on work with Jaume Garriga

® The dynamics of the multiverse may be encoded in its
future boundary (suitably defined).

Inspired by holographic ideas: Quantum dynamics of a spacetime
region Is describable by a boundary theory.

® The measure can be obtained by imposing
a UV cutoff in the boundary theory.

Related to scale-factor cutoff.
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Holographic ideas

AdS/CFT Maldacena (1998)
DS/CFT Strominger (2001)

CdL/CFT Freivogel, Sekino,
Susskind & Yeh (2006)
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AdS,,,/CFT, correspondence
Maldacena (1998)

String theory in asymptotically AdS space SHEShind & Nltien (1908

Is equivalent (dual) to a CFT on the boundary.

Euclidean AdS:
ds’ =dr- +sinh” r dQZD

«— Boundary
UV cutoff

Regulate boundary theory:

Integrate out short-wavelength
modes of wavelength up to& .

R - bulk IR cutoff

The corresponding 4D modes
have minimum wavelength

Bulk resolution

A (r) =Ssinhr. Require A, <f“ scale
=) smmhR<//S Variation of R <> RG flow
in the boundary theory.
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(on scales > AdS curvature scale)



dS/CFT correspondence Strominger (2001)

The 4D theory describing an asymptotically de Sitter space is equivalent
to a 3D Euclidean CFT at the future infinity /..

i

ds” = —-dt" + H™ cosh’(H1) dQ;

Future infinity is S3 ~ f—>00,

Potential problem:

In String Theory, dS space is metastable, so there is no
such thing as asymptotically dS space.
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Freivogel, Sekino,
CdL/CFT correspondence Susskind & Yeh (2006)

(FSSY)

Bubble interior:

ds’ = —dt’ +a’(t)(dr” +sinh’ r dQ3)
AdS, —

FSSY: The 4D theory inside the bubble
Is equivalent to a Euclidean
2D field theory on T.

The boundary theory includes a Liouville field L(€2) . which describes
fluctuations of the boundary geometry: iy dgi

This additional field plays the role of time variable t, as in Wheeler-DeWitt
equation, while r is recovered from RG flow.

FSSY go further: The 2D boundary is affected by collisions with other
‘bubbles, and so it may represent a larger part of the multiverse.



The proposal:

The boundary theory lives at the future
boundary of the multiverse (suitably defined).
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Future infinity
@® Geodesic congruence

singular | projects bubbles ontoZ,,
N £ 0 2 => Map of future infinity.

@ Excise images of Minkowski
bubbles. (They are described
by the 2D boundary degrees
of freedom. (FSSY)

Ao @ AdS bubbles can be excised
hypersurface in a similar way (?).
Hertog & Horowitz (2005)

What remains is the eternal set £ ('scree’).

Pirsa: 09070012 Page 15/45



Future infinity

@® Geodesic congruence
projects bubbles ontoX,,

singular
R —— => Map of future infinity.
\/ ® Excise images of Minkowski
: bubbles. (They are described
: by the 2D boundary degrees
i - of freedom. (FSSY)
= @ AdS bubbles can be excised

M

i
i
(D

! B
o &
L—l-
3
9i]

in a similar way (?).
Hertog & Horowitz (2005)

What remains is the eternal set £ ('scree’).

Webster dictionary: scree \'skre\

An accumulation of loose stones or rocky debris at the base of a hill.

irsa: 09070012 Page 16/45



Future infinity
@® Geodesic congruence

singular projects bubbles ontozo,
- £ é A\ => Map of future infinity.

@ Excise images of Minkowski
bubbles. (They are described
by the 2D boundary degrees
of freedom. (FSSY)

ez @ AdS bubbles can be excised
hypersurface in a similar way (?).
Hertog & Horowitz (2005)

What remains is the eternal set £ ('scree’).

The metric g;(x) on X _defines a metricon £. Different choices of X are
related by Weyl rescalings.

The boundary theory lives on £.
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Structure of the eternal set £

Resolution scale
(Wilsonian cutoff)

Terminal bubble

@ Each bubble becomes a fractal “sponge” in the limit £ -0 .
® Terminal bubbles correspond to holes (with 2D CFTs on their boundaries).
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Information travels to £ in the form of long-wavelength
(A>> H™") massless and very light fields (e.g., gravit. waves).

g
v

Mx.t)~ta(x.t)a, .

Modes with A >> H~' are frozen
== the information is indestructible.
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Renormalization of the boundary theory

+— Boundary
Integrate out boundary modes of wavelength upto §. UV cutoff

The corresponding 4D modes have minimum wavelength

P (1) =alZ.1) E.

Bulk resolution scale
Require A_._ </ =

mm)p a<//5 - scalefactor cutoff

E—-0 = a—>x.

UV cutoff on the boundary <==p (IR) scale factor cutoff in 4D.
RG flow on the boundary <==p scale-factor time evolution.
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(on super-horizon scales)



The boundary theory is conformally
invariant in the UV.
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Simple model: dS bubbles separated by thin walls

R . Inflating part of spacetime

can be foliated by flat surfaces.
(They are very close

to constant-a surfaces.)

ds" = H dt" —e”'dx”

t =Ina - scale factor time

Page 22/45
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Size distribution of bubbles

dN. =A H f e D e number of bubbles of type / formed in parent vacuum j

u’/, G0 L ‘\ in a unit comoving volume F(7) =¢" per time interval dt.
it::ble nucleation ;m;:jmm =0 — srciclncies S
df ldt=M.f.. M, =x,-8, 3K, . x =k 2H"
'Ll | i Ly i - mr 3
f.‘ ( f) - Sje-q; e ( T m) Garriga, Schwartz-Perlov,

A.V. & Winitzki (2005)

-q < 0 is the largest nonzero eigenvalue of M.
lg|<<1 , nondegenerate.

4_"'
dN, =C,r-**dr

= -1 (3-gnm
dN,=AH se " dt

Comoving radius of a bubble Independent of initial conditions.
formed at time t:

Invariant under rescalings r — Br .

l -1 - " :
r= H Applies only approximately, becoming
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Simple model: dS bubbles separated by thin walls

> v v Inflating part of spacetime

can be foliated by flat surfaces.
(They are very close

to constant-a surfaces.)

ds" = H dt" —e”'dx”

t =Ina - scale factor time
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Size distribution of bubbles

dN }L H—l f e‘" dt «— number of bubbles of type / formed rn parent vacuum |

/, ¢\ in a unit comoving volume ¥V (1) = e’ per time interval dt.
Ezt)le nucleation Eﬁnﬂf:f;dume TR T Tt S
df ldt=M_f., MBS ok h
i/ J if if i 4 mi if ¥ x )
f; ( f) o Sje-q; . ( 5> m) Garriga, Schwartz-Periov,

A.V. & Winitzki (2005)

-q < 0 is the largest nonzero eigenvalue of M.
lg|<<1 , nondegenerate.

dN, =C.r'dr

= . | (3-gn
A H se " dt

Comoving radius of a bubble Independent of initial conditions.

SO S T £ Invariant under rescalings r — Br .

r= H e Applies only approximately, becoming
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Simple model: dS bubbles separated by thin walls

e Inflating part of spacetime

can be foliated by flat surfaces.
(They are very close

to constant-a surfaces.)

ds- = H dt" —e™'dx”

t =Ina - scale factor time
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Size distribution of bubbles

d N }L H-l f e'" S number of bubbles of type / formed |n parent vacuum |

\ in a unit comoving volume ¥V (1) = e’ per time interval df.
zzble nucleation ;ﬁnu;f :dm t =Ina — scale factor time
df ldt=M,f . M, =x,-8,3x,. x =k ZpH?
i J if if i 4 mi if e
f,(!) x s, e + . ( { — m) Garriga, Schwartz-Perlov,

A.V. & Winitzki (2005)

-g < 0 is the largest nonzero eigenvalue of M.
lg|<<1 , nondegenerate.

dN, =C,r " dr
=AH's e "dt |

Comoving radius of a bubble Independent of initial conditions.
formed at time t:

Invariant under rescalings r — Br .

r=H; == Applies only approximately, becoming
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Size distribution of bubbles

dNﬁ =4 B f odE < number of bubbles of type / formed |n parent vacuum |

/, ¥ i L T in a unit comoving volume F(f)=¢" per time interval dt.
Bubble nucleati Fraction of volume == :
raltj:e en on B i t=Ina — scale factor time
df /dt=M_f M- -ASx.. w—k
i B i i i mi > i 3
m
f;‘ ( l) x Sie-qr — ( § —> m) Garriga, Schwartz-Periov,

A.V. & Winitzki (2005)

-g < 0 is the largest nonzero eigenvalue of M.
lg|<<1 , nondegenerate.

dN, = Cq.r"""”dr

dN, =i, H's " "dt

Comoving radius of a bubble

Note: dN = r"?Vdr
formed at time t: v

_I = where D= 3_q s the fractal dimension of £.
r= H
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Structure of the eternal set £

Resolution scale
(Wilsonian cutoff)

Terminal bubble

® Each bubble becomes a fractal “sponge” in the limit £ —0 .

® Terminal bubbles correspond to holes (with 2D CFTs on their boundaries).
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Renormalization of the boundary theory

+— Boundary
Integrate out boundary modes of wavelengthupto §. UV cutoff

The corresponding 4D modes have minimum wavelength

Bulk resolution scale
Require A_._ </ o=

mmd)p a<//E - scalefactor cutoff

E—-0 = a—>x.

UV cutoff on the boundary <= (IR) scale factor cutoff in 4D.
RG flow on the boundary <==p scale-factor time evolution.
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(on super-horizon scales)



The boundary theory is conformally
invariant in the UV.
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Size distribution of bubbles

dN. =i H f e'dt «— number of bubbles of type i formed |n parent vacuum j
J ‘:\ in a unit comoving volume ¥V (1) = e’ per time interval df.

- Fraction of voiume
E;;:ble nucleation i P t =Ina — scale factor time

df /dt=M,f . M, =x,-8,3K,. x =k ZpH?

—qt Garriga, Schwartz-Periov,
(D) xse™ +.. (1—>x) A.V. & Winitzki (2005)

-g < O is the largest nonzero eigenvalue of M.
lg|<<1 , nondegenerate.

| dN, =C,r ' ?dr
|

= -1 (3-gn
dN,=AH s e "dt

Comoving radius of a bubble Independent of initial conditions.
U et Invariant under rescalings r — Br .
r= H = Applies only approximately, becoming
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Size distribution of bubbles

= -1 31 number of bubbles of type / formed in parent vacuum |
dN, =AH; fe'dt «—

/-, g\ in a unit comoving volume ¥ (1) = e’ per time interval df.
zt::ble nucleation :':1 mviumu:jmm t =Ina —scale factor time
df ldt=M,f, . M- 555 . oA
i/ if it i 4 mi if ¥x —J
f,- ( !) ~ s, e-qr gt ( £ —» m) Garriga, Schwartz-Perlov,

A.V. & Winitzki (2005)

-g < O is the largest nonzero eigenvalue of M.
|g|<<1 . nondegenerate. ‘

dN, =C,r *9dr
dN, = A H's e dt |

Comoving radius of a bubble

Note: dN = r?2Vdr
formed at time t: v

- where D= 3_q s the fractal dimension of £.
r= Hj e
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Symmetry related to dS boosts

Geodesic congruences orthogonal to X
and X, become asymptotically comoving.
This defines a transformation X = X on £.

For congruences related by a dS boost,
the transformation is a special conformal

transformation (SCT)
e Maps spheres
— -b into spheres.
X X
accompanied by a rotation.

Initial conditions corresponding to £ and Z;,shm.ddyieldﬂ\esameasympmm
bubble distribution. === The distribution should be invariant under SCT's
(in the limit r =0 ).

Dilatations, translations, rotations, and SCT's comprise the Euclidean conformal
group. ===P The boundary theory should be conformally invariant in the UV.
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Jaume will provide further evidence.



Size distribution of bubbles

dN /"L H-l f e'dt <«— number of bubbles of type / formed in _parent vacuum J

/, g\ in a unit comoving volume ¥ (1) = e’ per time interval df.
:;Ebble nucleation ;mj"d”m t =Ina — scale factor time
df /dt=M_f. . M, =x,-8,3x,. x =k ZpH?
iJ J if if i 4 mi i T
j:( f) xS gy ( ¥ —b m) Garriga, Schwartz-Perlov,

A.V. & Winitzki (2005)

-g < 0 is the largest nonzero eigenvalue of M.
|g|<<1 |, nondegenerate.

I dN, =C,r"*"dr
dN, =1 H's e""dt |

Comoving radius of a bubble

Note: dN = r'?Ydr
formed at time t: 9

F—H-l e where L‘I=3-¢-,l is the fractal dimension of £.
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Symmetry related to dS boosts

Geodesic congruences orthogonal to X
and X, become asymptotically comoving.
This defines a transformation X = X on £.

For congruences related by a dS boost,
the transformation is a special conformal

transformation (SCT)
% ¥ i Maps spheres
2 3 -b into spheres.
X b
accompanied by a rotation.

Initial conditions corresponding to £, and gsmmayieldmesameasyrmthic
bubble distribution. === The distribution should be invariant under SCT's
(in the limit r =0 ).

Dilatations, translations, rotations, and SCT's comprise the Euclidean conformal
group. ===P The boundary theory should be conformally invariant in the UV.
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Jaume will provide further evidence.



Size distribution of bubbles

= -1 3 number of bubbles of type / formed in parent vacuum j
dN,=AH; fe'dt <

/, \ in a unit comoving volume VF(7)=¢" per time interval dt.
:;:hle nucleation ;mj“"”"‘e t=Ina —scolefactor me
df. /di=M,f . M-x A%E.. -4 I
i J i if i mi if i i
i
f; ( !) x Sje-qr e (r — m) Garriga, Schwartz-Perlov,

A.V. & Winitzki (2005)

-g < O is the largest nonzero eigenvalue of M.
lg|<<1 , nondegenerate.

dN, =C.r'“?dr
dN, =AH's " "dt

Comoving radius of a bubble

Note: dN < r??Vdr
formed at time t: Y

B where D=3-gq is the fractal dimension of £.
r=H e
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Size distribution of bubbles

= -1 3t number of bubbles of type / formed in parent vacuum |
dN, =AH; fe'dt <

/, ‘:\ in a unit comoving volume V(1) =e¢" per time interval dt.
Bubbie nucleation Fraction of voiume — :
rake in vacuum | t =Ina - scale factor time
df /dt=M.f M-S =i
i et I =3 i mi > i 3 4

Garriga, Schwartz-Perlov,

f(@)xse™ +... (1—=>x) A.V. & Winitzki (2005)

-g < O is the largest nonzero eigenvalue of M.
lg|l<<1 , nondegenerate.

i
i dN, = C,.jr’”“”dr
I

dN, =4 ,H's " ""dt

Comoving radius of a bubble Independent of initial conditions.

formed at time ¢ Invariant under rescalings r — Br .

| r=H ;'e_' Applies only approximately, becoming
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Size distribution of bubbles

dN A H-l f 83' gt <r— number of bubbles of type / formed tn parent vacuum j

‘:\ in a unit comoving volume F(f)=¢" per time interval dt.
rBa‘:Ebb'e —— E,m jmum t=Ina — scale factor time
df ldt=M,f . M, =x,-8, 3K, . x =k ZH?
i J if if ¥ £ mi 3
f:(!) ~ s, e-qr P ( S m) Garriga, Schwartz-Perlov,

A.V. & Winitzki (2005)

-g < O is the largest nonzero eigenvalue of M.
lg|<<1 , nondegenerate.

dN, =C,r-*"dr

=1 (3-gn
dN,=AH se "dt

Comoving radius of a bubble

Note: dN. = r*?*Vdr
formed at time t: v

== H_I = where D= 3-(,l is the fractal dimension of £.
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Symmetry related to dS boosts

Geodesic congruences orthogonal to X
and X, become asymptotically comoving.
This defines a transformation X = X on £.

For congruences related by a dS boost,
the transformation is a special conformal

transformation (SCT)
.I” .Ii ; Maps spheres
- -b into spheres.
X X
accompanied by a rotation.

Initial conditions corresponding to X, and X, should yield the same asymptotic
bubble distribution. === The distribution should be invariant under SCT's
(in the limit r =0 ).

Dilatations, translations, rotations, and SCT's comprise the Euclidean conformal
group. ===P The boundary theory should be conformally invariant in the UV.
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Jaume will provide further evidence.



Simple model: dS bubbles separated by thin walls

it v Inflating part of spacetime
can be foliated by flat surfaces.
(They are very close

to constant-a surfaces.)

ds" = H dt" —e™'dx”

t =Ina - scale factor time
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Symmetry related to dS boosts

Geodesic congruences orthogonal to X
and X, become asymptotically comoving.
This defines a transformation X = X on £.

For congruences related by a dS boost,
the transformation is a special conformal

transformation (SCT)
x =N i Maps spheres
- -b into spheres.
r2 2
X X
accompanied by a rotation.

Initial conditions corresponding to £, and Zo should yield the same asymptotic
bubble distribution. === The distribution should be invariant under SCT's
(in the limit r = 0 ).

Dilatations, translations, rotations, and SCT's comprise the Euclidean conformal
group. === The boundary theory should be conformally invariant in the UV.
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Jaume will provide further evidence.



Conclusions

® The dynamics of the multiverse may be encoded in its
future boundary £.

@ The measure of the multiverse can be obtained by imposing
a UV cutoff in the boundary theory.

@ This measure is closely related to the scale factor cutoff.

@ The boundary theory is expected to be conformally
invariant in the UV.

Related recent work: Freivogel & Kleban (2008); Bousso (2009).
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Size distribution of bubbles

= -1 k7 number of bubbles of type i/ formed |n parent vacuum j
dN, =i H7 fe'dt «—

/, g S ‘\ in a unit comoving volume ¥ (1) = e’ per time interval df.
E;;Ebhle nucleation ;mfjmm t =Ina —scale factor time
df /di=M,f . M-x- V.. =k I
i J if if i m
"
f:‘ ( !) x Sie-qr . ( §— m) Garriga, Schwartz-Periov,

A.V. & Winitzki (2005)

- < 0 is the largest nonzero eigenvalue of M.
|g|<<1 , nondegenerate.

dN, =C.r'*“?dr

dN, =4 H's " "dt

Comoving radius of a bubble

Note: dN = r'?*Ydr
formed at time t: Y

B where D= 3-q is the fractal dimension of £.
r= H
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Simple model: dS bubbles separated by thin walls

Sl 4 Inflating part of spacetime

can be foliated by flat surfaces.
(They are very close

to constant-a surfaces.)

ds" = H dt" —e”'dx”

t =Ina — scale factor time
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