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Abstract: | consider a the dark matter relic abundance computation in a model where the dark matter annihilates into a light mediator rather than
directly into the standard model. Obtaining the correct relic abundance in such a model may imply a different annihilation cross section than is
implied by the usual WIMP decoupling computation. | show that the maximum annihilation cross section is obtained when the hidden sector
decouples from the standard model before the dark matter annihilates into the mediator particles, and may be as much as a factor of 5 larger than the
standard WIMP value.
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Talk Outline

® Quick unnecessary Intro: Indirect detection of dark
matter, hidden sectors

e Stripped down hidden sector: slightly nonminimal
model of hidden sector dark matter

® Slightly nonthermal relic abundance computation

® Dark Matter annihilation rate

~Seomparison with PAMELA,ATIC, Fermi data



-andscape of known and unknown unknowns

hidden sectors’

Energy
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Stronger coupling to Standard Model ..
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Dark Matter Indirect Detection

® Our Dark Galaxy
(simulated)

e Very Clumpy, lots of
substructure

® annihilation
rate/volume ~

<nZ>0vVv

e Can we see
annihilation

I RA N Rhnche b



Indirect evidence for Dark
Matter annihilation seen at
Pamela, ATIC, Fermi?

® For ATIC, rate of order 20-1000 x bigger than expected
for WIMP (could enhance via clumpiness “boost
factor”, Sommerfeld mechanism, and/or have

nonthermal production)

® J|ack of antiprotons a problem for typical WIMPs

tension with constraints from photons
Beyond vanilla WIMPS: A new ‘sector’?

= Hundreds of new models proposed!




“Slightly nonminimal Dark Matter”

® abstracted and simplified weakly coupled version of
hidden sector dark matter, initially inspired to account
for PAMELA, ATIC cosmic ray positron and electron
excesses

e ‘Slightly nonthermal’ relic abundance computation allows
increased cross section for annihilation
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“X-Y-(Z) model”  _
LD MX*+m’Y?+ XYY"+ hYee
® dark sector contains at least 2 new particles

e X, a stable WIMP, no direct SM coupling, mass
20-2000 GeV (scalar or pseudoscalar?)

® Y, alight (~100 MeV) metastable (T~ 0.l sec)
particle, O(l) coupling to X, tiny coupling to SM
(scalar or pseudoscalar)

e '/ additional, heavier particles

® motivation: “stripped down” exotic strongly coupled
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metastable light bosons (Y), heavier particles (Z.)



WIMP Annihilation via
intermediate light boson

.. X (dark matter) L’e (H)
= e, (K)
Y, —
Y
— X (dark matter) \\ e’(,u")

a- 117\



Usual Relic Abundance
computatation

® Early universe timeline: nucleosynthesis

WIMP now
decouples vV

‘Standard
" Model Y

- WIMP  WIMP WWIMP

Standard
Model

WIMP




Usual Relic Abundance computatation

» Rate for annihilations: [ =nxv0, where

® nxis WIMP density, v is velocity

nucleosynthesis

® (O is annihilation cross section~ /v e
® in equilibrium ‘

nx ~ (Mx Thid)*2eMy/Tid
WIMP

» WIMP abundance/comoving volume decouples Vv
frozen when [~1/t ~H ~p'"%/me
Standard
Model Y
» ~constant WIMP/entropy ratio after

00000000000 WIMP WIMP ... ¥¥IMP

® D is energy density




Relic Abundance in X-Y-Z;, model

nucleo
e Early universe timeline: synthesis
hidden L deca)( XY Y
sector  or annihilate decouple decay
decouples =
Standard
Modor | | Standard ' Standard | | Standard
Model | | Model Model v Y
r B & =t Y
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( freezeout and relic X abundance in X-Y(Z) model nucleo
synthesis

¥ o < T - | I L'l
Y

' Phid ~ Z*hid T hid"~ XY
decouple decay

' €%hid=1 (dominated by Y)

' in early universe energy Standard

denSity p __g:_._:T‘# s Thid4 Model V Y
' g« ~86.25 in SM at 30 GeV ; X X

(g« . effective number of
degrees of freedom)
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® Tyis <Th
® Phid ~ g*hltlTlurid

& Erhid=| (dominated by Y)
® in early universe energy

density p ~g: T4 + Thig?

in SM at 30 GeV

letive number of
es of freedom)

X freezeout and relic X abundance in X<Y(Z) model

nucleo

synthesis
l
“ — -
l |
XaY, Y
decouple decay
, \
Standard [CY e' e )
Model v .
X A




X freezeout and relic X abundance in X-Y(Z) model nucleo

synthesis
e T\ri-. < Thld *"‘*‘"'l"—'*-— — I
® Phid ~ t{_’,‘hlilTlmi"I XY Y
decouple decay

’ id=1 (dominated by Y

Bthid=| (dominated by Y) P ;
® in early universe energy Standard |Cy €' e’ D

density p ~g« T4 + Ty | Model v |
» g ~86.25 in SM /40 GeV 1 ¥

(g+ . effective | fber of
degrees of feedom)

i



e Tvi'. < Thnl
e ph"’ o .'L:’,*hltl—rlmi“I

O ﬂ hid=| (dominated thJ
® in early universe energy
density p ~g T4 + Thig!

» g+ ~86.25 in SM at 30 GeV

(g+ . effective number of
degrees of freedom)

X freezeout and relic X abundance

in X-Y(Z) model nucleo
synthesis
-« I
l |
Y Y
decouple decay
- _ \/
Standard C\;' ete )
| Model v Y
x }.f



. freezeout and relic X abundance in X-Y(Z) model nucleo
synthesis

' Tvis <Thid > | I ‘—'l
Y

' Phid ~ Z*hid T hid" XY
decouple  decay

' &*%hid=1 (dominated by Y)

Vv
' in early universe energy Standard
density p ~g=T* + Thig* Model v Y
Y
+ g+ ~86.25 in SM at 30 GeV - > X

(g= . effective number of
degrees of freedom)
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( freezeout and relic X abundance in X-Y(Z) model nucleo

® XY Freezeout:
(M Thid)3'r 2e(MTyi0) O v ~
(g*T4 + T d4)”2 /mp

e WIMP density /entropy ratio
n./s conserved until Y decay

® entropy s ~g+1°> + Thig®

® entropy created during Y
decay to e*e” (or U*H")
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X freezeout and relic X abundance in X-Y(Z) model nucleo

synthesis
e e—
‘ l |
e XY Freezeout: 18 Y
ANl
(M Th'll)m{"”q”"""} LAV, lecouple decay
(T4 + Thia™)"2 Imp ’
e WIMP density /entropy ratio Standard (?L* e )
n/s conserved untl Y decay | Model v |
S * gT] + Tlmlji L Y
x \

ay to e'e (or P'Y)



X freezeout and relic X abundance in X-Y(Z) modél™ "nucleo
synthesis

PN, . I
l I

o XY Freezeout:
reczeou Y Y

T N2 (M
(M II;III) L‘ ; l;l:; (I Y * ‘I'.[1‘II'|}|1 d[,‘(f;]y
(ge T4 + Thig) " Imp :
e WIMP density /entropy ratio JSt;mtIm‘d (? e'e )
n/s conserved untl Y decay | Model v \
e U”“'Ul}y S - g‘T] + Tln[]3 Y /
X X

e entropy created during Y
decay to e'e (or H'|)



X freezeout and relic X abundance in X-Y(Z) model nucleo
synthesis

Bl - e
l I
e XY Freezeout: Y
 NIA(MIT, ) v NI
(M Tyig) e g O" v decoupl decay

(T4 + Thig")"* /mp

\/

e WIMP density /entropy ratio Standard (?U e )
n/s conserved untl Y decay | Model v '.
e entropy s ~g¢ T2 + Thid’ Y
_ ¥ )

o entropy created during Y
decay to e'e’ (or ')



X freezeout and relic X abundance

XY Freezeout;
(M 'I-Iml)]”c["'ﬂlh,,ﬂ (I Y *

(T4 4 Tpg")""* Imp

WIMP density /entropy ratio
n/s conserved until Y decay

entropy s - g+Ti' + Thid?®

entropy created during Y
decay to e'e’ (or ')

in X-Y(Z) model" nucleo
synthesis
l
- — —
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( freezeout and relic X abundance in X-Y(Z) model nucleo

® XY Freezeout:
(M Thid)3'r 2e(MTy0) O v ~
(g*T4 +Th d4)l!2 /me

e WIMP density /entropy ratio
n./s conserved until Y decay

® entropy s ~g+1°> + Thig’

® entropy created during Y
decay to e*e” (or U ")
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X freezeout and relic X abundance

e XY Freezeout;

(M Tg) 2" Oy -
(P. T‘i +T iﬁ'r)”:’ /l'ﬂ['

o WIMP dghisity /entropy ratio
n/s cogferved until Y decay
/
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X freezeout and relic X abundance in X-Y(Z) model nucleo
synthesis

4-----l=_ _— I
e XY Freezeout: v Y
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X freezeout and relic X abundance

XY Freezeout;
(M Thul)]”ﬂ'"H”h--'r} v
(geT* + Thig")'"* /mp

WIMP depgity /entropy ratio
n/s congff ved until Y decay

/ |

entrogy s g*TJ + TIm|]

A ‘
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X freezeout and relic X abundance

e XY Freezeout;
(M Tyg) 2ty Oy -
(geT + Thig)"* p

P density /entropy ratio
. conserved until Y decay

/ : .
oftntropy s ~g¢ T *+ Thid’
,/cmrnpy created during Y

decay to e'e’ (or H'HY)
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X freezeout and relic X abundance in X<Y(Z) model” nucléo

synthesis
N |
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X freezeout and relic X abundance in X<Y(Z) modél” nucléo

synthesis
Geegeee———
_ l I
e XY Freezeout: i v
-y v ; l
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(e T4 + Thig")"* Imp ;
e WIMP density /entropy ratio Standard (? e'e)
n/s conserved until Y decay | Model v Y
® entropy s - g+T"' + Thid? T
X 4

o entropy created during Y
decay to e'e’ (or H'HY)



X freezeout and relic X abundance in X-Y(Z) model nucléeo
synthesis

N |
e XY Freezeout: TG Y
T, \2a(:MIT, ) : A¥L
(M Thig)"“e""™ g O v decouple  decay
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Y
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decay to e'e’ (or U'|)



X freezeout and relic X abundance in X<Y(Z) model  nucléo

synthesis
| T |
e XY Freezeout: . Y
N
TN R2alMT, ) v . ,
(M '"hu!) & I;;’ Oy do !IH|!|1' {l[_'[dy
(geT* +Thia")"™ /e Y
e WIMP density /entropy ratio Standard (CY e* e )
n/s conserved until Y decay | Model v |
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X

o entropy created during Y
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. freezeout and relic X abundance in X-Y(Z) model nucleo

XY Freezeout:
(M Thid)3Jr 2e(MTy0) O v ~
(g*T4 + T d4)!/2 /me

WIMP density /entropy ratio
n./s conserved until Y decay

entropy s ~g«1°> + Thig’

entropy created during Y
decay to ee” (or U*H")
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X freezeout and relic X abundance

e XY Freezeout;
(M Tig)2et"™ T Oy ~
(e T + Thig")"* /mp

e WIMP density /entropy ratio
n/s conserved until Y decay

g3 + Thig?

y created  during Y
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& entropy ;
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XY Freezeout;
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(T4 + Thig*)'"* /mp

WIMP density /entropy ratio
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X freezeout and relic X abundance in X-Y(Z) model nucléo

synthesis
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X freezeout and relic X abundance in X-Y(Z) model nucleo
synthesis
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X freezeout and relic X abundance in X<Y(Z) modél” nucléo

synthesis
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X freezeout and relic X abundance

e XY Freezeout;
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X freezeout and relic X abundance

e XY Freezeout;
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( freezeout and relic X abundance in X-Y(Z) model nucleo

XY Freezeout:
(M Thid)y 2e(MTy0) O v ~
(g*T4 +Th d4)|/2 /me

WIMP density /entropy ratio
n./s conserved until Y decay

entropy s ~g+1> + Thig>

entropy created during Y
decay to ee” (or U ")
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® for hidden sector temperature much higher than
standard model temp “as if” lower g+ and so
lower entropy during XY freezeout

® g:=86.25 in SM at 30 GeYV, effectively g«=1 in
hidden sector

® |ess entropy =» less dilution of dark matter,

allow larger M/T, larger <o v> for observed relic
abundance




e for hidden sector temperature much higher than
standard model temp “as if" lower g+, and 5o
lower entropy during XY freezeout

o g =86.25 in SM at 30 GeV, effectively ge=1 in
hidden sector

o less entropy = less dilution of dark matter

allow larger M/T, larger <o v> for observed rel
abundance
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e for hidden sector temperature much higher than
standard model temp “as if" lower g+, and 50
lower entropy during XY freezeout

o g+ =86.25 in SM at 30 GeV, effectively g=1 in

hidden sector

e less entropy =® less dilution of dark matter,
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Entropy created

e for late decaying Y (temp ~100 MeV) g+ in visible
sector =10.75

® |n “sudden decay” approximation, visible sector
gets suddenly reheated.

e If Y particle is relativistic, entropy increases by
factor of ~15.25"4

® annihilation cross section larger than in standard
WIMP scenario by factor as big as

~86.25112/15.251/4~5
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e for late decaying Y (temp ~100 MeV) g+ in visible
sector =10.75
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X annihilation rate

e standard WIMP; for M~ 100 GeV, correct abundance
for M/Tfeeze~ 20 (varies as log(M))

e <gv>-~3 x |02% cm?/s gives observed relic
abundance for standard WIMP

e factor of 86.25'2/15.254 can increase
annihilation cross section to

<gv>~15 % 0% cmi/s

e still need large astrophysical boost factor (40) or

irsa: 09060046







X annihilation rate

e standard WIMP; for M~ 100 GeV, correct abundane
for M/Teeze~ 20 (varies as log(M))

o <o v>~3 % 102 cmi/s gives observed relic
abundance for standard WIMP

o factor of 86.25'2/15.,25'" can increase

annihilation cross section to
cogve~|.5 % |10% cm?/s

o still need large astrophysical boost factor (40) o
Sommerfeld enhancement to explain ATIC
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e <gv>-~3 x |02% cm?/s gives observed relic
abundance for standard WIMP

e factor of 86.25'2/|15.25!4 can increase
annihilation cross section to

<gv>~15 % 0% cmi/s

e still need large astrophysical boost factor (40) or

irsa: 09060046




X annihilation rate

e standard WIMP; for M~ 100 GeV, correct abundanci
for M/Treere~ 20 (varies as log(M))

o <0 v>~3 % 1026 cm¥/s gives observed relic
abundance for standard VWWIMP

e factor of 86.25'2/15.25'4 can increase

annihilation cross section to
cogve~|.5 %X |10% cm?/s

o still need large astrophysical boost factor (40) ol
Sommerfeld enhancement to explain ATIC



X annihilation rate

e standard WIMP: for M~ 100 GeV, correct abundanc
for M/Teere~ 20 (varies as log(M))

o <o v>~3 % 102 cmi/s gives observed relic
abundance for standard WIMP

o factor of 86.25'2/15,25' can increase

annihilation cross section to
cogve~|.5x |0% cm?/s

o still need large astrophysical boost factor (40) o1
sommerfeld enhancement to explain ATIC



X annihilation rate

e standard WIMP: for M~ 100 GeV, correct abundanci
for M/Teeze~ 20 (varies as log(M))

o <o v>~3 % 102 cmi/s gives observed relic
abundance for standard WIMP
e factor of 86.25'2/15.,25' can increase

annihilation cross section to
cogve~|.5 %X |10% cm?/s

o still need large astrophysical boost factor (40) o
Sommerfeld enhancement to explain ATIC




X annihilation rate

e standard WIMP: for M~ 100 GeV, correct abundanci
for M/Tieee~ 20 (varies as log(M))

o <0 v>~3 % 1026 cm¥/s gives observed relic
abundance for standard WIMP

o factor of 86.25'2/15.25' can increase

annihilation cross section to
<o ve~|.5 % |02 cm?/s

o still need large astrophysical boost factor (40) ol
sommerfeld enhancement to explain ATIC



X annihilation rate

e standard WIMP: for M~ 100 GeV, correct abundanci
for M/Treere~ 20 (varies as log(M))

o <0 v>~3 % 1026 em?/s gives observed relic
abundance for standard VWIMP

o factor of 86.25'2/15.25'4 can increase

annihilation cross section to
cogve~|.5 %X 102 cm?/s

o still need large astrophysical boost factor (40) o
Sommerfeld enhancement to explain ATIC




WIMP Relic Abundance

Summary
WIMP abundance determined by X-Y nonequilibrium

hidden sector (X,Y) temp different from visible sector

visible sector reheated by Y decays before
nucleosynthesis

allows for annihilation cross section to be enhanced
relative to traditional relic abundance calculation by
factor of < 5, increases indirect detection prospects

Kinematic constraint explains why Y primarily decays to
g (some YY possible)
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FIG. 2:
function of the lab frame energy for M=800GeV, m=200MeV
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Galactic propagation

Source of positrons proportional to density?

Various models for density profile make
small difference compared with other
unknowns

inject into diffusion model for galaxy which
has various not precesely known parameters
and “boost factor” B to account for nearby
substructure

fit parameters within range B<20 = .o
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FIG. 2: Positron excess below 100GeV shown against the
preliminary PAMELA data. The dash-dot curve is M =
100 GeV. The dashed curve is M = 8300 GeV. The bottom

e ot ted line is the background level.
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= os0s0ss  Jotted line is the background level, fixed to be 1 in this ratio.  Poeu2s
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Conclusions: current data

e PAMELA, ATIC, FERMI... may have provided first clues
to identity of dark matter

e or found new astrophysical source of high energy
charged electrons and positrons, e.g. pulsar or pulsars

e if dark matter, must explain large annihilation cross
section or huge “boost” factor, lack of antiprotons

® a light “mediator” particle can explain both

e the X,Y,Z model is a minimal such model, could be
stripped down version of less economical (but more
motivated?) hidden sector
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Summary

® Era of exploration of dark matter is well underway

® Just as for Electroweak symmetry breaking, consider
wide variety of models (not just SUSY/UED WIMP!)

® Especially models with unusual implications for
® direct detection
® indirect detection
® collider production

—> Non minimal Hidden sector models

® weaker upper bound on annihilation rate in slightly
nonthermal

@ y> < ~| 5 X 10 cmidls 32000000 s
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