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Rough overview of convex operational formalism

@ Systems A.B.C...

@ Convex set Q24.Qp... of states (for each system)

@ Convex sets of measurement outcomes

@ Bilinear map: states x outcomes — probabilities.

@ Convex set of allowable dynamics taking states to states

@ Way(s) of making “composite” systems, or of recognizing
compositeness: C=A B
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A categorial (process-based) view

Basic idea: processes have probabilities
sets of processes convex

@ States — preparation processes
@ QOutcomes — are processes that map to probabilities
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Definition of category

Objects Class Ob% of objects

Morphisms For each pair of objects A.B in Ob%¥’. a set ¥ (A. B) of
morphisms (aka arrows or maps) “from Ato B".

Notation: f: A— B means f = 4(A.B). We call A f'sdomain, B iis
codomain.

\dentity For each object A = Ob¥’. an identity morphism id : A — A.

Composition Foreach pair ¢ : A— B. ¥ : B— C. a morphism
XoQ: A— C.

Axioms

@oid = @, ido @ = @. Composition is associative.
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Examples of categories

@ Categories named after their objects (Set ., Grp ). or their
morphisms (Rel ), or both.

@ Often, objects are sets-with-structure, morphisms
structure-preserving functions.

Examples
Set Sets, functions.
Grp Groups, group homorphisms.
Vec Vector spaces, linear maps.
Rel Sets, relations.

FDOrdLin Finite dimensional ordered linear spaces, positive linear
maps.
Poset categories Elements x. y of a fixed set, ¥(x. y) contains a single
morphism if x > y.




Categories of Convex Operational Models

Convexity of state space and dynamics: instances of a

General principle

Whatever can happen or be done to a system. can happen or be done
conditioned on the outcome of a coin toss.

Implement in categories ¥ of processes acting on convex operational
models A.B. ... of state and effect spaces:

Hom-sets €(A. B) are convex.

We'll assume finite dimensionality for simplicity.
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Convex operational models

o
Cone subset C of a real vector space, that is closed under

addition and positive scalar multiplication.
Regular cone pointed, closed, generating cone.
An ordered linear space is regular if its positive cone is.

Dual cone to A. Set of linear functionals 7 : A — R that are
nonnegative on A...

A Convex Operational Model (COM) is a triple A.A*.us with A a
regular ordered linear space, A* an ordered version of A", ordered by a

regular cone A~ C A", ux the order unit, a distinguished element in the
interior of A-.
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Concrete categories ¥ of convex operational models
and positive maps

@ Objects: Convex operational models A. A*. ua.

@ Morphisms: €(A. B) are regular cones of positive (i.e.
f(A.) C B.) linear maps f : A— B such that the map (not
necessarily a morphism!) f* : B* — A* satisfies *(B*) C A~.
Composition and identity are inherited from Vec.

Caution: A*. B* not necessarily in €. €(A.B) is of course closed under
composition and contains the identity map!
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Norms and operational interpretation

up defines a base norm on A, and an order-unit norm on A, making
them Banach spaces whose norms are bounded above by each
others’ dual norms.

@ Operational interpretation: elements a < [0, ua] C A are effects,
elementis @ = Awith us(w) = 1 are normalized states; a(w) is the
probability of effect a given state .

@ Operationally meaningful morphisms are those that are
contractive with respect to the base norm.

Aside: base-norm generalizes the quantum mechanical “trace norm”
| X1 == Trv X" X; base-norm distance ||@; — a»|| still gives best state
discrimination probability.
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Categories of contractive positive maps

Slight variation: only the operationally meaningful morphisms are

morphisms.

Makes the extra structure categorial: objects are pairs of
base-norm/order-unit Banach spaces satisfying the above conditions;
morphisms are norm-contractive [hence automatically positive —
check] maps ¢ : A— B such that ¢*, viewed as a map of order unit
spaces, B- — A-, Iis also norm-contractive.
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Process-oriented variants (steps toward enrichment)

Put th@e convex structure entirely into the hom-sets?

@ Equip ¢ with unit object I: R ordered by R_.. IF the same, with y;
the identity functional R — R.

@ States as preparation processes in (/. A). Effects as processes
in €(A.l). Require €(I. A)~A. €(A.)~A* (naturally).
@ Siill require € (A. B) to be regular cones of linear maps. or

(equipping each ¢ (A. ) with a distinguished element determining
norms) convex sets of norm-contractive ones.

@ Allows us to dispense with explicit structure of objects if desired.

@ Requirement that ¢*(B*) C A* now automatic from the definition of

category (composition) and the requirement that hom-sets be
convex cones or convex sets of contractive maps.

[Diagram: Process | —A— A— ]
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Enriched categories

Formalize as a category enriched over the category of ordered linear
spaces (say FDOrdLin), or that of Banach spaces and contractive
maps (BanSp-).

Informally. a category enriched over ¥, is a category whose sets

¢ (A.B) of morphisms all have some additional structure: they “are

objects of ¥7.
To make this systematic, ¥ is taken to be a closed category.

Definition (Category enriched over 7)

irsa: 09060028 Page 13/29




Closed categories

A formal closed category is a category ¢ equipped with:
Q A functor, called the internal hom functor, [|: €P x € — ¢
@ A distinguished object /. called the unit object, of €.
@ A natural isomorphism ig : A— [/A]
©Q A natural transformation j5 : | — [AA]
@ A natural transformation Lsg¢ : [BC] — [[AB][AC]]

such that /; = J; and certain diagrams commute.
A formally closed category is closed if for all A.B = Ob¥ the map
f— [14.18]] : €(A.B) — €(l.[AB]) is an isomorphism.
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Monoidal closed categories

For every A. B, an MCC has an object A — B, the “internal hom”.
— is a functor from € x € to €. The functor “tensoring with A on
the left” has a right adjoint “taking the internal hom from A”.

Bijection between (A~ B.C) and ¥(B.A — B), natural in B. C.
l.e. for each A.B. an object A — B and a morphism

eag:A- (A= B)— Bsuch that

vf:A2 X —B3'h: X — (A — B) such that

f=eppgo(idg h).

FDOrdlin can be made monoidal closed, with = the minimal tensor
product.
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Closed categories

A formal closed category is a category ¢ equipped with:
@ A functor, called the internal hom functor, [|: €P x € — ¢
@ A distinguished object /. called the unit object, of €.
@ A natural isomorphism ig : A— [/A]
Q@ A natural transformation jz : | — [AA]
@ A natural transformation Lg¢ : [BC] — [[AB][AC]]

such that iy = J; and certain diagrams commute.
A formally closed category is closed if for all A. B = Ob% the map
f— [14.18]j : €¢(A.B) — €(I.[AB]) is an isomorphism.
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Monoidal closed categories

For every A. B, an MCC has an object A — B, the “internal hom”.
— is a functor from € x € to . The functor “tensoring with A on
the left” has a right adjoint “taking the internal hom from A”.

Bijection between ¥ (A = B.C) and ¥(B.A — B), natural in B. C.
l.e. for each A.B. an object A — B and a morphism

eag:A- (A= B)— Bsuch that

vf:Ax X —B3'h: X — (A — B) such that

f=eppgo(idg h).

FDOrdlin can be made monoidal closed, with = the minimal tensor
product.
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Closed categories

o
A formal closed category is a category ¢ equipped with:
@ A functor, called the internal hom functor, [| . €P x € — €
Q@ A distinguished object /. called the unit object, of €.
@ A natural isomorphism is : A— [/A]
© A natural transformation j4 : [ — [AA]
@ A natural transformation Lgc : [BC] — [[AB][AC]]

such that iy = J; and certain diagrams commute.
A formally closed category is closed if for all A.B = Ob¥ the map
f— [14.18]j : €(A.B) — €(I.[AB]) is an isomorphism.
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Monoidal closed categories

For every A. B, an MCC has an object A — B, the “internal hom”.
— is a functor from € x € to €. The functor “tensoring with A on
the left” has a right adjoint “taking the internal hom from A”.

Bijection between (A <~ B.C) and ¥(B.A — B), natural in B. C.
l.e. for each A.B. an object A — B and a morphism

eag: A (A = B)— Bsuch that

vfF:A> X —B3'h: X — (A — B) such that

f=epgo(idg h).

FDOrdlin can be made monoidal closed, with = the minimal tensor
product.
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Saturation

Let €rbe a category of convex operational models (CCOM).

Definition

An object for which €(A.I)~%€¢(I.A)* (i.e. A* = A") is called saturated.
A category all of whose objects are saturated is locally saturated.

@ Classical theory and quantum theory are locally saturated.

@ A convexified categorical version of Rob Spekkens’ toy theory
would likely not be locally saturated.

We call a CCOM ¥ saturated it there is no way to extend it by adding
positive maps to some ¥ (A. B).
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T

A CCOM is locally Hom-saturated at ( A. B) if the subcategory whose
objects are A.B. | is saturated.

@ Quantum theory is locally saturated, but neither locally
Hom-saturated nor saturated.
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A CCOM is locally Hom-saturated at (A. B) If the subcategory whose
objects are A.B. | is saturated.

@ Quantum theory is locally saturated, but neither locally
Hom-saturated nor saturated.

irsa: 09060028 Page 23/29




O

A CCOM is locally Hom-saturated at (A. B) if the subcategory whose
objects are A.B. | is saturated.

@ Quantum theory is locally saturated, but neither locally
Hom-saturated nor saturated.
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Compositeness in a convex approach

T

BBLW (for saturated models) and Barrett (for general models)
definition of a tensor product of convex operational models A and B:
state space AB= A B ordered by (A B)_. containing all product
states, effect space (A B)* ordered by (A= B)" C (A~ B)" containing
all products of effects, equipped with order unit usg — us = ug. This
Implies:

e No signalling (marginals are well defined)

e Local observability Expectations of products of local observables
determine states.

NB: this definition doesn't determine A .~ B, unless one of them Is
classical.
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Composites Il: Examples

(a) The maximal tensor product, A ~max B. consists of all states
positive on product effects.

(b) The minimal tensor product, A pin B. contains only convex
combinations of product states.

(c) If A= B = %x(H), then the positive cone on £x(H = H), with its
usual ordering, lies properly between the max. and min. cones.
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Composite systems in categories: monoidality

Definition

The product category € x« 2 has Ob(% x 2) = 0b(¥) x Ob(Z).
E€xPCxD.ExF)=%¢(C.E) x 2(D.F), and the obvious
composition (7.8) o (a,B) = (7o a.d o B) and identities

idag) = (ida.1dp).

Some CCOM’s may be equipped with the additional structure of a
monoidal tensor: a bifunctor @ : € x € — %€ the result is a monoidal

category.

Bifunctoriality implies that €(A = B.C = D) contains € (A.C) x €(B. D).
The morphisms « - B are the usual tensored pairs of linear maps.
Thus the space ¢(I.A = B) contains all product states, and the effect
space % (A B.l) contains all product effects. For saturated objects.
these are two of the desiderata of the notion of composite used In
BBLW. Local observability is not enforced. (Condition at end of Daniel
[efifffan’s talk looked like |.0. to me) g
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Motivations for dropping local observability

1) Can be motivated by desire to preserve some other property. like
self-duality. E.g.. we can have a monoidal category of the mixed-state
spaces of real FD Hilbert spaces.

PSD matrices over J# - #5 span a larger space than do the tensors

of PSD matrices over .7# with those of 7%, when 7% are real. But we
can let PSD(4) ¢ PSD(55) .= PSD(7 « 76).

2) Formalizing Smolin’s “lockboxes™ in convex categorial way (deals
with “haecceity” objection of Bub and Halvorson); allows bit
commitment and key distribution and to coexist. (So does ruling out
entanglement in nonclassical theories even with local cbservability;
Barnum. Dahlsten, Leifer, Toner Proc IEEE [TW 2008, Porto. May
2008.) (Might create an issue with functoriality of =, though: / and

lockbox look the same “locally”.)
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Motivations for dropping local observability

1) Can be motivated by desire to preserve some other property. like
self-duality. E.g., we can have a monoidal category of the mixed-state
spaces of real FD Hilbert spaces.

PSD matrices over 5# = 5 span a larger space than do the tensors
of PSD matrices over 27 with those of 2%, when 2% are real. But we
can let PSD(87) e PSD(5%) := PSD(# = 7#3).

2) Formalizing Smolin’s “lockboxes” in convex categorial way (deals
with “haecceity” abjection of Bub and Halvarson); allows bit
commitment and key distribution and to coexist. (So does ruling out
entanglement in nonclassical theaories even with local cbservability:
Barnum, Dahlsten, Leifer. Toner Proc IEEE ITW 2008. Porto, May
2008.) (Might create an issue with functoriality of = . though: / and
lockbox look the same “locally”.)

Barnum (LANL) Categories and Convexity
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