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The Rosetta Stone (pocket version)

Category Theory Physics Topology Logic Computation
object svstem manifold proposition data type
morphism process cobordism proof program




Objects
¢ String diagrams have ‘strings’ or ‘wires’:
=
¢ Quantum mechanics has Hilbert spaces: X =C"
¢ Topology has manifolds: X-
¢ Linear logic has propositions:
X = “I have an item of type X.

¢ Computation has datatypes: interface X;
¢ SET has sets: X




Objects
¢ String diagrams have “strings’ or ‘wires’:
=
¢ Quantum mechanics has Hilbert spaces: X =C"
¢ Topology has manifolds: X-
¢ Linear logic has propositions:
X = “I have an item of type X.”

e Computation has datatypes: interface X;
¢ SET has sets: X




Morphisms
¢ String diagrams have vertices:

¢ Quantum mechanics has linear transformations:
f: XY = f:C-C"
(An m x n matrix with complex entries)
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e String diagrams have vertices: ====
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¢ Quantum mechanics has linear transformations:
f: XY =2 f:C-C" 3
(An m x n matrix with complex entries)
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Morphisms
¢ String diagrams have vertices:

Xl‘

(=)

Ff

¢ Quantum mechanics has linear transformations:
f:X->Y f:c*-Cc"

112

(An m X n matrix with complex entries)
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Morphisms

¢ String diagrams have vertices: .
=
j
vl

¢ Quantum mechanics has linear transformations:

f:X->Y f:cC*-Cc"
(An m X n matrix with complex entries)

I
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Morphisms
e String diagrams have vertices:

=1
j
=
¢ Quantum mechanics has linear transformations:
f:X->Y f:ct*-C"
(An m X n matrix with complex entries)

I1e
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Morphisms
¢ String diagrams have vertices:

X1

¢ Quantum mechanics has linear transformations:
f:X>»Y = §:C->C"

(An m x n matrix with complex entries)




Morphisms
¢ String diagrams have vertices:

X1

¢ Quantum mechanics has linear transformations:
f:X>»Y = ff:C->C"
(An m X n matrix with complex entries)




Morphisms

X =&
¢ Topology has cobordisms: _

y &
¢ Linear logic has constructive proofs:

X+Y
¢ Computation has (roughly) programs: ¥ £(X);
¢ SET has functions: f : X —» ¥

GE L9 FJ
0o | .
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Objects
¢ String diagrams have ‘strings’ or ‘wires’:
=
¢ Quantum mechanics has Hilbert spaces: X =C"
¢ Topology has manifolds: X-
¢ Linear logic has propositions:
X = “I have an item of type X."

¢ Computation has datatypes: interface X;
¢ SET has sets: X




Morphisms
¢ String diagrams have vertices:

¢ Quantum mechanics has linear transformations:
f:X->Y = f:C-C"
(An m X n matrix with complex entries)




Morphisms

X &
¢ Topology has cobordisms:

y -

¢ Linear logic has constructive proofs:

X+Y
¢ Computation has (roughly) programs: ¥ £(X);
o SET has functions: f : X —» Y




Morphisms compose associatively
¢ String diagrams:

Z1

¢ Quantum mechanics: matrix multiplication

=t

® Topology:




Morphisms compose associatively

. ic- YHZ X+HY
¢ Linear logic: %7 :
¢ Computation:

Y £f(X x);
Z g(Y y);

z = g(£(x));
oSET:(gc f): X > Z



Identity morphisms
¢ String diagrams: 2
¢ Quantum mechanics: identity matrix

 —_—

¢ Topology:

e Linear logic: y_y «

¢ Computation: X id(X x) { return x; }
oSET: 1y: X - X




Monoidal categories
¢ String diagrams:

¢ Quantum mechanics: tensor product

(ae af ag be bf bg)
ah aj ak bh bj bk
ce cf cg de df dg

\ch cj ck dh dj dk |




Monoidal categories

e - o

¢ Topology:

i

e Linear logic: AND X:tY X'+ VY
XX -Y®Y

¢ Computation: parallel programming

ParallelPair<X, Xp> pair;

oSET: fxf : XxX - ¥xY




Identity morphisms
¢ String diagrams: .
¢ Quantum mechanics: identity matrix

L

¢ Topology:

e Linear logic: y .y «

¢ Computation: X id(X x) { return x; }
oSET: 1y : X - X




Monoidal categories
e String diagrams:

¢ Quantum mechanics: tensor product

(ae af ag be bf bg )
ah aj ak bh bj bk
ce cf cg de df dg
\ch cj ck dh dj dk |




Monoidal categories

= -

¢ Topology:

—r

e Linear logic: AND X+-Y X' vV
XX +Y®Y

¢ Computation: parallel programming

ParallelPair<X, Xp> pair;

oSET: fxf : XxX - ¥YxY




Monoidal unit
¢ String diagram:
¢ Quantum mechanics: / = C, the phase of a photon
® Topology:

¢ Linear logic: /, trivial propesition

¢ Computation: I = voidor I = unit type

¢ SET: one-element set /




Braided monoidal categories

¢ String diagrams:
X\ ,Y

¢ Quantum mechanics: swap the particles. Bosons
commute, fermions anticommute; guantized mag-
netic flux tubes in thin films, or “anvons™, can have
arbitrary phase multiplier.




Braided monoidal categories

— A

¢ Topology:

e Linear logic: W-X®Y
B S 7 s

¢ Computation: pair.swap();

e SET: b((x,y)) = (y.X)



Braided monoidal closed categories
¢ String diagrams:

X < Z|

- Quantum mechanics: antiparticles
ry . X®@I—-X = par:/->X X

N
-«




Braided monoidal closed categories

-

¢ Topology:

e Linear logic: IMPLIES X®Y+-Z
YrX <Z

¢ Computation: Currying
z = £(x, y);
or
z = f1(X;

oSET: f:XX¥Y>Z = f[:Y—>2Z%




Model Theory




Braided monoidal closed categories

=

¢ Topology:

e Linear logic: IMPLIES X®Y+-Z
YrX oZ

¢ Computation: Currying

z = I(x, y);
or
z = £ (y)(x);

oSET: f:XxXY>Z = f:Y—>ZX
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Braided monoidal closed categories -

16
e Linear logic: IMPLIES X@Y+Z
YHrX oZ
¢ Computation: Currying
z = £(x, y); 0 =
or
z = ${y)Cx);
oSET: f:XxY>Z = f:¥Y-27ZX
L3 18
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Ii C, = C-. we can choose 2 single obyect X and a2 smgle morphesm (- X — ¥ and ose it m both slots. As
shown in Frgure[] there are then two paths from ore comer of the cube to the antipodal cormer that only mvolve
¢ for repeated arpuments: that oy ¢ 2o @r . bot Dot oy ¢ or @y x. These paths give 2 commutime hexagon

Definition 22 A dinatnral transformation o- F = G betawen funciors F.G:C¥ x C — D assigns to every ~
MIICHMM FIX. X) - GIX X)) in D such thaz for every morphism [- X — ¥ i C. the hexagon

m Fiowre
: 09060022 Page 43/5

In the case of the wdenhity rule. ths commutng hexagon follows from the fact that the xdentity morphsm s a
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FiX.X) FIX.Y

Freure 12 A natursl ransformanon between fonctors F.G:C7 X C — D mives a commutme cube m [ for any
mowrphisen - X —+ ¥_and there are two paths aroonsd the cuhe that only mvolve @ for repeated arpwments
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L

FIX.X) X

F=ure |- A matural ransformation between fonctors F.G-C™ x C — D gives 3 commuting cobe m D for any
morphism - X — ¥_and there are two paths arousd the cube that only myvolve o for repeated arpuments

¥r ¥
£
s

1 | 3
. R

L

X+ X fo— - XrY

Ix felx=lgsf

4

Frzure ). Dimaturabity of the (1) rule, whene - X —» Y. Here o € | denotes the one clement of the one-clement

- 09060022 set. Page 45/¢
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Frure |: A matural ransformation between fonctors F.G-C™ x C — D =ves a2 commutmg cube m D for any
morphism - X — F. and there are two paths around the cube that only mvolve o for repeated argwements.

Fr¥
1y
¥
1 I =
. ™ =
XrX e Xv ¥
Ix foly=lysf
4
1
L]

Frgure 2: Denaturaisty of the (1) rule. where £~ X — ¥ Here » € | denotes the one clement of the one-—clement
sel
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X-Z
R=(f=1)
XrW)x (¥rd) X»¥) x (Yr2) -
iz k) (fegid *
- xl"z Zed .t *Z
' (h=fi=g th=fl=g=h=(f=g)
| /

(X-W)x(Wr )
(g.2= f)

Frzure ¥ Dmaturabty of the cut rule . where /- W - KX - W kY - 2L

4 Computation
4.1 Background

: 09060022 Page 47/%
In the [930s. while Turmy was developme what are oow called “Tuenne machnes” as a model for computatyon .
Tl sl bi: sk’ B R s sl i il wwadad ikl e laeduls caleike" FREE Bl
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X-2
ha(fog)
X+ W) x (¥Yr2) folpg X+ VI X (¥e2) -
(z.k) (feg k) =
XvZ X2
e iR= fi=g (ko flog=h=(f=g)
| /

(X-W)xiWr2)
(g-23 f)

Frzure 3 Diturabty of thecutrule_where (W <Lz X - W kY - 2

4 Computation

4.1 Background

In the 930k winle Turmye was developmye what are now called “Tunne machirses” as 2 oded for computaton.
Church and his student Kleene were developme 2 different model. called the “lambda caloulus’ 9163]. While
a Termg machme can be seen as an wealized . simpiified moded of computer hardware . the bimiwda calculus is
maore like 2 ssmple model of sofftware.
By now the are many careful reatments of the lamibda caicuius m the eratore, from Barendregt's mags-
: 09060022 terial tome (17 1o the classic category-theoretic tneatment of Lambek and Scout [67). 1o Hindley and Seldin's
user-friendly mtroduction [F1] and Sehnger's clegant free onfne notes [§8). So. we shall content ourseives with

g Jgen, SIS
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Let us explam the meammye of spphcation and ambda-abstracthon. Appixaton 15 ssmple. Simce “programs
are data’. we can thnk of anv lerm exther 2s 2 progree or 2 prece of data. Since we can apply programs o data
and gt new data we can apply any term £ 10 any other term ¢ amd get 2 Dew term Fi{E).

Lamixia-abstracton s more interesting. We think of (.Lrr) as the program that, given x 25 mpul. rewrns § as

outoul. For exampie. consader
(Axxixj)
Thes progra takes 2oy program ras mpul and retcras 1ix) as cutpot. In other words. 1t applhies any progra=
(Ardxis) = s(s)
for any lerm 5.

Mare generally. if we apply (Lot} 1o any term s, we shouid get back ¢, but wiath s subsituted for cach fnee
ocomrence of the varmble © Ths fact s codifeed m 2 reie called beta reduction:
(Axe)sh = of s/ x]
where ff s/ x] is the term we get by taking ¢ and scbstituting 5 for cach free occurrence of 1. But beware: this
rule 15 not an eguation n the sscal mathematical sense. [nstead. it s a ‘rewrite rule”: grven the term on the left.
we are allowed 10 rewnite it and get the term on the nght. Startmg with 2 term and repeatedly applyving rewnte
rules s how we take a program and let it run!

There are two other rewrte rules m the [ambda calcules. If s 2 vrmable and 1 is 2 erm. the evm
(Ll x))

. 09060022 stands for the program that . svven r© as mput_ returns A ) as output. Bot thes s st 3 fancy way of tilkme about
' the program r. So. the ambda calculus has 2 rewrnie roie called eta reduction. saving

) PR [FEN T, TR—_—
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mpet X I recTIvES.

To get a feeling for how we can define anthmetic operations on Chorch numerals. comsader

Thss progreT takes any program g. squares it and then cubes the resclt. So. it ramses g © the sixth power. This

seggests that

Indesd thes = troe. If we treat the defimmtrons of Chunch numerals as reversible rewnite rodes, then we an start

(g N2E)

If tus calcziaton seems mund-numinng . that & precely the pomt: it resembies the moer workmes of 2 com- ~
puter. Wie see here bow the lamivda calczius can serve as 2 programmne bnsuase with cach step of computation
correspondmy 0 2 rewnte role.

Hmnﬂhmﬁm.! x 2 = 6. Geperalzrmy from this example. we can define a program

For cxampie.

The enterprsing reader can deesm up sirmilar prograss for the other basic operations of anthemetse. With mone
cleverness Chyrch amd Kleene were able to write terms correspomding to more complcated fenctions. They
eventuaily came 1o beleve that aff computabie fonctions N -+ N can be defimed mn the lambda calcnlus Page 50/%

Meanwinle . Godel was developmg another approach to computainbty. the theory of “recursive functsons’.

e e e A T - el ki o it el i e el il - ik e aan- T
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1 | T | T T 1 | |

g3z

iz 3UAg) =6

(Ag M AF LA A ED def_of 2
(Ag Mix pigix))) beta
(g (Af Lix FURFo A z(m(xi)) def of 3
(g fidxfix gzt X Ac gzt N L gig(x)Nx))))) bema
(Agfdc i gz N lg-glzlx))Neixix)))) beta
(g (el ix gz )X elglzieixNIND et
Az LAz gizteiz(sizt0) ) beta
& def of &

tmes = (la{db {lralb{x))))L

mﬂ:flﬁ = E
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e Topology: f =

e Linear logic: IMPLIES l{f PXY _FOZZ ©

R

¢ Computation: Currying

Z = f(xs Y);
or
z = £(y)(x);

f:Y—)ZX

oSET: f: XXY -2

112
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Braided monoidal closed categories

¢ Topology: EHQ

e Linear logic: IMPLIES X®Y+Z

YFrX o Z
¢ Computation: Currying :
z = £(x, y);
or
z = £(y) (x);

f:Y>2ZX

oSET: f: XXY > Z

112
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Model Theory (Quantum)
Syntax [Topology]| Semantics [QM]

manifold Hilbert space of states

cobordism linear transformation
Topological Quantum Field Theory




