Date: Jun 03, 2009 12:15 PM

URL: http://pirsa.org/09060022

Abstract: TBA

Pirsa: 09060022 Page 1/55

John C. Baez UC Riverside

John C. Baez UC Riverside

Mike Stay Google, U. of Auckland

Pirsa: 09060022

The Rosetta Stone (pocket version)

Category Theory	Physics	Topology	Logic	Computation
object	system	manifold	proposition	data type
morphism	process	cobordism	proof	program

The Rosetta Stone (pocket version)

Category Theory	Physics	Topology	Logic	Computation
object	system	manifold	proposition	data type
morphism	process	cobordism	proof	program

Objects

String diagrams have 'strings' or 'wires':

- Quantum mechanics has Hilbert spaces: $X \cong \mathbb{C}^n$
- Topology has manifolds: X
- Linear logic has propositions:

X ="I have an item of type X."

- Computation has datatypes: interface X;
- SET has sets: X

3

Objects

String diagrams have 'strings' or 'wires':

X

- Quantum mechanics has Hilbert spaces: $X \cong \mathbb{C}^n$
- Topology has manifolds: X
- Linear logic has propositions:

X = "I have an item of type X."

- Computation has datatypes: interface X;
- SET has sets: X

String diagrams have vertices:

Quantum mechanics has linear transformations:

$$f: X \to Y \cong f: \mathbb{C}^n \to \mathbb{C}^m$$

String diagrams have vertices:

Quantum mechanics has linear transformations:

$$f: X \to Y \cong f: \mathbb{C}^n \to \mathbb{C}^m$$

String diagrams have vertices:

Quantum mechanics has linear transformations:

$$f: X \to Y \cong f: \mathbb{C}^n \to \mathbb{C}^m$$

(An $m \times n$ matrix with complex entries)

4

String diagrams have vertices:

Quantum mechanics has linear transformations:

$$f: X \to Y \cong f: \mathbb{C}^n \to \mathbb{C}^m$$

String diagrams have vertices:

Quantum mechanics has linear transformations:

$$f: X \to Y \cong f: \mathbb{C}^n \to \mathbb{C}^m$$

String diagrams have vertices:

Quantum mechanics has linear transformations:

$$f: X \to Y \cong f: \mathbb{C}^n \to \mathbb{C}^m$$

Topology has cobordisms:

Linear logic has constructive proofs:

$$X \vdash Y$$

- Computation has (roughly) programs: Y f(X);
- SET has functions: $f: X \to Y$

John C. Baez UC Riverside

John C. Baez UC Riverside

John C. Baez UC Riverside

The Rosetta Stone (pocket version)

Category Theory	Physics	Topology	Logic	Computation
object	system	manifold	proposition	data type
morphism	process	cobordism	proof	program

John C. Baez UC Riverside

The Rosetta Stone (pocket version)

Category Theory	Physics	Topology	Logic	Computation
object	system	manifold	proposition	data type
morphism	process	cobordism	proof	program

2

John C. Baez UC Riverside

The Rosetta Stone (pocket version)

Category Theory	Physics	Topology	Logic	Computation
object	system	manifold	proposition	data type
morphism	process	cobordism	proof	program

2

Objects

String diagrams have 'strings' or 'wires':

X

- Quantum mechanics has Hilbert spaces: $X \cong \mathbb{C}^n$
- Topology has manifolds: X
- Linear logic has propositions:

X ="I have an item of type X."

- Computation has datatypes: interface X;
- SET has sets: X

3

String diagrams have vertices:

Quantum mechanics has linear transformations:

$$f: X \to Y \cong f: \mathbb{C}^n \to \mathbb{C}^m$$

• Topology has cobordisms:

Linear logic has constructive proofs:

$$X \vdash Y$$

- Computation has (roughly) programs: Y f(X);
- SET has functions: $f: X \to Y$

Morphisms compose associatively

String diagrams:

- Quantum mechanics: matrix multiplication
- Topology:

Morphisms compose associatively

• Linear logic: $\frac{Y \vdash Z \quad X \vdash Y}{X \vdash Z}$ (c)

Computation:

• **SET:** $(g \circ f) : X \to Z$

Identity morphisms

String diagrams:

• Quantum mechanics: identity matrix (1 0 1)

• Topology:

• Linear logic: $\overline{X \vdash X}$ (i)

Computation: X id(X x) { return x; }

• SET: $1_X: X \to X$

Monoidal categories

String diagrams:

• Quantum mechanics: tensor product

$$\left(\frac{a \ b}{c \ d}\right) \otimes \left(\frac{e \ f \ g}{h \ j \ k}\right) = \left(\begin{array}{c} ae \ af \ ag \ be \ bf \ bg \\ ah \ aj \ ak \ bh \ bj \ bk \\ ce \ cf \ cg \ de \ df \ dg \\ ch \ cj \ ck \ dh \ dj \ dk \end{array}\right)$$

Monoidal categories

- Linear logic: AND $\frac{X \vdash Y \quad X' \vdash Y'}{X \otimes X' \vdash Y \otimes Y'}$ (8)
- Computation: parallel programming

ParallelPair<X, Xp> pair;

• **SET:** $f \times f' : X \times X' \to Y \times Y'$

Identity morphisms

• String diagrams:

- Quantum mechanics: identity matrix (1 0 1)
- Topology:
- Linear logic: $\overline{X \vdash X}$ (i)
- Computation: X id(X x) { return x; }
- SET: $1_X: X \to X$

Monoidal categories

String diagrams:

• Quantum mechanics: tensor product

$$\left(\frac{a}{c}\frac{b}{d}\right) \otimes \left(\frac{e}{h}\frac{f}{j}\frac{g}{k}\right) = \left(\begin{array}{c} ae \ af \ ag \ be \ bf \ bg \\ ah \ aj \ ak \ bh \ bj \ bk \\ ce \ cf \ cg \ de \ df \ dg \\ ch \ cj \ ck \ dh \ dj \ dk \end{array}\right)$$

Monoidal categories

- Linear logic: AND $\frac{X \vdash Y \quad X' \vdash Y'}{X \otimes X' \vdash Y \otimes Y'}$ (8)
- Computation: parallel programming

ParallelPair<X, Xp> pair;

• SET: $f \times f' : X \times X' \to Y \times Y'$

Monoidal unit

- String diagram:
- Quantum mechanics: $I = \mathbb{C}$, the phase of a photon
- Topology:
- Linear logic: I, trivial proposition
- Computation: I = void or I = unit type
- SET: one-element set I

н

Braided monoidal categories

String diagrams:

 Quantum mechanics: swap the particles. Bosons commute, fermions anticommute; quantized magnetic flux tubes in thin films, or "anyons", can have arbitrary phase multiplier.

Braided monoidal categories

• Topology:

• Linear logic: $\frac{W \vdash X \otimes Y}{W \vdash Y \otimes X}$ (b)

• Computation: pair.swap();

• **SET:** $b(\langle x, y \rangle) = \langle y, x \rangle$

String diagrams:

$$X \downarrow Y \mapsto X \downarrow Z \Rightarrow X \Rightarrow Z$$

Quantum mechanics: antiparticles

$$r_X: X \otimes I \to X \cong \mathbf{pair}: I \to X^* \otimes X$$

$$e^- \mapsto e^+ e^-$$

- Linear logic: IMPLIES $\frac{X \otimes Y + Z}{Y + X \multimap Z}$ (c)
- Computation: Currying

$$z = f(x, y);$$

or
 $z = f(y)(x);$

Model Theory

16

- Linear logic: IMPLIES $\frac{X \otimes Y + Z}{Y + X \multimap Z}$ (c)
- Computation: Currying

$$z = f(x, y);$$

or
 $z = f(y)(x);$

Topology:

- Linear logic: IMPLIES $\frac{X \otimes Y + Z}{Y + X \multimap Z}$ (c)
- Computation: Currying

$$z = f(x, y);$$

or
 $z = f(y)(x);$

• SET:
$$f: X \times Y \to Z \cong f: Y \to Z^X$$

If $C_1 = C_2$, we can choose a single object X and a single morphism $f: X \to Y$ and use it in both slots. As shown in Figure 11 there are then two paths from one corner of the cube to the antipodal corner that only involve α for repeated arguments: that is, α_{XX} and α_{XY} , but not α_{XX} or α_{YX} . These paths give a commuting hexagon.

This motivates the following:

Definition 22 A dinatural transformation $\alpha: F \Rightarrow G$ between functors $F, G: C^{op} \times C \rightarrow D$ assigns to every object X in C a morphism $\alpha_X: F(X,X) \rightarrow G(X,X)$ in D such that for every morphism $f: X \rightarrow Y$ in C, the hexagon in Figure D commutes.

Figure 1: A natural transformation between functors $F, G: C^{op} \times C \to D$ gives a commuting cube in D for any morphism $f: X \to Y$, and there are two paths around the cube that only involve α for repeated arguments.

Figure 2: Dinaturality of the (i) rule, where $f: X \to Y$. Here $\bullet \in I$ denotes the one element of the one-element set.

a maiok okazok

Let us explain the meaning of application and lambda-abstraction. Application is simple. Since 'programs are data', we can think of any term either as a program or a piece of data. Since we can apply programs to data and get new data, we can apply any term f to any other term t and get a new term f(t).

Lambda-abstraction is more interesting. We think of $(\lambda x.t)$ as the program that, given x as input, returns t as output. For example, consider

$$(\lambda x.x(x)).$$

This program takes any program x as input and returns x(x) as output. In other words, it applies any program to itself. So, we have

$$(\lambda x. x(x))(s) = s(s)$$

for any term s.

More generally, if we apply $(\lambda x.t)$ to any term s, we should get back t, but with s substituted for each free occurrence of the variable x. This fact is codified in a rule called **beta reduction**:

$$(\lambda x.t)(s) = t[s/x]$$

where t[s/x] is the term we get by taking t and substituting s for each free occurrence of x. But beware: this rule is not an equation in the usual mathematical sense. Instead, it is a 'rewrite rule': given the term on the left, we are allowed to rewrite it and get the term on the right. Starting with a term and repeatedly applying rewrite rules is how we take a program and let it run!

There are two other rewrite rules in the lambda calculus. If x is a variable and t is a term, the term

 $(\lambda x z(x))$

stands for the program that, given x as input, returns t(x) as output. But this is just a fancy way of talking about the program t. So, the lambda calculus has a rewrite rule called **eta reduction**, saying

No Signal VGA-1

Pirsa: 09060022 Page 51/5

No Signal VGA-1

Pirsa: 09060022

Topology:

- Linear logic: IMPLIES $\frac{X \otimes Y + Z}{Y + X \multimap Z}$ (c)
- Computation: Currying

$$z = f(x, y);$$

or
 $z = f(y)(x);$

● Topology: →

- Linear logic: IMPLIES $\frac{X \otimes Y + Z}{Y + X \multimap Z}$ (c)
- Computation: Currying

$$z = f(x, y);$$

or
 $z = f(y)(x);$

Model Theory (Quantum)

Syntax [Topology]	Semantics [QM]
manifold	Hilbert space of states
cobordism	linear transformation

Topological Quantum Field Theory