Title: The Conway-Kochen-Specker Theorems

Date: Jun 03, 2009 09:30 AM

URL: http://pirsa.org/09060019

Abstract: TBA

Pirsa: 09060019 Page 1/15

The Kochen-Specker Theorem

Klaas Landsman (with Chris Heunen and Bas Spitters)
Radboud Universiteit Nijmegen

Perimeter Institute, June 3, 2009

Condemned to indeterminism?

- Borel space $(X, \Sigma(X) \subseteq P(X))$; probability measure $\mu: \Sigma(X) \to [0,1]$ μ is "σ-Boolean map" (morphism of Boolean algebras, countable sups) $x \in X$ defines point measure $\delta_x: \Sigma(X) \to \{0, 1\}, U \mapsto 1$ iff $x \in U$
- *Hilbert space* H; "quantum analogue" of **Boolean lattice** $\Sigma(X)$ is orthomodular lattice P(H) of closed linear subspaces of $H, \leq = \subseteq$
 - $P(H) \cong lattice \ of \ projections \ p: H \rightarrow H, p^* = p^2 = p, p \leq q \ iff \ pq = p$
- Unit vector $\psi \in H$ defines map $\underline{\psi} : \mathbf{P}(H) \to [0, 1], \ p \mapsto (\psi, p\psi)$
 - Extension: $p \mapsto Tr(\varrho p) = \sum_i \lambda_i (\psi_i, p\psi_i)$, with $0 \le \lambda_i \le 1$, $\sum_i \lambda_i = 1$
 - is "locally σ -Boolean" (σ -Boolean on each Boolean part of P(H))
- o Are there any locally σ -Boolean maps $P(H) \rightarrow \{0, 1\}$? (Hidden variables)

Gleason & Kochen-Specker

- ∘ Gleason (1957): If dim(H) > 2, then each locally σ -Boolean map $P(H) \rightarrow [0, 1]$ is of the form $p \mapsto Tr(\varrho p)$ for some density matrix ϱ
 - **Corollary**: there is no locally $(\sigma$ -) Boolean map $V: \mathbf{P}(H) \rightarrow \{0, 1\}$
- Kochen-Specker Theorem (1967) = this corollary (with direct proof)
 - P(H) has no local points/models, QM has no non-contextual hidden variables
- **Proof** for $H = \mathbb{R}^3$ (implies result for all complex Hilbert spaces H):
 - If p, q, r orthogonal 1-dimensional projections with p + q + r = 1, then (V(p),V(q),V(r)) = (1,0,0) or (0,1,0) or (0,0,1)

This leads to contradiction for specific choice of 33 frames built from Pirsa: 09060 different projections (Kochen-Specker, Penrose, Peres, ...)

Enter topos theory

- C(H) = poset of Boolean sublattices of P(H)

Can add conditions to relate to operator algebras: W*, AW*, Rickart, spectral ..

- $W(H) = topos \ of \ contravariant \ functors \ C(H) \rightarrow Sets$
- Pt: $C(H) \rightarrow Sets$ ("dual presheaf"), $Pt(B) = Hom(B, \{0,1\})$
- Isham-Butterfield's Kochen-Specker Theorem (1998):
 - D has no "global" points, i.e. there is no arrow $1 \rightarrow Pt$ in W(H)
- Follow-up by Hamilton-Isham-Butterfield (2000), Döring (2005)

General framework for "topos physics": Döring-Isham (2007)

Pirsa: 09060019

Logic behind Kochen-Specker

Goal: clarify role of (intuitionistic) logic in topos quantum theory
Will construct Heyting algebra $\Sigma(H)$ in topos Sh(C(H)) so that

Kochen-Specker Theorem $\Leftrightarrow \Sigma(H)$ has no standard models in Sh(C(H))Complication: $\Sigma(H)$ and its models live in topos Sh(C(H)) - not in Sets

Remedy: "external description" of $\Sigma(H)$ in Sets: Heyting algebra $\Sigma(H)$

Kochen-Specker already excluded true/false semantics of P(H)

Reformulation also excludes "natural" possible world semantics

Positive turn: road open for other types of models of quantum logic

Kochen-Specker Theorem $\Leftrightarrow \Sigma(H)$ has no Kripke models on C(H)

Pirsa: 09060019 Page 6/15

Heyting algebras

- **Heyting algebra**: Distributive lattice Σ (i.e. with top \top , bottom \bot)
 - with map \Rightarrow : $\Sigma \to \Sigma$ such that $x \le (y \Rightarrow z)$ iff $(x \land y) \le z$
- \Leftrightarrow Intuitionistic propositional logic with negation $\neg x := (x \Rightarrow \bot)$
- **Examples:** 1) Boolean algebras with $(x \Rightarrow y) = \neg x \lor y$ ("classical")
 - 2) Poset P (Kripke frame); $\Sigma = \{upper sets in P\}, \leq = \subseteq$
 - 3) Topology $\Sigma = O(X)$ with $\leq = \subseteq$ (Tarski)
 - 4) Locale = complete distributive lattice where $x \wedge \bigvee_{i} \{y_i\} = \bigvee_{i} \{x \wedge y_i\}$
 - \Leftrightarrow Complete Heyting algebra with implication $(y \Rightarrow z) = \bigvee \{x \mid (x \land y) \leq z\}$
 - 5) Heyting algebra of "intuitionistic quantum logic" (pointwise ordering):

Pirsa: 09060019 $\Sigma(H) = \{S \colon C(H) \to P(H) \mid S(B) \in B, S(C) \le S(D) \text{ if } C \subseteq D \}$ Page 7/15

Models of locales (in Sets)

Locales are Lindenbaum algebras of "geometric" propositional theories (signature Σ ; \top , \wedge , \vee ; axioms $\psi \rightarrow \phi$); "Algebraic" models \leftrightarrow "logical" models

- Standard model of locale Σ is (\land, \lor) -map $\Sigma \to \{0, 1\} = O(pt)$ Topology O(X) has standard models δ_x : $O(X) \to \{0, 1\}, x \in X$
- Kripke model on poset ("frame") P is (\land, \lor) map $\Sigma \to O_A(P)$ locale $O_A(P) = Alexandrov topology$ on $P = \{upper sets in P\}$
- ∘ $\Sigma(H) = \{S: C(H) \rightarrow P(H) \mid S(B) \in B, S(C) \leq S(D) \text{ if } C \subseteq D\}$ would like to have Kripke models $\delta \psi$ on frame C(H) for $\psi \in H_1$ $\delta \psi: S \mapsto \{B \in C(H) \mid (\psi, S(B) \psi) = 1\} = \{\text{worlds B in which } S(B) \text{ is true}\}$

Pirsa: 09060019 Page 8/15

Models of locales in topoi

```
Can define Heyting algebras, locales and their models in any topos
       Sh(C(H)) \simeq Sets^{C(H)} = topos \ of \ covariant \ functors \ C(H) \rightarrow Sets
      Functor P: B \mapsto B is internal Boolean lattice in Sh(C(H))
Stone spectrum Pt(B) of Boolean lattice B in Sets; B \hookrightarrow O(Pt(B)), U \mapsto \{p: B \rightarrow \{0,1\} \mid p(U) = 1\}
B \hookrightarrow O(Pt(B)) isomorphic to B \hookrightarrow Idl(B) = \{I \subseteq B \mid x, y \in I \Rightarrow x \lor y \in I, x \le y \in I \Rightarrow x \in I\}
"Stone spectrum" of P in Sh(C(H)) is functor Idl(P): B \mapsto \Sigma(H) \upharpoonright B
 \Sigma(H) = \{S : C(H) \to P(H) \mid S(B) \in B, S(C) \le S(D) \text{ if } C \subseteq D\} \text{ (dim}(H) < \infty\}
Idl(P) is internal locale/complete Heyting algebra in Sh(C(H))
```

Standard models of Idl(P) in Sh(C(H)) are (\land, \lor) - maps $Idl(P) \rightarrow \Omega$

Pirsa: 090600 gale $\Omega = O_A(C(H))$ is subobject classifier "truth object" in Sh(C(H)); cf. $\{0, 1\}$ in Sets

From models to models

Theorem: There are bijective correspondences between:

- 1. Standard models $\underline{Idl}(\underline{P}) \to \underline{\Omega}$ in Sh(C(H)) of Stone spectrum $\underline{Idl}(\underline{P}): B \mapsto \Sigma(H) \upharpoonright B$ of (internally) Boolean projection lattice $\underline{P}: B \mapsto B$
- 2. Kripke models $\Sigma(H) \to O_A(C(H))$ of "quantum logic" Heyting algebra $\Sigma(H) = \{S \colon C(H) \to P(H) \mid S(B) \in B, S(C) \le S(D) \text{ if } C \subseteq D\}$ in Sets
- 3. Locally Boolean maps $P(H) \rightarrow \{0, 1\}$

Idea of proof: $1 \Leftrightarrow 3$: \underline{P} is basis of "clopens" for locale $\underline{Idl}(\underline{P})$; map $\underline{P} \hookrightarrow \underline{\Sigma}(\underline{P})$ composes with $\underline{\Sigma}(\underline{P}) \to \underline{\Omega}$ to natural transformation $\underline{P} \to \underline{\Omega}$; components yield locally Boolean $\underline{P}(H) \to \{0,1\}$

 $1 \Leftrightarrow 2$: Maps(X,Y) = Geom(Sh(Y), Sh(X)); interpret this first in **Sets**, then in Sh(C(H)), and use equivalences $Sh(C(H)) = \underline{Sh(\Omega)}$ and $Sh(\Sigma(H)) = \underline{Sh(Idl(P))}$ (Joyal-Tierney, Moerdijk, Johnstone):

 $Pirsa \sqrt{90000016} \Sigma(H), C(H)) = Geom(Sh(C(H)), Sh(\Sigma(H))) = Geom(\underline{Sh}(\Omega), \underline{Sh}(\underline{Idl}(\underline{P}))) = Maps(\underline{Idh}(\underline{P})) \leq Maps(\underline{Idh}(\underline{P$

Kochen & Specker strike back

- 1. Locally Boolean maps $P(H) \rightarrow \{0, 1\}$ do not exist (Kochen-Specker)
- 2. Stone spectrum $\underline{Idl}(\underline{P})$ of \underline{P} has no standard models in Sh(C(H))
- 3. Heyting algebra $\Sigma(H)$ has no Kripke models on frame C(H) in Sets

Locales $\Sigma(H)$ and $\underline{Idl(P)}$ may have other models (also in other topoi)

Interpretation: such models would correspond to unusual hidden variables constructed by forcing, as in unusual models of set theory in which continuum hypothesis holds/fails (cf. Boos, 1996; Van Wesep, 2006)

Pirsa: 09060019 Page 11/15

Have we just proved $\emptyset \simeq \emptyset$?

Replace Hilbert space H [really: B(H)] by unital C*-algebra A

Replace C(H) = poset of Boolean sublattices of P(H)

by C(A) = poset of unital commutative C^* -subalgebras of A

for $dim(H) < \infty$, $C(B(H)) \cong C(H)$, for general H need special classes of C*-(sub)algebras

Replace Sh(C(H)) by $Sh(C(A)) = topos of covariant functors <math>C(A) \rightarrow Sets$

Replace internal **Boolean** lattice \underline{P} : $B \mapsto B$ in Sh(C(H)) by

internal commutative C^* -algebra $\underline{A}: C \mapsto C$ in Sh(C(A))

Replace Stone spectrum $\underline{Idl}(\underline{P})$ of \underline{P} in Sh(C(H)) by

(localic) Gelfand spectrum $\underline{\Sigma}(\underline{A})$ of \underline{A} in Sh(C(A))

 $dim(H) < \infty : \underline{\Sigma}(B(H)) \cong \underline{Idl(P)}$

No!

Theorem: There are bijective correspondences between:

- 1. Standard models $\underline{\Sigma}(\underline{A}) \to \underline{\Omega}$ in Sh(C(A))
- 2. Kripke models $\Sigma(A) \to O_A(C(A))$ of "external description" $\Sigma(A) = \underline{\Sigma}(\underline{A})(C(A)) \text{ of } \underline{\Sigma}(\underline{A}) \text{ in Sets}$
- 3. Valuations $Asa \rightarrow \mathbb{R}$ i.e. maps that are linear and multiplicative on commutative C^* -subalgebras of A
- Kochen-Specker situation recovered for A = B(H)
- New phenomena for general C^* -algebras A, for example: $\Sigma(C(X)) \cong O(X) \text{ and hence } A \mapsto Sh(\Sigma(A)) \text{ is noncommutative}$

Pirsa: 09060019 extension of sheaf functor $X \mapsto Sh(X)$ [since $Sh(C(X)) \cong Sh(X)$]
Page 13/15

Have we just proved $\emptyset \simeq \emptyset$?

Replace Hilbert space H [really: B(H)] by unital C*-algebra A

Replace C(H) = poset of Boolean sublattices of P(H)

by C(A) = poset of unital commutative C^* -subalgebras of A

for $dim(H) < \infty$, $C(B(H)) \cong C(H)$, for general H need special classes of C*-(sub)algebras

Replace Sh(C(H)) by $Sh(C(A)) = topos of covariant functors <math>C(A) \rightarrow Sets$

Replace internal **Boolean** lattice \underline{P} : $B \mapsto B$ in Sh(C(H)) by

internal commutative C^* -algebra $\underline{A}: C \mapsto C$ in Sh(C(A))

Replace Stone spectrum $\underline{Idl}(\underline{P})$ of \underline{P} in Sh(C(H)) by

(localic) Gelfand spectrum $\underline{\Sigma}(\underline{A})$ of \underline{A} in Sh(C(A))

 $dim(H) < \infty$: $\underline{\Sigma}(B(H)) \cong Idl(\underline{P})$

No!

Theorem: There are bijective correspondences between:

- 1. Standard models $\underline{\Sigma}(\underline{A}) \to \underline{\Omega}$ in Sh(C(A))
- 2. Kripke models $\Sigma(A) \to O_A(C(A))$ of "external description" $\Sigma(A) = \underline{\Sigma}(\underline{A})(C(A)) \text{ of } \underline{\Sigma}(\underline{A}) \text{ in Sets}$
- 3. Valuations $Asa \rightarrow \mathbb{R}$ i.e. maps that are linear and multiplicative on commutative C^* -subalgebras of A
- Kochen-Specker situation recovered for A = B(H)
- New phenomena for general C^* -algebras A, for example: $\Sigma(C(X)) \cong O(X) \text{ and hence } A \mapsto Sh(\Sigma(A)) \text{ is noncommutative}$

Pirsa: 09060019 extension of sheaf functor $X \mapsto Sh(X)$ [since $Sh(C(X)) \cong Sh(X)$]
Plage 15/15