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“Metaphysics may be, after all, only the art of being sure of something
that is not so, and logic only the art of going wrong with confidence.”

Joseph Wood Krutch, The Modern Temper, 1929
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introduction

Nhat's the problem?

Nhy is quantum theory (QT) problematic conceptually?

@ states do not assign values to all physical quantities, hence only
probabilistic predictions

@ interpretation needs classical structures: observers, preparations,
measurements

@ even with these classical structures: measurement problem
@ gquantum logic is too weak

@ QT does not describe a system ‘in itself’, there is no picture of
quantum reality arising
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Introduction

Aore problems...

Nhy is quantum gravity (QG) even more problematic?

@ we cannot write down QG, it is extremely hard technically

@ space and time would become quantum objects, but where and when
would a measurement on them take place?

@ we don't even have a good idea what QG is supposed to be (could be
neither quantum nor gravity)
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Introduction

ore problems...

Nhy is quantum gravity (QG) even more problematic?

@ we cannot write down QG, it is extremely hard technically

@ space and time would become quantum objects, but where and when
would a2 measurement on them take place?

@ we don't even have a good idea what QG is supposed to be (could be
neither quantum nor gravity)

Nhat about quantum cosmology (QC)?

@ can potentially arise from simplified QG, so simpler, but more generic

@ clearly no external observer, no preparation, no measurements, no
statistics

@ not embedded into any classical structure, must be understood ‘out
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\ (tentative) goal

One possible conclusion: it is not a good idea to search for a
juantisation of GR using Hilbert space methods.
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Introduction

\ (tentative) goal

One possible conclusion: it is not a good idea to search for a
juantisation of GR using Hilbert space methods.

@ [he odd one out seems to be quantum theory, not gravity. There are
big open conceptual issues with the former, not so much the latter.

@ In particular with an eye to QG and QC, we need a mathematical
formalism that allows to describe physical systems ‘in themselves’,
without the need for external observers and other classical structures.

@ In other words, we need a framework that allows us to formulate
physical theories in a realist way.
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A (tentative) goal

One possible conclusion: it is not a good idea to search for a
quantisation of GR using Hilbert space methods.

@ [he odd one out seems to be quantum theory, not gravity. There are
big open conceptual issues with the former, not so much the latter.

@ In particular with an eye to QG and QC, we need a mathematical
formalism that allows to describe physical systems ‘in themselves’,
without the need for external observers and other classical structures.

@ In other words, we need a framework that allows us to formulate
physical theories in a realist way.
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Introduction

A (tentative) goal

One possible conclusion: it is not a good idea to search for a
quantisation of GR using Hilbert space methods.

@ [he odd one out seems to be quantum theory, not gravity. There are
big open conceptual issues with the former, not so much the latter.

@ In particular with an eye to QG and QC, we need a mathematical
formalism that allows to describe physical systems ‘in themselves’,
without the need for external observers and other classical structures.

@ In other words, we need a framework that allows us to formulate
physical theories in a realist way.

This clearly is also interesting for QT, but can it be done? Problems:
Hilbert space formalism is very rigid; Kochen-Specker theorem.
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The prototype

The prototype of a realist theory is classical mechanics. Pure states form a
state space S (symplectic manifold), physical quantities are real-valued
functions f4 on §. The evaluation

(s-fa) — fa(s)

gives the value that the physical quantity A has in the state s. The subset
fA_l(A) of S represents the proposition “A=z A", that is, "the physical
quantity A has a value in the (Borel) set A”. All states s € S that lie in
fA_l(A) make the proposition true, all other states make it false.
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The prototype

The prototype of a realist theory is classical mechanics. Pure states form a
state space S (symplectic manifold), physical quantities are real-valued
functions f4 on §. The evaluation

(s.fa) — fa(s)

gives the value that the physical quantity A has in the state s. The subset
fA_I(A) of S represents the proposition “A=z A", that is, "the physical
quantity A has a value in the (Borel) set A". All states s € S that lie in
f};l(ﬁ) make the proposition true, all other states make it false.

We observe an interplay between the geometric and the logical structure of
the theory. This is made precise by Stone's theorem.
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Abstraction

We want a more general scheme (for QT and beyond) with an analogue of
the state space, an analogue of the real numbers and physical quantities as
arrows between them.
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Abstraction

We want a more general scheme (for QT and beyond) with an analogue of
the state space, an analogue of the real numbers and physical quantities as

arrows between them.

From the KS theorem, we know that there is no naive state space picture
of quantum theory, and that we cannot assign real values to all physical

quantities at once.

The idea is to go beyond spaces, which are sets, to more general objects in
a suitable category. This will also mean to go beyond Boolean logic. The

collection of (representatives of ) propositions of the form “A= A" will not
form a Boolean algebra anymore, but we still want some interpretable

logical structure.
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Abstraction

We want a more general scheme (for QT and beyond) with an analogue of
the state space, an analogue of the real numbers and physical quantities as

arrows between them.

From the KS theorem, we know that there is no naive state space picture
of quantum theory, and that we cannot assign real values to all physical
quantities at once.

The idea is to go beyond spaces, which are sets, to more general objects in
a suitable category. This will also mean to go beyond Boolean logic. The

collection of (representatives of ) propositions of the form “A= A" will not
form a Boolean algebra anymore, but we still want some interpretable

logical structure.

All this suggests the use of topos theory. We will reformulate (large parts
of) QT in a suitable topos. QG and QC will follow ;-)
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Topoi and physics

What klnd Of beaSt iS a tOpOS? Or: Which part of the elephant did we grab?

There are many facets of topos theory, and topoi show up in many
mathematical situations.

For us, the central idea is that an elementary topos £ is a generalisation of
the category Sets of sets and functions (itself a topos, of course).
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What klnd Of beast IS 3 tOpOS? Or- Which part of the elephant did we grab?

There are many facets of topos theory, and topoi show up in many
mathematical situations.

For us, the central idea is that an elementary topos £ is a generalisation of
the category Sets of sets and functions (itself a topos, of course).

The objects in such a topos can be seen as generalised sets, the arrows are
generalised functions. Given two sets, we can form their cartesian product,
disjoint union and the set of all functions from one set to the other. In a
topos, there are analogous operations defined on all objects.
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What klnd Of beast IS a tOpOS? Or- Which part of the elephant did we grab?

There are many facets of topos theory, and topoi show up in many
mathematical situations.

For us, the central idea is that an elementary topos £ is a generalisation of
the category Sets of sets and functions (itself a topos, of course).

The objects in such a topos can be seen as generalised sets, the arrows are
generalised functions. Given two sets, we can form their cartesian product,
disjoint union and the set of all functions from one set to the other. In a
topos, there are analogous operations defined on all objects.

Just as the topos Sets comes equipped with Boolean logic, each topos &£
has an internal logic, which is of inturtionistic type, i.e., the law of
excluded middle does not hold in general. But, interestingly, topoi allow
for a well-defined notion of partial truth.
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The genesis of topos ideas in physics

In the beginning, there was Lawvere, who decided to reinvent mathematics
in order to do physics properly (1960s). Generalising Grothendieck, he
invented elementary topoi (together with Miles Tierney).

Regarding physics, Lawvere was and mostly is interested in continuum
mechanics.
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The genesis of topos ideas in physics

In the beginning, there was Lawvere, who decided to reinvent mathematics
in order to do physics properly (1960s). Generalising Grothendieck, he
invented elementary topoi (together with Miles Tierney).

Regarding physics, Lawvere was and mostly is interested in continuum
mechanics.

In 1996, Chris Isham first suggested to use topos theory in foundations of
quantum theory (in the consistent histories approach). uTe 36 (1907), 785-814

A central idea was already there:

Consider the commutative/distributive parts of a2 non-commutative/
non-distributive structure and their relations and build presheaves over
them. The latter form a topos, whose internal logic is then employed in
the interpretation. The commutative/distributive parts serve as stages of
truth.




The genesis of topos ideas in physics (2)

The idea to look at a quantum system from the collection of classical
perspectives was then developed considerably in four papers (1998-2001)
with Jeremy Butterfield, concerned with the KS theorem (and how to get

around it) . TP 37, 26602733 (1998). IJTP 38, 827850 (1999), LJTP 39, 14131436 (2000), UTP 41, 613639

(2002)
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The genesis of topos ideas in physics (2)

The idea to look at a quantum system from the collection of classical
perspectives was then developed considerably in four papers (1998-2001)
with Jeremy Butterfield, concerned with the KS theorem (and how to get
around it)- LJTP 37, 2660-2733 (1998). LITP 38, 827-850 (1999), IJTP 39, 14131436 (2000), IJTP 41, 613-639

(2002)

In particular, they introduced the set V(') of abelian subalgebras of the
non-abelian algebra N of physical quantities, partially ordered under
inclusion. Each abelian subalgebra or context V < V() gives a classical
perspective on the quantum system.

Importantly, each context V has a spectrum X, such that V ~ C(Xy).
Each X\ is a local state space. Butterfield and Isham introduced the
spectral presheaf X, which collects all these local state spaces into one
large structure.
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The spectral presheaf

The spectral presheaf

The spectral presheaf L is the functor assigning to each V € V(N) its
Gel'fand spectrum, and to each inclusion V' C V of contexts the
restriction function

2(ivy) Xy — Xy
A Alyr.
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The spectral presheaf

The spectral presheaf

The spectral presheaf ¥ is the functor assigning to each V < V(N) its
Gel'fand spectrum, and to each inclusion V' C V of contexts the
restriction function

Y(iyry) Xy — Ly
A Alyr.
This presheaf can be seen as the spectrum of the non-abelian algebra V.

As such, it is a non-commutative space. Importantly, it has ho points
(global elements) — a fact that is equivalent to the Kochen-Specker

theorem.
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The spectral presheaf

The spectral presheaf

The spectral presheaf ¥ is the functor assigning to each V < V() its
Gel'fand spectrum, and to each inclusion V' C V of contexts the
restriction function

Y(ivyy) i Xy — Ly
A— A yr.
This presheaf can be seen as the spectrum of the non-abelian algebra V.
As such, it is a non-commutative space. Importantly, it has ho points

(global elements) — a fact that is equivalent to the Kochen-Specker
theorem.

Physically, the spectral presheaf }_ is the analogue of the state space S of
a classical system.

2_is an object in the topos Sets"V)™ of presheaves over the context
category V(N'). This is the topos associated to a quantum system (with
Nwasalgebra of physical quantities). Page 25140



The spectral presheaf

Contravariance

Some remarks:

@ [ he fact that we are using contravariant functors incorporates the
important concept of coarse-graining

@ the idea of coarse-graining goes back to Kochen-Specker pairs of
physical quantities
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Daseinisation of projections

The spectral presheaf X2 is the analogue of state space, so propositions
should be represented by subobjects of 2.

The relevant mapping is called daseinisation of projections. |t maps every
proposition “A= A" to a (clopen) subobject of X, the analogue of a Borel
subset fA_l(A) of state space. Daseinisation takes coarse-graining into
account. The subobjects form a Heyting algebra.
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Daseinisation of projections

The spectral presheaf X is the analogue of state space, so propositions
should be represented by subobjects of 2.

The relevant mapping is called daseinisation of projections. |t maps every
proposition “As A" to a (clopen) subobject of 1, the analogue of a Borel
subset f;q_l(A) of state space. Daseinisation takes coarse-graining into
account. The subobjects form a Heyting algebra.

The resulting new form of quantum logic (Butterfield, Isham, D) is
intuitionistic. This topos quantum logic has many sensible properties
(different from standard quantum logic).
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Daseinisation of self-adjoint operators

There is another mapping, called daseinisation of self-adjoint operators.
Though mathematically related to the daseinisation of projections, it does
something quite different: it ‘translates’ physical quantities A into arrows
5(A) in our topos Sets’V)™
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Llassinisation

Daseinisation of self-adjoint operators

There is another mapping, called daseinisation of self-adjoint operators.
Though mathematically related to the daseinisation of projections, it does
something quite different: it ‘translates’ physical quantities A into arrows
5(A) in our topos Sets¥V)”

Specifically, E(A) Is an arrow from the spectral presheaf to a certain
presheaf of ‘values’, basically given by intervals of real numbers. The
arrow 0(A) : X — R is the analogue of the function f4 : S — R in

classical physics.
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Pure states

In the topos formulation, a pure state v’ of a quantum system corresponds
to a certain subobject 0" of the spectral presheaf 2, called a pseudo-
state. Since X has no points, mw" must be ‘bigger than a point’, but it is
minimal with respect to a certain natural condition.
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Pure states

In the topos formulation, a pure state v’ of a quantum system corresponds
to a certain subobject w" of the spectral presheaf 2, called a pseudo-
state. Since X has no points, " must be ‘bigger than a point’, but it is
minimal with respect to a certain natural condition.

Using the internal logic of our topos of presheaves, we can assign a
truth-value to every proposition “A= A” in any given state. In fact, the
truth-value assignment is a direct generalisation of the truth-value
assignment in classical physics.
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Mixed states

A mixed state of a classical system is a probability measure i on the state
space S. One can show easily that every state p of a quantum system
gives a probability measure jz, (in an appropriate sense) on its spectral
presheaf 2.
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Mixed states

A mixed state of a classical system is a probability measure i on the state
space S. One can show easily that every state p of a quantum system
gives a probability measure jz, (in an appropriate sense) on its spectral
presheaf 2.

Probability measures on X2 can be characterised abstractly. Importantly,
every such measure p determines a unique state p, of the (von Neumann)
algebra of physical quantities N'. This means that we fully capture the
state space of the non-commutative algebra N in our formalism.
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The table

Summary

Abstract Class. phys. Standard QT Topos QT
state space set S Hilb. sp. H? presheaf L
propos. ‘A€ A” subset of S projection P subobj. of X
latt. of props. Boolean algebra  P(N) monaiswin) Heyting algebra
topos Sets Sets Sets¥ V)™
logic Boolean quantum log.  intuitionistic
deductive sys. yes no(?) yes

truth values true. false ?  (probabilities) elements of 2
interpretation realist Instrument. neo-realist
quant.-val. obj. R R? R™

phys. quant. A fa:S—R A-H—H 5(,21) -2 - RT

pure state
general state

irsa: 09060017

Dirac meas. o,
prob. m. pon S

vector st. wy.
state p of vlNa

pseudo-st. 0"
prob. m. gz on X
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Quantum theory is...

The fact that quantum theory can be reformulated in a suitable topos
casts some doubt on old dogmas like

@ there is no state space for a quantum system
@ quantum theory is fundamentally probabilistic

@ there is no realist formulation of quantum theory.
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Quantum theory is...

The fact that quantum theory can be reformulated in a suitable topos
casts some doubt on old dogmas like

@ there is no state space for a quantum system
@ quantum theory is fundamentally probabilistic

@ there is no realist formulation of quantum theory.

All these aspects are interrelated. Topos theory delivers tools to generalise
both Boolean logic and set-based mathematics/topology /geometry.
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Related work

Recently, Caspers, Heunen, Landsman and Spitters used covariant functors
over the context category to define a topos-internal commutative algebra
N from the external non-commutative algebra \'. The commutative

algebra \ has a Gel'fand spectrum, which is a certain locale in the topos

SetsL (V) of functors. cmp in print (2009), FOP in print (2009), arXiv-0905.2275

They suggest to use opens in this locale as representatives of propositions.
The resulting formalism, and in particular the intuitionistic quantum logic,
are closely related to the earlier work in the contravariant approach.

It will be interesting to see the interpretational differences.

Flori has developed a topos reformulation of the consistent histories
formalism. arxiv-0812.1200

Pirsa: 09060017 Page 38/40



References

A. Doring, C. J. Isham, “A Topos Foundation for Theories of Physics
I-IV", J. Math. Phys. 49, 5 053515-18 (2008), arXiv:quant-ph /0703060,
62, 64 and 66

A. Doring, “Topos theory and ‘neo-realist’ quantum theory” , in Quantum
Field Theory: Competitive models, eds. B. Fauser, J. Tolksdorf, E. Zeidler
(Birkhauser 2009), arXiv:0712.4003

A. Doring, C. J. Isham, “"What is a thing?’: Topos Theory in the

Foundations of Physics', to appear in New Structures in Physics, ed. Bob
Coecke (Springer 2008), arXiv:0803.0417

A. Doring, “Quantum States and Measures on the Spectral Presheaf”,
Adv. Sci. Lett. 2, Number 2 (Special Issue on “Quantum Gravity,
Cosmology and Black Holes”, ed. M. Bojowald), 291301 (2009),
arXiv:0809.4847

irsa: 09060017 Page 39/40



Mixed states

A mixed state of a classical system is a probability measure i on the state
space S. One can show easily that every state p of a quantum system
gives a probability measure 1, (in an appropriate sense) on its spectral
presheaf 2.

Probability measures on X2 can be characterised abstractly. Importantly,
every such measure i determines a unique state p, of the (von Neumann)
algebra of physical quantities N'. This means that we fully capture the
state space of the non-commutative algebra N in our formalism.
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