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Higher order types in quantum information

Observation. When interesting phenomena occur in quantum
information theory, this usually happens at higher order types.

In quantum information theory, we usually distinguish systems
(such as qubits, electrons) from processes (such as quantum
circuits, experiments).

However, the distinction is sometimes blurred. A unknown
process can sometimes be regarded as a system to interact
with, in which case it is often called a blackbox.
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Higher order types

A tvpe is a description of an interface to a system or process.
Examples: qbit, qbit = gbit, bit — gbit, gqbit — bit.

By a higher order tvpe, we mean a type where a function space
OocCccurs in a nested way, for example:

e as an input to a function (blackbox): (A — B) —< C,
e as an output to a function: A = (B —« C},

e as a component of a pair: (A—=B)2(C—=D)].
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Example 1:

Quantum teleportation:
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f; - 1 —o gbit = gbit
f,: qgbit = gbit — bit = bit
f; - gbit = bit = bit — gbit
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Teleportation, continued:

f; : 1 — gbit = gbit
f>: qbit = gbit — bit = bit
f3: qbit o bit = bit — gbit
Curry f», and f3:

1_5] - [ — gbit & gbit
f> - qbit — (gbit — bit = bit)
f; : gbit — (bit = bit — gbit)
Combine all three functions:

F=f;(f; ® f3) : I - (gbit — bit @ bit) @ (bit ® bit — gbit)

This is a thunk. Letting (g, h) = Fi*) yields a pair of entangled
functions g : gbit — bit = bit and h : bit = bit — gbit.

Moreover, ho g = id (teleportation) and go h = id (dense
coding). Are they inverses? No, because single use only!
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Entangled tunctions

e Entangled functions are a central concept in higher-order
quantum information theory.

e | hey can have unexpected and novel properties. There is
no classical analog.

e A possibly-entangled function can be understood as a
“guantum state with an interface”.

e Is there a mathematical description?
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Example 2: Bell inequalities

In the previous example, we had a pair of entangled functions
g : qbit —< bit & bit and h : bit & bit — gbit.

The next example involves a pair of entangled functions whose
tvpe is purely classical.

g:3 —bit, h:3— Dit.

Here, 3=1+1+1 (a 3-element set) and bit=1-+1 (a 2-element
set).

~|
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Bell's experiment

Alice and Bob each receive one component of an entangled
pair, at a distance.
1

Alice Bob

Each of Alice and Bob performs an experiment that depends on
an additional input, namely, a choice of axis 1, 2, 3 to measure
in. They choose this input independently. The probabilities
that Alice and Bob observe the same value are:

1

-

W

=t =l W

N
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Bell's experiment, continued

The Bell inequalities state that in any local hidden variable
theory,

P1 2lequal) + P 3(equal] + Py 3zlequal) > 1
However,
P | P 1 P l 1 R 3
1,2 23 1,3 e g

So the predictions of quantum theory are incompatible with
“local hidden variable theories™ .
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Bell's experiment, stated with entangled functions

There exists a pair of entangled functions g,h:{1,2 3] — Dbit,
such that for all x,y =11, 2,3}:

1 if x =1y,
P (9bx) =hiy J:{14 if x = u.

Bell's argument shows that if g, h were merely probabilistic
functions (or even if the pair (g,h) were sampled from a
probability distribution of such pairs), then

P (_:gfjx' —- hix}) —= for all x
implies
P(g(1) =h(2)) + P (g(2) = hi(3)) + P(g(1) = h(3))

This is easy to check using semantics.
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Discussion of Bell's experiment

e Logicians would say: “Quantum computation is not
conservative over probabilistic computation’.

e Category theorists would say: “The embedding of
probabilistic computation in quantum computation is not
full™ .

e Physicists say: “There is no local hidden variable theory for
quantum mechanics™.
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Example 3: PR boxes (Popescu and Rohrlich)

Consider the following problem:

e Alice and Bob are given the task of creating a pair of
Boolean functions of one argument,

g, h : bit — bit.
Alice keeps g and Bob keeps h. They go to different rooms.

e Alice is given a random bit x and Bob is given a random bit
y (x and y are independent and uniformly distributed).

e T he functions g and h are supposed to satisfy:
g{x) = hi{y) =xVuy,

where = denotes “exclusive or”, and V denotes “or”.

12
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PR boxes, best probabilistic solution

g({0) = h(0) =0
9'.'0'_—'}1"[':]
gil)=hi(0) =1
gll) S h(l) =1

What is Alice and Bob’s probability of success?

It is easily seen that with classical (even probabilistic) functions,
the best Alice and Bob can hope for is to win 75% of the time.

One possible solution is: let g and h be the constant 1 function.
Or let g be the constant 0 function and h the identity function.

One cannot do better.

13
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The probabilities of agreement are:

1|2
1|1 |3
3[zlz
In other words,
P(g(0) = hi

|

I

[ &
o

|

e

P(gl0)=h(1)=1) =
P(g(l) & h(0)=1) =

P(Q'T —hT:H:

= [T = [FE TS [N

Therefore, the combined chance of success (on uniformily
distributed input) is =252 +0 — (. 8125.
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PR boxes, best quantum solution

Actually, the optimal success rate Alice and Bob can achieve is
sin(t/8) = 85.36%. It is done as follows:

If x =0, Alice measures in basis A, else in basis A;. If y =0,
Bob measures in basis By, else in basis B;.

3 | ST/8
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Discussion of PR Box example

e | he conclusion is similar to that of Bell's experiment.
Quantum computation is not conservative over probabilistic
computation at the type (bit < bit] = (DIt —< bit ).

e | he fact that this is a higher-order type is essential. Indeed,
one can show that quantum computation is conservative
over probabilistic computation for first-order tvpes.

e | hese examples beg for a denotational semantics, to

answer such question as:

— What exactly are the quantum definable functions at
higher-order types?

— Do there exist Bell-like situation at all higher-order
types?

— Are there any new phenomena as the complexity of
tvpes increases?

17
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Semantics of higher-order quantum computation

An important open problem: to find a fullv complete
semantics of higher-order quantum computation.

This means: at each higher-order type, characterize exactly
which gquantum operations are information-theoretically
possible.

In other words: find sets of generalized Bell inequalities, at
each higher-order type, which jointly characterize precisely the
quantum definable elements.

18
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The state of the art

e At first-order types A < B, where A B are ground types, the
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quantum realizable functions are precisely the
superoperators, so the full abstraction problem is solved.

|Acin, Navascusés, Pironio 2008]| gave an (infinite) hierarchy
of necessary conditions for types of the form

(g o my ) @ (H —o my),

where n;, m;,n>,, my are of theform [ =... = 1. The
conditions use semidefinite programming. T hey are
conjectured to be jointly complete.

19
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The state of the art, continued

Pirsa: 09060016

[Selinger, Valiron 2004—2009] defined a lambda calculus for
higher-order quantum computation, and an operational
semantics. We also gave categorical axioms for what it
means to be a denotational model of this calculus.

[Malherbe, Selinger 2009] recently found an example of
such a model, using presheaves. However, it is probably not

fully complete at higher-order types.

[VValiron 2008] defined a notion of Kripke normed spaces,
similar to Kripke logical relations in lambda calculus. It is
fully complete at higher types, but only works for
probabilistic computation at the moment.
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The End
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