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COMPLEMENTARITY AS A RESOURCE
Bob Coecke & Ross Duncan
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Ref: Interacting guantum observables, secs 6,7,9. on arXiv soon!
Cats tutorial: Caregories for the practicing physicist. arXiv:-09053010.

Survey: Juantum picturalism. Contempeorary Physics. Ask me for a copy.
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— classicizing quantumness —

Somewhere down there is a world, the

‘quantum universe .

We would like to probe that world, by means of
‘classical interfaces’.

We refer to “identifiable parts’ of it as systems,

and to their “identifiable changes’ as processes.

To joint parts and processes we referby — & —,

and to consecutive processes by — o —.




— classicizing quantumness —

Somewhere down there is a world, the

‘quantugn universe .
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— compositional theories —

Def. Theory of systems, ;r?:hu& thereon, composi-
fion thereof, with compoundness as the key primitive.

Algebra. Symmetric monoidal categories + structure.

Models. E._g. Hilbert spaces, linear maps, tensor prod.

Graphical presentation. An eguational statement is
provable for SMCs if and only if it is provable in the
corresponding graphical calculus. [Joyal & Street "'91]




— data of a compositional theory —

Systems:

Processes:

i
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Compound systems:

Temporal composition:
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— dagger symmetric monoidal category —

f-A B fT-B—>A
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Is there a notion of:

¢ (lassicality (= conceptual)

e Observable (= opertional)

e Basis (= technical)

Which applies to all of the above categories?

Only FHilb and FRel have “direct sum bases’:
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OBSERVABLES

Coecke, Paviovic, icary, ... Paguette Perdr
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observable = copying + deleting ability
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A (non-deg) observabile is:
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J

. 0 is Frobenius.
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Thm. (CPV) In FHilb our (non-deg) observables are
exactly orthonormal bases of supporting Hilbert space.

The precise correspondence is

so an ONB is encoded by linear map that copies (= ¢
and that uniformly deletes (= ) its basis vectors.

Encoding basis as linear map:
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Examples:

e FHilb: indeed.

e Stab: indeed.

e WP(FHilb): indeed.
e CP(FHilb): indeed.
e Spek: indeed.

s

e FFRel: lots more observables now.
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COMPLEMENTARY OBSERVABLES




Def. Two observables are complementary (=unbiased)
if the classical states for one are unbiased for the other.




BOB

= quantum teleportation
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Proof. Hopf law — [class = unbiased]
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Proof. Hopf law —> [class = unbiased]
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Proof. [class = unbiased] —> Hopf law

Observable with class states B has vector basis iff
VzeEB:foz=go0oz = f=g.

Observable with class states B has srate basis iff

VzeBU{€'}: foz=goz = f=g.

-

Z




Proof. [class = unbiased] —> Hopf law

Observable with class states 5 has vector basis iff
VzeEB:foz=goz = f=g.

Observable with class states B has state basis iff

T:EBH{E_}:szzzg:: — S i
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Proof. [class = unbiased] —> Hopf law

Observable with class states B has vector basis iff
VzEDB:foz=g0z = f=g.

Observable with class states BB has srate basis iff
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Z-and X-spin in FHilb:
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For qubits in FHilb with
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These are relative phases for ~, hence in X-Y-




For qubits in FHilbwithred = {|+). | —) } = X
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These are relative phases for X, hence in Z-Y:




Thm. Every linear map in FHilb, can be expressed in
the language of a pair of complementary observables
and the corresponding phases, that is, it can be written
down using only red and green decorated spiders.

""-‘
A4(%) e A2 (8) e A4(a) = %
~
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‘Z-and X-spin’ in FRel:

e Copying-Deleting canonically (from biproducts):




‘Z-and X-spin’” in FRel:

e Copying-Deleting canonically (from biproducts):
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, X-and Y-spin’ in Spek:
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CALCULATIONS




— one CX gate —
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— two CX gates —
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— teleportation with classical communication —

Classical = one wire

Quantum = two wires
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— teleportation with classical communication —

(1) = Alice s Bell basis measurement
(2) =Bob’s Pauli corrections
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— teleportation with classical communication —
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— teleportation with classical communication —

(1) = Alice’s Bell basis measurement
2

y =Bob’s Pauli corrections
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— teleportation with classical communication —

Postselecting Bell-basis measurements:

2 9
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— teleportation with classical communication —

Selecting the Pauli corrections we obtain:
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— teleportation with classical communication —
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