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What we did:

We reformulated (a large part of) quantum mechanics:
® high level structural approach based on monoidal categories

® axiomatics expressive enough to cover universal quantum
computation

- and powerful enough to simulate algorithms and prove
equivalence between quantum state and programs

® simple to understand and manipulate graphical calculus

- which is being implemented in semi-automatic GUI based
rewriting tool
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Ingredients of the Theory

To construct phase groups we need:
® Tensor products:
- Symmetric monoidal categories
® Unitarity:
- j-symmetric monoidal categories
® Observables:

- Special {-Frobenius algebras

This is a very general setting including
much more than just quantum mechanics.
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Why Bother?

What can phase groups say about quantum theory?

What can phase groups say about other theories?

® Qubits, qutrits, etc
® Finite relations
® Toy models

® Convex operational
theories

® (Continuous variable QM
e Stab and Spek

iiiii
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DISCLAIMER

There are going to be a LOT of definitions in this talk.

sorry.
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Quantum Observables

Your goose is That may be. What 1 OBSERVE your

R _
cooked. would you say is my cxact momentum.

curren! momentum? but | dont

CONFOUND YOU.|
HEISENBERG!

What is “classical” anyway?
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Complementary Observables
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Complementary Observables
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X and £ Spins

We can measure the spin of qubit |v)) =« |0) + 5 |1)
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X and £ Spins

We can measure the spin of qubit (/) = « |0) + F|1)

(10) + |1))/V2
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A
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No-Cloning and No-Deleting

Theorem: There are no unitary operations D such that
D: |¥Y) — |¥) ® )

D:|o) — |0) ® |0)

!

unless |v’) and |©) are orthogonal [Wooters & Zurek |1982]

Theorem: There are no unitary operations E such that
E :|¢¥) — |0)
E :|®) — |0)

unless |¥’) and |®) are orthogonal [Pati & Braunstein 2000]
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No-Cloning and No-Deleting,
abstractly

Theorem: if a {-compact category has natural transformations

-
- . S

—_ . —_ L] _—
- 7 W

€E-—=>]

then the category collapses [Abramsky 2007]

(Translation: in our abstract setting there are no universal cloning
or deleting operations, just like in quantum mechanics)
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“Classical” Quantum States

When can a quantum state be treated as if classical?

® no-go theorems allow copying and deleting of orthogonal
states;

In other words:

® A guantum state may be copied and deleted if it is an
eigenstate of some known observable.

We'll use this property to formalise observables in terms of copying
and deleting operations.
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Classical Properties

In general, quantum observables are incompatible - not defined at
the same time : position and momentum; X and Z spin; etc.

Traditional quantum logic constructs a property lattice for each
set of compatible observables; the incompatible properties are
simply incomparable in the lattice.

However if we want to compute with quantum mechanics we
need to know how these observables relate to each other; i.e.
how they interfere.

Pirsa: 09060012 Page 43/212




Our Approach

We aim to extract the positive content from the incompatibility of
quantum observables:

® basis of monoidal categories : no-cloning, no-deleting;

® observable structures : axiomatised in terms of a copying
operation

® Phase groups : constructed from the observable structures

® incompatible observables : how do classical operations which
act on complementary states interact’
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Monoidal Categories

A | C
f |l h
B} }D
g | k
= B g

A theory of interacting processes
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Categories

A category consists of objects A. B, (. etc, and arrows between
them:

f:A—-B ¢g:B—C h:C—D
Al B (_“I
f g ‘h

Bl " s Dl
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Categories
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Categories
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Categories

dgpof:A— B

Al
f
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Categories
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Monoidal Categories

A strict monoidal category is a category equipped with a tensor
product on both objects and arrows:

fRhA:ARRC —-=B®D
A[

The tensor is associative:

If 5 Q) X = f & (q 5 h)
Ay By €

-
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Monoidal Categories

The tensor product is bifunctorial, meaning that it preserves

composition:
(go f)R(koh)=(gRk)o (f @ h)
Aj |('
e

oy

I_i_I_LD

k
% SE

r'\‘

and identities:

i{l_.l-l-_;_g = idy @ idpg A
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Monoidal Categories

In particular we have the following:

(dp @Kk)o(fRidp) =(fRide)o(daARE)=fREk
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Monoidal Categories

In particular we have the following:

(dp ®Kk)o(fRidp) =(fRude)o(daARE)=fREk
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|
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Monoidal Categories

Of course, it’'s quite possible to have arrows between tensors of
objects which are not tensors themselves, e.g.

1:AB—-CQDQE

could be drawn like:
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Monoidal Categories

Monoidal categories have a special unit object called / which is a
left and right identity for the tensor:

IRA=A=AQRI1
iy ® F=F=F @id;
No lines are drawn for / in the graphical notation:

o' : Noww:1I—1

+ 5 )
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Monoidal Categories

The arrows ¢ : | — [ are called scalars and they enjoy some
special properties:

C1 X Co = C1 © C

Cy X Co = Co X Ci

Any arrow [ : A — B can be multiplied by ¢ using the tensor:

&[]

\7:

It doesn’'t matter where ¢ is drawn.
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Monoidal Categories

The arrows ¢ : [ — | are called scalars and they enjoy some
special properties:
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C1 ) Co — Co X Cq

Any arrow [ : A — B can be multiplied by ¢ using the tensor:

A
[/
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Monoidal Categories

The arrows ¢ : | — [ are called scalars and they enjoy some
special properties:

C; & Co = C1 ©C

(] X Co — Co X Cy
Any arrow [ : A — B can be multiplied by ¢ using the tensor:
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Symmetric Monoidal Categories

cap:-A®3B—-BX A

A B

Pirsa: 09060012



Symmetric Monoidal Categories
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Symmetric Monoidal Categories
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Symmetric Monoidal Categories

cAB:AQ@B—-BQA
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Symmetric Monoidal Categories

caAp:-ARX¥B—-BXKA
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T-Monoidal Categories

A monoidal category is called {-monoidal if it is equipped with an
involutive functor, (-)' which reverses the arrows while leaving
the objects unchanged, which preserves the tensor structure.

f:A—B ff-B— A
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T-Monoidal Categories

An arrow [ : A — B is called unitary when:

B
%

f
VB

LMk
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T-Monoidal Categories

An arrow f : A — B is called unitary when:

A B
E

f
A ¥B
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T-Monoidal Categories

An arrow [ : A — B is called unitary when:

A B

A B
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The Category FDHilb

FDHilb is the category of finite dimensional complex Hilbert
spaces. It is T-monoidal with the following structure.

® Objects: finite dimensional Hilbert spaces, A. B. Cetc

® Arrows:all linear maps
® Tensor:usual (Kronecker) tensor product; | = C
e [T is the usual adjoint (conjugate transpose)

A linear map ¢ : ] — A picks out exactly one vector. Itis a ket
and v'' : A — [is the corresponding bra.

I"I

Hence v'' o ¢ : I — I is the inner product (v’ | 9).
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Example: Preparing a Bell state
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Example: Preparing a Bell state

0):1—Q 0)
_ H:Q—Q
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Example: Preparing a Bell state

0): I —@Q 0):1 —Q
H | H:Q—Q
AX

AX:QRQ—-0Q2Q

1 0 0 O

0O 1 0 0 EEEE Y- ) B --F)
0 0 0 1 v2\ 0 1 "\ 1 -1 "3 Sl W
0 01 0
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The Category FRel

FDHilb is the category of finite relations. It is T-monoidal with
the following structure.

® Objects: finite sets, X. Y. Z. etc
® Arrows:Relations R € X < Y
® Tensor:Cartesian product; X @ YV := X x Y, [ = {x}
e f1is relational converse: (r.y) € f < (y.x) € f!
A relation R C {*} x X is simply a subset of X ;its converse is
also a subset.

Hence STo R: I — [isnon-empty iff RN S £ ).
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Compact Structure of FDHilb

In FDHIilb the compact structure is given by the maps:

£y L

whenever {a; }; is a basis forA and{a;}; is the corresponding
basis for the dual space A"
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In FDHIilb the compact structure is given by the maps:
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whenever {a; }, is a basis for4d and{a;}, is the corresponding
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Compact Structure of FDHilb

In FDHIilb the compact structure is given by the maps:

r_f:l—-E a; a; e:-a; Ma; — 1

whenever {a;}, is a basis forAd and{a;}, is the corresponding
basis for the dual space A"

In the case of C?the map d picks out the Bell state

100) +11)

/2

which is the simplest example of quantum entanglement.
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FDHilb is the category of finite relations. It is T-monoidal with
the following structure.

® Objects: finite sets, X. Y. Z. etc

® Arrows:Relations R € X x Y
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Compact Structure of FDHilb

In FDHilb the compact structure is given by the maps:

£\

whenever {a; }; is a basis forA and{a;}; is the corresponding
basis for the dual space A"
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Compact Structure of FDHilb
In FDHIilb the compact structure is given by the maps:

rf:l—~§ a; @ a; e:-a; Va; — 1

1

whenever {a; }; is a basis forA and{a;}; is the corresponding
basis for the dual space A"

In the case of C?the map d picks out the Bell state

100) +|11)
/2

which is the simplest example of quantum entanglement.
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Example: Quantum Teleportation
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Graphical Calculus Theorem

Thm: one diagram can be deformed to another if and only if their

denotations are equal by the structural equations of the category.
C
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Observable Structures

Copying, deleting, and all that
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Observable Structures
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Observable Structures

A e W -9

Monoid Laws

AR
v v
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Observable Structures

;i:/‘\ ‘= @ fr:\( =@

Pirsa: 09060012



Observable Structures

Pirsa: 09060012



Observable Structures

Given any finite dimensional Hilbert space we can define an
observable structure by

d0:A— AR A:a; — a; Da;
E:.—-l—-[::Zu”—-l
t

Example: 5 0) — |00)

- )= |11)
define a observable structure over qubits; the standard basis is
copied and erased. Note however that:

e:|0)+1|1)—1

00)+|11)

v 2

ol+)) =

showing that not every state can be cloned.
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Observable Structures

Given any finite dimensional Hilbert space we can define an
observable structure by

tA—- AR A:za; — a; a;
- A—F- Zu — 1

Example: 5 - 10) — |00)

"~ 1) — |11)
define a observable structure over qubits; the standard basis is
copied and erased. Note however that:

P

showing that not every state can be cloned.

e:|0)+|1)—1
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Observable Structures

Given any finite dimensional Hilbert space we can define an
observable structure by

A—-ARA:a; — a; D a;

-A—1I- Zu — 1

Theorem: in FDHilb, observable structures are in bijective
correspondence to bases. [Coecke, Pavlovic,Vicary]

: 09060012
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Observable Structures

Given any finite dimensional Hilbert space we can define an
observable structure by

A—-ARA:a; —a; a;

- A F- Zu — 1

Theorem: in FDHilb, observable structures are in bijective
correspondence to bases. [Coecke, Pavlovic,Vicary]

Each (well behaved) observable defines a basis, hence each
observable defines an observable structure!
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Classical Structure begets
Compact Structure
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Classical Structure begets
Compact Structure

Unit Law
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Classical Structure begets
Compact Structure
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Classical Structure begets
Compact Structure

Pt b

Each classical structure induces a self-dual compact structure.

Pirsa; 09060012 Seif duality is addressed in Coecke. Paquerte. & Perdrix 2008



Spider Theorem

Theorem: any maps constructed from 0 and ¢, and their
adjoints, whose graph is connected, is determined uniquely by the
number of inputs and outputs.
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Phase Maps

L

Spinning around an observable
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Using the monoid operation

Let v.©: I — A be points of A; we can combine them using
the monoid operation 4" : A @ A — A

e o =46 o(® o)
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the monoid operation 4" : A @ A — A
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Using the monoid operation

Moreover, each point ¢’ : [ — A can be lifted to an
endomorphism A(¢): A — A

AlW) =6"o (v ®idy) ¢ g Q,}

This yields a homomorphism of monoids so we have:
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Example: qubits
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Generalised Spider Theorem

eorem: any maps constructed from 0, &, some pointsv; : [ — A
and their adjoints, whose graph is connected, is determined by
the number of inputs and outputs and the product (), ;.
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eorem: any maps constructed from 0, &£, some pointsv); : [ — A
and their adjoints, whose graph is connected, is determined by
the number of inputs and outputs and the product (), v;.
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Generalised Spider Theorem

eorem: any maps constructed from 0, ¢, some pointsv); : [ — A

and their adjoints, whose graph is connected, is determined by
the number of inputs and outputs and the product (). ;.
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Unbiased Points

Q: When is @,} unitary?

A: In Hilbert spaces, A(v’) is unitary iff |¢’) is unbiased w.r.t. the
basis copied by 0.
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Unbiased Points

Q: When is Q,'} unitary?

A: In Hilbert spaces, A(v) is unitary iff |¢) is unbiased w.r.t. the
basis copied by 0.
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Q: When is Q’} unitary?

A: In Hilbert spaces, A(v) is unitary iff |¢) is unbiased w.r.t. the
basis copied by 0.
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Unbiased Points

Q: When is %} unitary?

A: In Hilbert spaces, A(v) is unitary iff |¢) is unbiased w.r.t. the
basis copied by 0.

Prop:

|. the unbiased points for (9. €) form an abelian group w.r.t. to ©;
2. the arrows generated by the unbiased points form an abelian
group w.r.t. compaosition.
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Example: qubits
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Example: qubits
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Unbiased Points

Q: When is %} unitary?

A: In Hilbert spaces, A(v’) is unitary iff |¢’) is unbiased w.r.t. the
basis copied by 0.
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Generalised Spider Theorem

eorem: any maps constructed from 0, &, some pointsv; : [ — A
and their adjoints, whose graph is connected, is determined by
the number of inputs and outputs and the product (). v;.
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Example: qubits

§F = = = ) =
"Z—(0001 o
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Using the monoid operation

Moreover, each point v’ : I — A can be lifted to an
endomorphism A(¢): A — A

A(Y) =d6"o (v ®id,) ¢ — m’}

This yields a homomorphism of monoids so we have:
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Generalised Spider Theorem

eorem: any maps constructed from 0, &, some pointsv); : [ — A
and their adjoints, whose graph is connected, is determined by
the number of inputs and outputs and the product (), ;.
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Generalised Spider Theorem

eorem: any maps constructed from 0, ¢, some pointsv; : [ — A
and their adjoints, whose graph is connected, is determined by
the number of inputs and outputs and the product (). v;.
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Unbiased Points

Q: When is %J unitary?

A: In Hilbert spaces, A(v’) is unitary iff |¢’) is unbiased w.r.t. the
basis copied by 0.
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Unbiased Points

Q: When is Q’) unitary?

A: In Hilbert spaces, A (v’) is unitary iff |¢’) is unbiased w.r.t. the
basis copied by 0.
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Example: qubits
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Example: qubits
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Example: qubits

Cx l
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Example: qubits

.

il o
Unbiased points } ,
) o
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Example: qutrits

0) — |00) Unbiased points
AZ » 15 = lJ— 178 i3

2 s |22 0) + e |1) + e |2)
S 0
0 eta 0
0 0 el.j
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Example: FRel
D' :(z,z) ~z,Vrx € X
l)T O (1d® w) is unitary iff w —— 4

Hence the phase group is trivial.
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Complementary Observables

8-

A very general theory of interference
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Two kinds of points

i -6 -
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Two kinds of points

S ST

Classical Points

?

Those points which can
be copied by 4
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Two kinds of points

3 WEEET IS

Classical Points

2-=99

Those points which can
be copied by 4
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Two kinds of points

b oW -9

Classical Points Unbiased Points
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Those points which can
be copied by 4
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Two kinds of points

b b W -9

Classical Points Unbiased Points

2 =99

Those points which can
be copied by 4
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Complementary Classical
Structures
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Structures
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Structures
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Complementary Classical
Structures
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Complementary Classical
Structures

Classical points
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Complementary Classical
Structures

0

e

/ HJ} Classmal points

Unbiased points
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Complementary Classical
Structures
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Complementary Classical
Structures
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Example: qutrits

00)
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L] _i-
[ S

wile) )
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Classical points are eigenvectors

Pirsa: 09060012



Classical points are eigenvectors
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Classical points are eigenvectors
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Closedness Property

52——A ez = ‘ 5_\'—/‘\ Ex*‘

Defn: complentary classical structures are called
closed when...

Pirsa: 09060012



Closedness Property

5Z=A ez = 6 :sx:A Exz‘
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Closedness Property

63=A = 6 6}{:‘\ ex=‘
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Closedness Property
'-'52“ €z = ‘ J_\:A Ex*‘

In fdHilb it is always possible to construct a pair
of mutually unbiased bases with this property...

... but in big enough dimension, it is possible to
construct MUBs which are not closed.
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Classical Points form a Subgroup

By the defn of complementarity, we have that:

Cx CUz

Cz C Ux
PROP: If the observable structure is closed, and there are finitely
many classical points, then they form a subgroup of the unbiased

points, i.e.
(Cz,0x) < (Ux,®x)
(Cx,0z) < (Uz,0z)

In particular, each A-*(z,) is a permutation on C'z.
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The Following are Equivalent:

63=A ez = ‘ asz fxzb

1. The classical
structures are
closed
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The Following are Equivalent:

53=A — ‘ 6X=A Ex=‘

2. The classical maps
are comonoid
homomorphisms
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The Following are Equivalent:

62=A ez = 6 5X=A Exzb

2. The classical maps
are comonoid
homomorphisms
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The Following are Equivalent:

62=A ez = ‘ 5sz exz‘

3. The classical maps
satisfy canonical
commutation relations
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The Following are Equivalent:

62=A ez = ‘ fsx:A ex=6

4. The classical
structures form a

bialgebra
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Automorphism Action

Theorem: The classical maps are group automorphisms of the
unbiased points:

irsa: 09060012 Page 192/212



Automorphism Action

Theorem: The classical maps are group automorphisms of the
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Automorphism Action
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Automorphism Action

Theorem: The classical maps are group automorphisms of the
unbiased points:
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Automorphism Action

Theorem: The classical maps are group automorphisms of the
unbiased points:

ZAR
3-%-3r %73
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Automorphism Action

Theorem: The classical maps are group automorphisms of the
unbiased points:

Classical points are symmetries of the
phase group.
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Example: qutrits

0 0

0) — |00)

o O =

Az: 1) — |11 " 0
+)". . a -}.)". .
7o 22 1 3
J ! O e
i3 = * 1 1+@ “ l 4+ =
A X — (Wi l + < l + & w
== =3 1 +& l +we™ + 1
/ — l-i.:* .
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Example: qutrits

— |00, 1 O 0

<o 1 _I_t O e LY 0

e Nn__Nn__ B
Phase maps are classical when:

aE{O,g,Qg} B =21 —

[~
N
e - O

i i M i L i el Lk &
"i N . If: I i *..- L *'r' : L g ey A I i :'.-l L *'.
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qutrits

Example

0
0

0
0



Example: qutrits

-0 1 eto 1
(] 0 l . Eiﬂ — f;-'i'j ~ ﬁii.i—n )
1 0 0 etP 1 o—if
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Example: qutrits
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Conclusions

We formalised complementary quantum observables in the
language of monoidal categories:

® each observable defines two groups: its classical points and
its unbiased points

® [nterference between pairs of complementary observables is
characterised via a group of automorphisms
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Ongoing work |

Current research directions:

® [nvestigate connections with multipartite entanglement (with
Bill Edwards)

® Algorithmic properties of MBQC (with Simon Perdrix)

® Study toy models of QM based on the automorphism
approach.

® Use phase groups to construct MUBs
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‘ Ongoing work 2 m

Collaborating with Lucas Dixon (Edinburgh) and Aleks Kissinger
(Oxford) to automate this calculus using a graphical rewriting
system / interactive theorem prover.

http://dream.inf.ed.ac.uk/projects/
guantomatic/

- Rewriting properties e.g. normal forms?

- Pattern languages: ellipses and indexed containers?’
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