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Abstract: The transformation of a narrow beam into a hollow cone when incident along the optic axis of a biaxia crystal, predicted by Hamilton in
1832, created a sensation when observed by Lloyd soon afterwards. It was the first application of his concept of phase space, and the prototype of
the conical intersections and fermionic sign changes that now pervade physics and chemistry. But the fine structure of the bright cone contains many
subtle features, slowly revealed by experiment, whose definitive explanation, involving new mathematical asymptotics, has been achieved only

recently, along with definitive experimental test of the theory. Radically different phenomena arise when chirality and absorption are incorporated in
addition to biaxiality.
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yolarization optics

basic crystal optics (Huygens, Young, Fresnel)

In any direction in a transparent material, two light waves can
travel, polarized at right angles, and with different refractive
iIndices (1/ phase velocities)
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yolarization optics

basic crystal optics (Huygens, Young, Fresnel)

In any direction in a transparent material, two light waves can
travel, polarized at right angles, and with different refractive
iIndices (1/ phase velocities)

direction direction
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the wave surface: dependence of refractive indices on direction
(polar plot)
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the wave surface: dependence of refractive indices on direction
(polar plot)

wave direction

distance of each sheet (+ or -) from the origin
equal to refractive index
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for isotropic materials (glass, water, air...) there is no
direction-dependence, and the wave surfaces are
identical spheres
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for simple crystals (calcite (Iceland spar), cellophane...), where
one direction is distinguished and the other two are the same,
one surface is a sphere and the other is an ellipsoid

ordinary wave extraordinary wave
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the surfaces touch at two points (directions), on the optic axis
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the surfaces touch at two points (directions), on the optic axis
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the surfaces touch at two points (directions), on the optic axis
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Hamilton's discovery concermed the most general crystal, where
all three directions are different (aragonite...)
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Hamilton's discovery concerned the most general crystal, where
all three directions are different (aragonite...)

limpled and bumpy wave surfaces
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ntersecting at four points (directions) on two optic axes
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ntersecting at four points (directions) on two optic axes

two axes:
biaxial crystal
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each intersection is a double cone - a diabolo
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each intersection is a double cone - a diabolo
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each intersection is a double cone - a diabolo

axis (aslant)
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In a crystal, wave direction (perpendicular to the wavefronts) is
not the same as ray direction (of energy flow)
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In a crystal, wave direction (perpendicular to the wavefronts) is
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wave direction
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In a crystal, wave direction (perpendicular to the wavefronts) is
not the same as ray direction (of energy flow)

rays are at right angles
to the wave surface

wave direction

ray direction

4
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in a crystal, wave direction (perpendicular to the wavefronts) is
not the same as ray direction (of energy flow)

rays are at right angles
to the wave surface

wave direction

ave surface
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in a crystal, wave direction (perpendicular to the wavefronts) is
not the same as ray direction (of energy flow)
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ave surface
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wo surfaces — two rays, except near the diabolo, where the
vave cone generates a complementary cone of infinitely many
ays
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wo surfaces — two rays, except near the diabolo, where the
vave cone generates a complementary cone of infinitely many
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wo surfaces — two rays, except near the diabolo, where the
vave cone generates a complementary cone of infinitely many
ays

2

wave cone

\

Pirsa: 09060000 Page 32/199



wo surfaces — two rays, except near the diabolo, where the
vave cone generates a complementary cone of infinitely many
ays

ray cone

/

wave cone

\
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wo surfaces — two rays, except near the diabolo, where the
vave cone generates a complementary cone of infinitely many

ays . .
optic axis

ray cone

V

wave cone

\
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prediction of internal conical refraction

crystal slab(aragonite), cut at right angles to optic axis
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prediction of internal conical refraction

crystal slab(aragonite), cut at right angles to optic axis

iIncident beam

hollow cylinder
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Reverend Humphrey Lloyd (1832), on
Hamilton's predictions:
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Reverend Humphrey Lloyd (1832), on
Hamilton's predictions:

“in the highest degree novel and
remarkable”
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Reverend Humphrey Lloyd (1832), on
Hamilton's predictions:

“in the highest degree novel and
remarkable”

“...singular and unexpected consequences of the
undulatory theory, not only unsupported by any
phaenomena hitherto noticed, but even opposed
to all the analogies derived from experience.”
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Reverend Humphrey Lloyd (1832), on
Hamilton's predictions:

“in the highest degree novel and
remarkable”

“...singular and unexpected consequences of the
undulatory theory, not only unsupported by any
phaenomena hitherto noticed, but even opposed
to all the analogies derived from experience.”

Airy: “perhaps the most remarkable prediction
that has ever been made”

Herschel: “theory actually remanding back
experiment to read her lesson anew; informing her
of facts so strange, as to appear to her impossible,
and showing her all the singularities she would
observe in critical cases she never dreamed of
trying”
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double refraction

conical refractivit







enter J C Poggendorff (1796-1877)
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explanation 65 (!) years later, by Waldemar Voigt in 1905




from wave physics, a narrow parallel beam is impossible: the

narrower the beam, the greater the angular divergence
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from wave physics, a narrow parallel beam is impossible: the
narrower the beam, the greater the angular divergence

squeeze — spread
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from wave physics, a narrow parallel beam is impossible: the
narrower the beam, the greater the angular divergence

squeeze — spread

(cloddeisenberg uncertainty principle)




S0, a narrow beam cannot simply hit the diabolical point but
must explore a small neighbourhood of directions around it
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S0, a narrow beam cannot simply hit the diabolical point but
must explore a small neighbourhood of directions around it

-
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S0, a narrow beam cannot simply hit the diabolical point but
must explore a small neighbourhood of directions around it

D
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S0, a narrow beam cannot simply hit the diabolical point but
must explore a small neighbourhood of directions around it

contribution from

beam directions v |
away from the |

diabolical point
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S0, a narrow beam cannot simply hit the diabolical point but
must explore a small neighbourhood of directions around it

contribution from

beam directions '
away from the |

diabolical point

;ontributions from beam directions near the diabolical point are
smalies, and vanish at the point itself - hence Poggendorff's.dask

e At the Ararna Airactian



half-turn of polarization direction around the rings
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half-turmn of polarization direction around the rings
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half-turmn of polarization direction around the rings
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half-turmn of polarization direction around the rings
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half-turn of polarization direction around the rings

photon angular momentum transformed from pure spin
(incident) to pure orbital (emergent)



half-turn of polarization direction around the rings

photon angular momentum transformed from pure spin
(incident) to pure orbital (emergent)
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enter C V Raman (1888-1975) e 1941




enter C V Raman (1888-1975)

far from the
crystal, rings
fade and are

replaced by a
central spot
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explanation involves turnover of cones slightly away from
the diabolical point
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explanation involves turnover of cones slightly away from

the diabolical point
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explanation involves turnover of cones slightly away from

the diabolical point
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explanation involves turnover of cones slightly away from

the diabolical point
axial spike of
light rays,
focused
forwards
(line caustic)
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explanation involves turnover of cones slightly away from

the diabolical point
axial spike of
light rays,
focused
forwards
(line caustic)

rsgegaewhat as a plum can be laid down on a table so as to touch and rest emnne
the tahle in 3 whole circle of contact”




Belskii and Khapalyuk (1978): important realisation that conical
refraction is a wave problem (hence ‘conical diffraction’), whose
details depend on the profile of the incident light (e.g. laser or
illuminating pinhole), and definitive formalism
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Belskii and Khapalyuk (1978): important realisation that conical :
refraction is a wave problem (hence ‘conical diffraction’), whose
details depend on the profile of the incident light (e.g. laser or |
illuminating pinhole), and definitive formalism '
|

3loembergen and Schell (1978), experiments and elaborate theory
|
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refraction is a wave problem (hence ‘conical diffraction’), whose
details depend on the profile of the incident light (e.g.laseror
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3loembergen and Schell (1978), experiments and elaborate theory?

Wamnick and Arnold (1997) noticed in numerical computations
that at intermediate distances there are faint secondary rings
within the inner Poggendorff ring |

Pirsa: 09060000 Page 80/199



Belskii and Khapalyuk (1978): important realisation that conical
refraction is a wave problem (hence ‘conical diffraction’), whose
details depend on the profile of the incident light (e.g. laser or
illuminating pinhole), and definitive formalism

3loembergen and Schell (1978), experiments and elaborate theory

Warmnick and Arnold (1997) noticed in numerical computations
that at intermediate distances there are faint secondary rings
within the inner Poggendorff ring
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theory: the important simplifying ingredient: paraxiality
- all angles small
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theory: the important simplifying ingredient: paraxiality
- all angles small

dimensionless radial and longitudinal coordinates p and C

'stal. thickness / r=pw

incident
beam

waist /

width w

.|rl -
kow=C

“focal image’ plane of
incident beam waist
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incident
beam
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theory: the important simplifying ingredient: paraxiality
- all angles small

dimensionless radial and longitudinal coordinates p and £

cr}'stal. thickness [ - r=pw

radius p,w

incident
beam

waist /

width w

‘focal image’ plane of kow?C
incident beam waist
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theory: the important simplifying ingredient: paraxiality
- all angles small

dimensionless radial and longitudinal coordinates p and C

r=pw

stal. thickness /

incident radius pow
beam

waist /

width w

‘focal image’ plane of kow?C
incident beam waist

0, = (cylinder radius in units of w) is the single parameter giving

he structure of the paraxial field, replacing w, /, n,, n,, n,
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theory: the important simplifying ingredient: paraxiality
- all angles small

dimensionless radial and longitudinal coordinates p and C

r=pw

incident
beam

waist /

width w

“focal image’ plane of i
incident beam waist

0, = (cylinder radius in units of w) is the single parameter giving

the structure of the paraxial field, replacing w, /, n,, n,,

e
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write transverse electric D vector as superposition of coupled
plane waves
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write transverse electric D vector as superposition of coupled
plane waves

for incident beam, width w, transform a(x), e.g. Gaussian:
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write transverse electric D vector as superposition of coupled
plane waves

for incident beam, width w, transform a(x), e.g. Gaussian:

Dy(p) = exp(-%pz ) a(k)= eXP(—%KZ)

irsa: 09060000 Page 93/199




write transverse electric D vector as superposition of coupled
plane waves

for incident beam, width w, transform a(x), e.g. Gaussian:
Dy(p) = fe:xp(-%p2 ) a(k)= exp(—%xz)

By(p.pg-
Dout (P,C) - [BO (P,po ;)1 + l(p:’() C) p- S]dg

p=1{&,n}. S={03.0/} (Pauli matrices)
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write transverse electric D vector as superposition of coupled
plane waves

for incident beam, width w, transform a(x), e.g. Gaussian:
2 2
Dy(p)=exp(-1p?). a(x)=exp(-1x?)

Bl(p"p()’c)ps

]do w._/ncident
polarization

Dout (P,;) - [BO (P,PO ~;)1 +

p=1{%,n}. S={03.0,} (Pauli matrices)
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write transverse electric D vector as superposition of coupled
plane waves

for incident beam, width w, transform a(x), e.g. Gaussian:
Dy(p) = rexp(--%p2 ) a(k)= exp(—%xz)

Bi(p.pg.
1(0.00 C)p~s

Do (P.8) = [B() (p.po.EN+

p=1{&,n}. S={03.0,} (Pauli matrices)

]do w._/ncident
polarization

3elsky-Khapalyuk integrals:
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write transverse electric D vector as superposition of coupled
plane waves

for incident beam, width w, transform a(x), e.g. Gaussian:

Do(p) = exp(—%pz ) a(k)= eXP(—%KZ)

Bl(p’p()‘{;)ps

]do w./ncident
polarization

Dout (P,C) = [BO (P,Po *;)1 ¥

p=1{&,n}. S={03.0/} (Pauli matrices)

3elsky-Khapalyuk integrals:

By(p.po €)= Tdm(x)em{-é icx” }Cﬁs(ﬂo'f)fo (px)

s Bi(PP0.) j duca(x)exp{-Licx? bsin(pox) sy (ox). .,



rings transforming into spot away from the crystal
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Poggendorff dark ring
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Poggendorff
bnghtnngs e

d

Poggendorff dark ring
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nascent axial spot
Poggendorff g

bnghtnngs =

0 “

Poggendorﬁ’ dark ring
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nascent axial spot
Poggendorff g

bright rings [

\M

secondary
rngs

Poggendorff dark ring
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geometrical optics, from
stationary-phase approximation
to integrals, or directly from
Hamilton's principle
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geometrical optics, from e [U—""PGLW{_(P-PO): :
stationary-phase approximation e 2(l+?.:2) P 1+2°

to integrals, or directly from — (0+po)? '
Hamilton’s principle + expl* > } :

P 1+C°
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geometrical optics, from I
stationary-phase approximation
to integrals, or directly fro
Hamilton’s principle

|0-py is the
Poggendorff dark

ring (anticaustic)
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geometrical optics, from

stationary-phase approximation
to integrals, or directly fro
Hamilton’s principle

lp-po is the _
Poggendorff dark I _50
ring (anticaustic) Po
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exact diffraction compared with geometrical optics

Pirsa: 09060000

Page 108/199




exact diffraction compared with geometrical optics

» increasingl
P,=90

0O 20 40 60 O 20 40 60 0O 20 40 60

diffraction
geometrical
optics

>
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exact diffraction compared with geometrical optics

— e ——— A —ap—— ol L -

 p,=50

0O 20 40 60 O 20 40 60 O 20 40 60

diffraction
geometrical
optics

0 20 40 60 0O 20 40 60p

secondary nngs result from mterference behNeen a geometncal
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full ring asymptotics for p,>>1, including diffraction
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full ring asymptotics for p,>>1, including diffraction

Coli.ttp) = € (1.ug) = 1/‘;f(m--uﬂ.)
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full ring asymptotics for p,>>1, including diffraction

Col.ttp) = (1.tg) = 1,,’gf(m---uﬂ.)

f(s)= é;!dqﬁﬂp{-%qz Jeos(qs - L)

4412_31 |.s|3“f2 exp(--‘%sz IK i;_ (i—sz) +sgn(s)K ih (-‘{-52 )

= 29{_3(1%&52)_1%&,2))]
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full ring asymptotics for p,>>1, including diffraction

Co(iwtp) =y (.10 = ‘J%f("*"o)

)= oz [ a4 oode~ 1

= 4412_Jr|.5|3f2 exp(-%szlk'%(-‘i-sz) - sgn(s)Ki_(-‘__l‘-sz)
sazei-s 13(457) - 1y (£7)
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the sharpest rings, in the focal plane £=0, as a function of 5=p-p,

A
0.14
= £=0.55086
]c 2 0.1
o £=—0.76497
0.06

&=—1.76423

0.04
0.02
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>oggendorff rings in focal image depend on the nature of the
ncident beam
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’oggendorff rings in focal image depend on the nature of the
ncident beam

for illuminated pinhole
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’oggendorff rings in focal image depend on the nature of the
ncident beam

for illuminated pinhole

£(€)=0 (E=-1)=ﬂ-&(‘f)+ze(ﬁ)) (5<1)

2
V2 2 - 2
=7[ ) I-EK(I-s]](E"”




Yoggendorff rings in focal image depend on the nature of the

ncident beam

for illuminated pinhole

f(§)=0
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fringes surrounding central spot: weak interference between
two geometrical rays, in post-geometrical approximation
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fringes surrounding central spot: weak interference between
two geometrical rays, in post-geometrical approximation

2 2
= Py p pp PP
Ispot(PvQ;PO)" 3 N 0 jl}( 0) "'Jl( 0]
7, 3 £- N <

Pirsa: 09060000 Page 121/199




fringes surrounding central spot: weak interference between
two geometrical rays, in post-geometrical approximation
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fringes surrounding central spot: weak interference between
two geometrical rays, in post-geometrical approximation
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fringes surrounding central spot: weak interference between
two geometrical rays, in post-geometrical approximation
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experiment with KGd(WO,),
(monoclinic double tungstate) with
Mike Jeffrey and James Lunney
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experiment with KGd(WO,),
(monoclinic double tungstate) with
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s

incident
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width w &

‘focal image” plane of
incident beam waist

B Beorry, M V. Jeffrey, M R & Lunney, J G 2006 ‘Conical diffraction: observations



experiment with KGd(WO,),
(monoclinic double tungstate) with
Mike Jeffrey and James Lunney

«— crystal, thickness [ - r=pw

incident
beam

waist
width w

‘focal image’ plane of
incident beam waist

obtain p, by measuring ring radius A/ (magnified on distant
screen) and w (as expanded spot on distant screen)

B Berry. MV, Jeffrey, M R & Lunney, J G 2006 ‘Conical diffraction: observations




experiment with KGd(WO,),
(monoclinic double tungstate) with
Mike Jeffrey and James Lunney

w=7.1£0.6um, p,=59+10

«— crystal. thickness / - r=pw

: _-‘!:_13““'

incident
beam

ey

waist

width w

sulae s s

‘focal image’ plane of
incident beam waist

obtain p, by measuring ring radius A/ (magnified on distant
screen) and w (as expanded spot on distant screen)
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experiment with KGd(WO,),
(monoclinic double tungstate) with ~ W=7.1£0.6um, p,=59+10

Mike Jeffrey and James Lunney

=— crystal, thickness [/ - r=pw

: ."Ez-p““-

incident
beam

My

]
waist :
width w .

‘focal image’ plane of
incident beam waist

obtain p, by measuring ring radius A/ (magnified on distant
screen) and w (as expanded spot on distant screen)

C hard to estimate, because sensitively
dependent on z:
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experiment with KGd(WO,),
(monoclinic double tungstate) with
Mike Jeffrey and James Lunney

w=7.1£0.6um, p,=59+10

«— crystal. thickness / - r=pw

incident
beam

waist
width w

‘focal image’ plane of
incident beam waist

obtain p, by measuring ring radius A/ (magnified on distant
screen) and w (as expanded spot on distant screen)

C hard to estimate, because sensitively

dependenton z:  AZ = kgw”Az=1.998 x Az(mm)

. Berry. MV, Jeffrey. M R & Lunney, J G 2006 ‘Conical diffraction: observations
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175 year multinational story:

Hamilton (lreland 1832)

Lloyd (lreland 1833)
Poggendorff (Germany 1839)
Voigt (Germany 19095)

Raman (India 1941)
Belskii-Khapalyuk (Belarus 1978)
Bloembergen-Schell (USA 1978)
Uhimann (Chile 1982)
Warnick-Arnold (USA 1997)
Berry-Jeffrey (UK 2004 )

| unnev (lreland 2005)
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onoscopic figure

interference fringes
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onoscopic figure
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generalizations of Hamilton's conical refraction, radically
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I.e. handedness - crystal lattice different from its mirror image
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2. incorporating absorption: direction-dependent dissipation
In the crystal
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quantify absorption by a vector 8 (nonhermitian traceless part

of 2x2 complex symmetric matrix)

how to choose direction on incident beam?
(along either branchpoint? halfway between?)

so, let direction be arbitrary; x,

surprises: (1) for gaussian beams, effect of  and x, (4
numbers) captured by a single variable

u=|zé- x, |

(2) only effect is to complexify the radial variable in the
diffraction integrals

2 X 2
p=:»p=4J(§+m) +1
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quantify absorption by a vector 8 (nonhermitian traceless part
of 2x2 complex symmetric matrix)

how to choose direction on incident beam?
(along either branchpoint? halfway between?)

so, let direction be arbitrary; x,

surprises: (1) for gaussian beams, effect of § and x;, (4
numbers) captured by a single variable

u=|zé- x, |

(2) only effect is to complexify the radial variable in the
diffraction integrals

. Al —
p=‘=*P=1l(E+w) +1]
...but profound effetts!
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surprise (3): fine structure revealed by logarithmic intensity plots
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conclusions: Hamilton’s diabolical point

1. led to one of the first qualitatively new phenomena predicted
by mathematics: conical refraction

2. one of the ornginal phenomena in singular optics

3. gave compelling evidence that light is a transverse wave

4. was the first substantial application of phase space: position
and direction on equal footing

5. a phenomenon requiring interplay of ray and wave physics for
precise description of rings and spike

6. leads to unusual asymptotics
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. was the first conical intersection in physics (cf. chemistry)

8. a solvable model for quantum physics involving a conical
ntersection of energy levels

D. extensions of theory, to include chirality and absorption, also
onlinearity (Newell)

0. a continuing stimulus for experiments - beyond Poggendorff
and Raman

1. German company offered $10000 for best application of
onical refraction in 2005: http://vct-ag.com.st_awards.htm|

2. 1s 175-year antidote to short-term science




