Title: Matrix Inflation

Date: May 22, 2009 03:00 PM

URL: http://pirsa.org/09050096

Abstract: Abstract: In this talk a model of inflation is presented where the inflaton fields are non-commutative matrices. The spectrum of adiabatic and iso-curvature perturbations and their implications on CMB are studied. It is argued that our model of matrix inflation can naturally be embedded in string theory.

Pirsa: 09050096 Page 1/72

Matrix Inflation (M-flation)

Hassan Firouzjahi

IPM, Tehran

arXiv: 0903.1481

In collaborations with

A. Ashoorioon and S. Sheikh-Jabbari

Outline

- M-flation set up
- Various inflation models from M-flation
- Adiabatic and entropic modes
- Power spectra for adiabatic and entropic perturbations
- Motivations from string theory
- Preheating
- Conclusion

WMAP 2003-08

- All observations, specially WMAP 2003-2008, strongly support inflation.
- Different inflationary models predict different values for cosmological parameters like the scalar spectrum index n_s which can be measured in CMB.

- There is no compelling and theoretically well-motivated model of inflation. There have been many attempts to embed inflation within the context of string theory.
- If it works, this would provide a unique chance to test the relevance of string theory to the real world.

Slow Roll Inflation

In most models, inflation is derived by a scalar field, the inflaton.

This creates a negative pressure required for acceleration.

For a scalar field
$$\rho = \frac{1}{2}\,\dot{\phi}^2 + V(\phi) \qquad \qquad p = \frac{1}{2}\,\dot{\phi}^2 - V(\phi)$$

$$a(t) \sim e^{Ht}$$
 , $H^2 = \frac{8\pi G}{3}V$

 Simple models of chaotic inflation suffers from fine-tuning and issues with super-Planckian field values.

$$V = \frac{1}{2}m^2 \,\phi^2 \qquad \longrightarrow \qquad \phi_i \sim 15 \, M_P$$

$$V = \frac{\lambda}{4} \phi^4 \qquad \longrightarrow \qquad \lambda \sim 10^{-14}$$

$$\phi_i \sim 22 M_P$$

M-Flation

Suppose inflation is driven by non-commutative matrices:

$$S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \sum_i {\rm Tr} \left(\partial_\mu \Phi_i \partial^\mu \Phi_i \right) - V(\Phi_i, [\Phi_i, \Phi_j]) \right)$$

Example:

$$V = \operatorname{Tr}\left(-\frac{\lambda}{4}[\Phi_i, \Phi_j][\Phi_i, \Phi_j] + \frac{i\kappa}{3}\epsilon_{jkl}[\Phi_k, \Phi_l]\Phi_j + \frac{m^2}{2}\Phi_i^2\right)$$

where Φ_i are $N \times N$ matrices.

The equations of motion are

$$\begin{split} H^2 &= \frac{1}{3M_P^2} \left(-\frac{1}{2} \text{Tr} \left(\partial_\mu \Phi_i \partial^\mu \Phi_i \right) + V(\Phi_i, [\Phi_i, \Phi_j]) \right) \\ \ddot{\Phi}_l &+ 3H \dot{\Phi}_l + \lambda \left[\Phi_j, \left[\Phi_l, \Phi_j \right] \right] - i \, \kappa \, \epsilon_{ljk} [\Phi_j, \Phi_k] + m^2 \Phi_l = 0 \end{split}$$

$$\Phi_i = \hat{\phi}(t)J_i , \qquad i = 1, 2, 3.$$

where J_i are the N-dimensional irreducible representation of SU(2) algebra.

$$[J_i, J_j] = i \, \epsilon_{ijk} J_k , \qquad \text{Tr}(J_i J_j) = \frac{N}{12} (N^2 - 1) \, \delta_{ij} .$$

$$S = \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R + {\rm Tr} J^2 \left(-\frac{1}{2} \partial_\mu \hat{\phi} \partial^\mu \hat{\phi} - \frac{\lambda}{2} \hat{\phi}^4 + \frac{2\kappa}{3} \hat{\phi}^3 - \frac{m^2}{2} \hat{\phi}^2 \right) \right]$$

where
$$\text{Tr}J^2 = \text{Tr}(J_i^2) = N(N^2 - 1)/4$$
.

M-Flation

Suppose inflation is driven by non-commutative matrices:

$$S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \sum_i {\rm Tr} \left(\partial_\mu \Phi_i \partial^\mu \Phi_i \right) - V(\Phi_i, [\Phi_i, \Phi_j]) \right)$$

Example:

$$V = \operatorname{Tr}\left(-\frac{\lambda}{4}[\Phi_i, \Phi_j][\Phi_i, \Phi_j] + \frac{i\kappa}{3}\epsilon_{jkl}[\Phi_k, \Phi_l]\Phi_j + \frac{m^2}{2}\Phi_i^2\right)$$

where Φ_i are $N \times N$ matrices.

The equations of motion are

$$\begin{split} H^2 &= \frac{1}{3M_P^2} \left(-\frac{1}{2} \text{Tr} \left(\partial_\mu \Phi_i \partial^\mu \Phi_i \right) + V(\Phi_i, [\Phi_i, \Phi_j]) \right) \\ \ddot{\Phi}_l &+ 3H \dot{\Phi}_l + \lambda \left[\Phi_j, \left[\Phi_l, \Phi_j \right] \right] - i \, \kappa \, \epsilon_{ljk} [\Phi_j, \Phi_k] + m^2 \Phi_l = 0 \end{split}$$

$$\Phi_i = \hat{\phi}(t)J_i , \qquad i = 1, 2, 3.$$

where J_i are the N-dimensional irreducible representation of SU(2) algebra.

$$[J_i, J_j] = i \, \epsilon_{ijk} J_k , \qquad \text{Tr}(J_i J_j) = \frac{N}{12} (N^2 - 1) \, \delta_{ij} .$$

$$S = \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R + {\rm Tr} J^2 \left(-\frac{1}{2} \partial_\mu \hat{\phi} \partial^\mu \hat{\phi} - \frac{\lambda}{2} \hat{\phi}^4 + \frac{2\kappa}{3} \hat{\phi}^3 - \frac{m^2}{2} \hat{\phi}^2 \right) \right]$$

where
$$\text{Tr}J^2 = \text{Tr}(J_i^2) = N(N^2 - 1)/4$$
.

M-Flation

Suppose inflation is driven by non-commutative matrices:

$$S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \sum_i {\rm Tr} \left(\partial_\mu \Phi_i \partial^\mu \Phi_i \right) - V(\Phi_i, [\Phi_i, \Phi_j]) \right)$$

Example:

$$V = \operatorname{Tr}\left(-\frac{\lambda}{4}[\Phi_i, \Phi_j][\Phi_i, \Phi_j] + \frac{i\kappa}{3}\epsilon_{jkl}[\Phi_k, \Phi_l]\Phi_j + \frac{m^2}{2}\Phi_i^2\right)$$

where Φ_i are $N \times N$ matrices.

The equations of motion are

$$\begin{split} H^2 &= \frac{1}{3M_P^2} \left(-\frac{1}{2} \mathrm{Tr} \left(\partial_\mu \Phi_i \partial^\mu \Phi_i \right) + V(\Phi_i, [\Phi_i, \Phi_j]) \right) \\ \ddot{\Phi}_l &+ 3H \dot{\Phi}_l + \lambda \left[\Phi_j, \left[\Phi_l, \Phi_j \right] \right] - i \, \kappa \, \epsilon_{ljk} [\Phi_j, \Phi_k] + m^2 \Phi_l = 0 \end{split}$$

$$\Phi_i = \hat{\phi}(t)J_i , \qquad i = 1, 2, 3.$$

where J_i are the N-dimensional irreducible representation of SU(2) algebra.

$$[J_i, J_j] = i \, \epsilon_{ijk} J_k , \qquad \text{Tr}(J_i J_j) = \frac{N}{12} (N^2 - 1) \, \delta_{ij} .$$

$$S = \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R + {\rm Tr} J^2 \left(-\frac{1}{2} \partial_\mu \hat{\phi} \partial^\mu \hat{\phi} - \frac{\lambda}{2} \hat{\phi}^4 + \frac{2\kappa}{3} \hat{\phi}^3 - \frac{m^2}{2} \hat{\phi}^2 \right) \right]$$

where
$$\text{Tr}J^2 = \text{Tr}(J_i^2) = N(N^2 - 1)/4$$
.

M-Flation

Suppose inflation is driven by non-commutative matrices:

$$S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \sum_i {\rm Tr} \left(\partial_\mu \Phi_i \partial^\mu \Phi_i \right) - V(\Phi_i, [\Phi_i, \Phi_j]) \right)$$

Example:

$$V = \operatorname{Tr}\left(-\frac{\lambda}{4}[\Phi_i, \Phi_j][\Phi_i, \Phi_j] + \frac{i\kappa}{3}\epsilon_{jkl}[\Phi_k, \Phi_l]\Phi_j + \frac{m^2}{2}\Phi_i^2\right)$$

where Φ_i are $N \times N$ matrices.

The equations of motion are

$$\begin{split} H^2 &= \frac{1}{3M_P^2} \left(-\frac{1}{2} \text{Tr} \left(\partial_\mu \Phi_i \partial^\mu \Phi_i \right) + V(\Phi_i, [\Phi_i, \Phi_j]) \right) \\ \ddot{\Phi}_l &+ 3H\dot{\Phi}_l + \lambda \left[\Phi_j, \left[\Phi_l, \Phi_j \right] \right] - i \, \kappa \, \epsilon_{ljk} [\Phi_j, \Phi_k] + m^2 \Phi_l = 0 \end{split}$$

$$\Phi_i = \hat{\phi}(t)J_i , \qquad i = 1, 2, 3.$$

where J_i are the N-dimensional irreducible representation of SU(2) algebra.

$$[J_i, J_j] = i \, \epsilon_{ijk} J_k , \qquad \text{Tr}(J_i J_j) = \frac{N}{12} (N^2 - 1) \, \delta_{ij} .$$

$$S = \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R + {\rm Tr} J^2 \left(-\frac{1}{2} \partial_\mu \hat{\phi} \partial^\mu \hat{\phi} - \frac{\lambda}{2} \hat{\phi}^4 + \frac{2\kappa}{3} \hat{\phi}^3 - \frac{m^2}{2} \hat{\phi}^2 \right) \right]$$

where
$$\text{Tr}J^2 = \text{Tr}(J_i^2) = N(N^2 - 1)/4$$
.

M-Flation

Suppose inflation is driven by non-commutative matrices:

$$S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \sum_i \mathrm{Tr} \left(\partial_\mu \Phi_i \partial^\mu \Phi_i \right) - V(\Phi_i, [\Phi_i, \Phi_j]) \right)$$

Example:

$$V = \operatorname{Tr}\left(-\frac{\lambda}{4}[\Phi_i, \Phi_j][\Phi_i, \Phi_j] + \frac{i\kappa}{3}\epsilon_{jkl}[\Phi_k, \Phi_l]\Phi_j + \frac{m^2}{2}\Phi_i^2\right)$$

where Φ_i are $N \times N$ matrices.

The equations of motion are

$$\begin{split} H^2 &= \frac{1}{3M_P^2} \left(-\frac{1}{2} \text{Tr} \left(\partial_\mu \Phi_i \partial^\mu \Phi_i \right) + V(\Phi_i, [\Phi_i, \Phi_j]) \right) \\ \ddot{\Phi}_l &+ 3H\dot{\Phi}_l + \lambda \left[\Phi_j, \left[\Phi_l, \Phi_j \right] \right] - i \, \kappa \, \epsilon_{ljk} [\Phi_j, \Phi_k] + m^2 \Phi_l = 0 \end{split}$$

$$\Phi_i = \hat{\phi}(t)J_i , \qquad i = 1, 2, 3.$$

where J_i are the N-dimensional irreducible representation of SU(2) algebra.

$$[J_i, J_j] = i \, \epsilon_{ijk} J_k , \qquad \text{Tr}(J_i J_j) = \frac{N}{12} (N^2 - 1) \, \delta_{ij} .$$

$$S = \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R + {\rm Tr} J^2 \left(-\frac{1}{2} \partial_\mu \hat{\phi} \partial^\mu \hat{\phi} - \frac{\lambda}{2} \hat{\phi}^4 + \frac{2\kappa}{3} \hat{\phi}^3 - \frac{m^2}{2} \hat{\phi}^2 \right) \right]$$

where
$$\text{Tr}J^2 = \text{Tr}(J_i^2) = N(N^2 - 1)/4$$
.

M-Flation

Suppose inflation is driven by non-commutative matrices:

$$S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \sum_i {\rm Tr} \left(\partial_\mu \Phi_i \partial^\mu \Phi_i \right) - V(\Phi_i, [\Phi_i, \Phi_j]) \right)$$

Example:

$$V = \operatorname{Tr}\left(-\frac{\lambda}{4}[\Phi_i, \Phi_j][\Phi_i, \Phi_j] + \frac{i\kappa}{3}\epsilon_{jkl}[\Phi_k, \Phi_l]\Phi_j + \frac{m^2}{2}\Phi_i^2\right)$$

where Φ_i are $N \times N$ matrices.

The equations of motion are

$$\begin{split} H^2 &= \frac{1}{3M_P^2} \left(-\frac{1}{2} \text{Tr} \left(\partial_\mu \Phi_i \partial^\mu \Phi_i \right) + V(\Phi_i, [\Phi_i, \Phi_j]) \right) \\ \ddot{\Phi}_l &+ 3H\dot{\Phi}_l + \lambda \left[\Phi_j, \left[\Phi_l, \Phi_j \right] \right] - i \, \kappa \, \epsilon_{ljk} [\Phi_j, \Phi_k] + m^2 \Phi_l = 0 \end{split}$$

$$\Phi_i = \hat{\phi}(t)J_i , \qquad i = 1, 2, 3.$$

where J_i are the N-dimensional irreducible representation of SU(2) algebra.

$$[J_i, J_j] = i \, \epsilon_{ijk} J_k , \qquad \text{Tr}(J_i J_j) = \frac{N}{12} (N^2 - 1) \, \delta_{ij} .$$

$$S = \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R + {\rm Tr} J^2 \left(-\frac{1}{2} \partial_\mu \hat{\phi} \partial^\mu \hat{\phi} - \frac{\lambda}{2} \hat{\phi}^4 + \frac{2\kappa}{3} \hat{\phi}^3 - \frac{m^2}{2} \hat{\phi}^2 \right) \right]$$

where
$$\text{Tr}J^2 = \text{Tr}(J_i^2) = N(N^2 - 1)/4$$
.

Upon field re-definition

$$\hat{\phi} = (\text{Tr}J^2)^{-1/2} \phi = \left[\frac{N}{4}(N^2 - 1)\right]^{-1/2} \phi$$

The effective potential is

$$V_0(\phi) = \frac{\lambda_{eff}}{4} \phi^4 - \frac{2\kappa_{eff}}{3} \phi^3 + \frac{m^2}{2} \phi^2$$

Where

$$\lambda_{eff} = \frac{2\lambda}{{\rm Tr}J^2} = \frac{8\lambda}{N(N^2-1)} \ , \quad \kappa_{eff} = \frac{\kappa}{\sqrt{{\rm Tr}J^2}} = \frac{2\,\kappa}{\sqrt{N(N^2-1)}} \label{eq:lambda}$$

$$\Phi_i = \hat{\phi}(t)J_i , \qquad i = 1, 2, 3.$$

where J_i are the N-dimensional irreducible representation of SU(2) algebra.

$$[J_i, J_j] = i \, \epsilon_{ijk} J_k , \qquad \text{Tr}(J_i J_j) = \frac{N}{12} (N^2 - 1) \, \delta_{ij} .$$

$$S = \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R + {\rm Tr} J^2 \left(-\frac{1}{2} \partial_\mu \hat{\phi} \partial^\mu \hat{\phi} - \frac{\lambda}{2} \hat{\phi}^4 + \frac{2\kappa}{3} \hat{\phi}^3 - \frac{m^2}{2} \hat{\phi}^2 \right) \right]$$

where
$$\text{Tr}J^2 = \text{Tr}(J_i^2) = N(N^2 - 1)/4$$
.

M-Flation

Suppose inflation is driven by non-commutative matrices:

$$S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \sum_i {\rm Tr} \left(\partial_\mu \Phi_i \partial^\mu \Phi_i \right) - V(\Phi_i, [\Phi_i, \Phi_j]) \right)$$

Example:

$$V = \operatorname{Tr}\left(-\frac{\lambda}{4}[\Phi_i, \Phi_j][\Phi_i, \Phi_j] + \frac{i\kappa}{3}\epsilon_{jkl}[\Phi_k, \Phi_l]\Phi_j + \frac{m^2}{2}\Phi_i^2\right)$$

where Φ_i are $N \times N$ matrices.

The equations of motion are

$$\begin{split} H^2 &= \frac{1}{3M_P^2} \left(-\frac{1}{2} \text{Tr} \left(\partial_\mu \Phi_i \partial^\mu \Phi_i \right) + V(\Phi_i, [\Phi_i, \Phi_j]) \right) \\ \ddot{\Phi}_l &+ 3H \dot{\Phi}_l + \lambda \left[\Phi_j, \left[\Phi_l, \Phi_j \right] \right] - i \, \kappa \, \epsilon_{ljk} [\Phi_j, \Phi_k] + m^2 \Phi_l = 0 \end{split}$$

Upon field re-definition

$$\hat{\phi} = (\text{Tr}J^2)^{-1/2} \phi = \left[\frac{N}{4}(N^2 - 1)\right]^{-1/2} \phi$$

The effective potential is

$$V_0(\phi) = \frac{\lambda_{eff}}{4} \phi^4 - \frac{2\kappa_{eff}}{3} \phi^3 + \frac{m^2}{2} \phi^2$$

Where

$$\lambda_{eff} = \frac{2\lambda}{{\rm Tr}J^2} = \frac{8\lambda}{N(N^2-1)} \;, \quad \kappa_{eff} = \frac{\kappa}{\sqrt{{\rm Tr}J^2}} = \frac{2\,\kappa}{\sqrt{N(N^2-1)}} \label{eq:lambda}$$

Examples:

I- Chaotic Inflation
$$V = \frac{1}{4} \lambda_{eff} \, \phi^4$$
 : $m = \kappa = 0$

To fit the CMB observation, we need

$$\lambda_{eff} \sim 10^{-14}$$
 $\Delta \phi \sim 10 M_P$.

On the other hand
$$\lambda_{eff} \sim \lambda N^{-3} \qquad \qquad \Delta \hat{\phi} \sim N^{-3/2} \Delta \phi$$

One obtains
$$N \sim 10^5$$
 $\Delta \hat{\phi} \sim 10^{-7} M_P$

Due to large running of field values, a considerable amount of gravity waves can be produced. $r \simeq 0.26$

The scalar spectral index is $n_R \simeq 0.949$

Upon field re-definition

$$\hat{\phi} = (\text{Tr}J^2)^{-1/2} \phi = \left[\frac{N}{4}(N^2 - 1)\right]^{-1/2} \phi$$

The effective potential is

$$V_0(\phi) = \frac{\lambda_{eff}}{4} \phi^4 - \frac{2\kappa_{eff}}{3} \phi^3 + \frac{m^2}{2} \phi^2$$

Where

$$\lambda_{eff} = \frac{2\lambda}{{\rm Tr}J^2} = \frac{8\lambda}{N(N^2-1)} \; , \quad \kappa_{eff} = \frac{\kappa}{\sqrt{{\rm Tr}J^2}} = \frac{2\,\kappa}{\sqrt{N(N^2-1)}} \label{eq:lambda}$$

Examples:

I- Chaotic Inflation
$$V = \frac{1}{4} \lambda_{eff} \, \phi^4$$
 : $m = \kappa = 0$

To fit the CMB observation, we need

$$\lambda_{eff} \sim 10^{-14}$$
 $\Delta \phi \sim 10 M_P$.

On the other hand
$$\lambda_{eff} \sim \lambda N^{-3} \qquad \qquad \Delta \hat{\phi} \sim N^{-3/2} \Delta \phi$$

One obtains
$$N \sim 10^5$$
 $\Delta \hat{\phi} \sim 10^{-7} M_P$

Due to large running of field values, a considerable amount of gravity waves can be produced. $r \simeq 0.26$

The scalar spectral index is $n_R \simeq 0.949$

2- Symmetry breaking potential:

$$V_0 = \frac{\lambda_{eff}}{4} \phi^2 \left(\phi - \mu\right)^2$$

$$\mu \equiv \sqrt{2}m/\sqrt{\lambda_{eff}}$$
.

 $| \cdot | \phi_i > \mu$

To fit the observational constraints

$$\phi_i \simeq 43.57 M_P$$
 , $\phi_f \simeq 27.07 M_P$, $\mu \simeq 26 M_P$.

$$\lambda_{eff} \simeq 4.91 \times 10^{-14}, \quad m \simeq 4.07 \times 10^{-6} M_P, \quad \kappa_{eff} \simeq 9.57 \times 10^{-13} M_P.$$

||-
$$\mu/2 < \phi_i < \mu$$

$$\phi_i \simeq 23.5 M_P$$
 , $\phi_f \simeq 35.03 M_P$, $\mu \simeq 36 M_P$.

$$\lambda_{eff} \simeq 7.18 \times 10^{-14}, \quad m \simeq 6.82 \times 10^{-6} M_P, \quad \kappa_{eff} \simeq 1.94 \times 10^{-12} M_P.$$

One finds

$$N \sim 10^5$$

$$N \sim 10^5$$
. $\Delta \hat{\phi} \sim 10^{-7} M_P$

3-Saddle-point Inflation $\kappa = \sqrt{2\lambda} m$

$$V(\phi) \simeq V(\phi_0) + \frac{1}{3!}V'''(\phi_0)(\phi - \phi_0)^3$$

$$V(\phi_0) = \frac{m^2}{12}\phi_0^2$$
 , $V'''(\phi_0) = \frac{2m^2}{\phi_0}$.

The CMB observables are given by

$$n_s \simeq 1 - \frac{4}{N_e}$$
 , $\delta_H \simeq \frac{2}{5\pi} \frac{\lambda_{eff} M_P}{m} N_e^2$.

$$\lambda_{eff} = (\frac{9\,r}{32})^{1/3} \left(\frac{5\pi}{8} \delta_H\right)^2 (1-n_s)^{8/3} \,.$$

The upper bound r < 0.2 from WMAP5, and ns=0.96, gives

$$\lambda_{eff} \lesssim 10^{-13}$$
 and $N \gtrsim 10^5$

Consistency of truncation to SU(2) sector

 Φ_i are hermitian matrices, so we have $3N^2$ real scalar fields.

We have considered ϕ as the inflaton field and turned off the remaining $3N^2-1$ fields. How consistent is this truncation?

Suppose
$$\Psi_i = \Phi_i - \hat{\phi} J_i$$
 where $\hat{\phi} = \frac{4}{N(N^2-1)} \mathrm{Tr}(\Phi_i J_i)$

So

$$\operatorname{Tr}(\Psi_i J_i) = 0.$$

Then

$$V = V_0(\hat{\phi}) + V_{(2)}(\hat{\phi}, \Psi_i)$$

with

$$V_{(2)}(\hat{\phi},\Psi_i=0)=0\ , \qquad \left(\frac{\delta V_{(2)}}{\delta \Psi_i}\right)_{\Psi_i=0}=0. \label{eq:V2}$$

So there is no linear term of Ψ_i in potential.

2- Symmetry breaking potential:

$$V_0 = \frac{\lambda_{eff}}{4} \phi^2 \left(\phi - \mu\right)^2$$

$$\mu \equiv \sqrt{2}m/\sqrt{\lambda_{eff}}.$$

 $| \cdot | \phi_i > \mu$

To fit the observational constraints

$$\phi_i \simeq 43.57 M_P$$
 , $\phi_f \simeq 27.07 M_P$, $\mu \simeq 26 M_P$.

$$\lambda_{eff} \simeq 4.91 \times 10^{-14}, \quad m \simeq 4.07 \times 10^{-6} M_P, \quad \kappa_{eff} \simeq 9.57 \times 10^{-13} M_P.$$

|
$$\mu/2 < \phi_i < \mu$$

$$\phi_i \simeq 23.5 M_P$$
 , $\phi_f \simeq 35.03 M_P$, $\mu \simeq 36 M_P$.

$$\lambda_{eff} \simeq 7.18 \times 10^{-14}, \quad m \simeq 6.82 \times 10^{-6} M_P, \quad \kappa_{eff} \simeq 1.94 \times 10^{-12} M_P.$$

One finds

$$N \sim 10^5$$

$$N \sim 10^5$$
. $\Delta \hat{\phi} \sim 10^{-7} M_P$

Examples:

I- Chaotic Inflation
$$V = \frac{1}{4} \lambda_{eff} \, \phi^4$$
 : $m = \kappa = 0$

To fit the CMB observation, we need

$$\lambda_{eff} \sim 10^{-14}$$
 $\Delta \phi \sim 10 M_P$.

On the other hand
$$\lambda_{eff} \sim \lambda N^{-3} \qquad \qquad \Delta \hat{\phi} \sim N^{-3/2} \Delta \phi$$

One obtains
$$N \sim 10^5$$
 $\Delta \hat{\phi} \sim 10^{-7} M_P$

Due to large running of field values, a considerable amount of gravity waves can be produced. $r \simeq 0.26$

The scalar spectral index is $n_R \simeq 0.949$

Upon field re-definition

$$\hat{\phi} = (\text{Tr}J^2)^{-1/2} \phi = \left[\frac{N}{4}(N^2 - 1)\right]^{-1/2} \phi$$

The effective potential is

$$V_0(\phi) = \frac{\lambda_{eff}}{4} \phi^4 - \frac{2\kappa_{eff}}{3} \phi^3 + \frac{m^2}{2} \phi^2$$

Where

$$\lambda_{eff} = \frac{2\lambda}{{\rm Tr}J^2} = \frac{8\lambda}{N(N^2-1)} \ , \quad \kappa_{eff} = \frac{\kappa}{\sqrt{{\rm Tr}J^2}} = \frac{2\,\kappa}{\sqrt{N(N^2-1)}} \label{eq:lambda}$$

$$\Phi_i = \hat{\phi}(t)J_i , \qquad i = 1, 2, 3.$$

where J_i are the N-dimensional irreducible representation of SU(2) algebra.

$$[J_i, J_j] = i \, \epsilon_{ijk} J_k , \qquad \text{Tr}(J_i J_j) = \frac{N}{12} (N^2 - 1) \, \delta_{ij} .$$

$$S = \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R + {\rm Tr} J^2 \left(-\frac{1}{2} \partial_\mu \hat{\phi} \partial^\mu \hat{\phi} - \frac{\lambda}{2} \hat{\phi}^4 + \frac{2\kappa}{3} \hat{\phi}^3 - \frac{m^2}{2} \hat{\phi}^2 \right) \right]$$

where
$$\text{Tr}J^2 = \text{Tr}(J_i^2) = N(N^2 - 1)/4$$
.

2- Symmetry breaking potential:

$$V_0 = \frac{\lambda_{eff}}{4} \phi^2 \left(\phi - \mu\right)^2$$

$$\mu \equiv \sqrt{2}m/\sqrt{\lambda_{eff}}.$$

 $| \cdot \phi_i > \mu$

To fit the observational constraints

$$\phi_i \simeq 43.57 M_P$$
 , $\phi_f \simeq 27.07 M_P$, $\mu \simeq 26 M_P$.

$$\lambda_{eff} \simeq 4.91 \times 10^{-14}, \quad m \simeq 4.07 \times 10^{-6} M_P, \quad \kappa_{eff} \simeq 9.57 \times 10^{-13} M_P.$$

||-
$$\mu/2 < \phi_i < \mu$$

$$\phi_i \simeq 23.5 M_P$$
 , $\phi_f \simeq 35.03 M_P$, $\mu \simeq 36 M_P$.

$$\lambda_{eff} \simeq 7.18 \times 10^{-14}, \quad m \simeq 6.82 \times 10^{-6} M_P, \quad \kappa_{eff} \simeq 1.94 \times 10^{-12} M_P.$$

One finds

$$N \sim 10^5$$

$$N \sim 10^5$$
. $\Delta \hat{\phi} \sim 10^{-7} M_P$

3-Saddle-point Inflation $\kappa = \sqrt{2\lambda} m$

$$V(\phi) \simeq V(\phi_0) + \frac{1}{3!}V'''(\phi_0)(\phi - \phi_0)^3$$

$$V(\phi_0) = \frac{m^2}{12}\phi_0^2$$
 , $V'''(\phi_0) = \frac{2m^2}{\phi_0}$.

The CMB observables are given by

$$n_s \simeq 1 - \frac{4}{N_e} \quad , \quad \delta_H \simeq \frac{2}{5\pi} \frac{\lambda_{eff} M_P}{m} N_e^2 \, . \label{eq:delta_H}$$

$$\lambda_{eff} = (\frac{9 \, r}{32})^{1/3} \left(\frac{5\pi}{8} \delta_H \right)^2 (1 - n_s)^{8/3} \, .$$

The upper bound r < 0.2 from WMAP5, and ns=0.96, gives

$$\lambda_{eff} \lesssim 10^{-13}$$
 and $N \gtrsim 10^5$

Consistency of truncation to SU(2) sector

 Φ_i are hermitian matrices, so we have $3N^2$ real scalar fields.

We have considered ϕ as the inflaton field and turned off the remaining $3N^2-1$ fields. How consistent is this truncation?

Suppose
$$\Psi_i = \Phi_i - \hat{\phi} J_i$$
 where $\hat{\phi} = \frac{4}{N(N^2-1)} \mathrm{Tr}(\Phi_i J_i)$

So

$$\operatorname{Tr}(\Psi_i J_i) = 0.$$

Then

$$V = V_0(\hat{\phi}) + V_{(2)}(\hat{\phi}, \Psi_i)$$

with

$$V_{(2)}(\hat{\phi},\Psi_i=0)=0\ , \qquad \left(\frac{\delta V_{(2)}}{\delta \Psi_i}\right)_{\Psi_i=0}=0. \label{eq:V2}$$

So there is no linear term of Ψ_i in potential.

Upon field re-definition

$$\hat{\phi} = (\text{Tr}J^2)^{-1/2} \phi = \left[\frac{N}{4} (N^2 - 1) \right]^{-1/2} \phi$$

The effective potential is

$$V_0(\phi) = \frac{\lambda_{eff}}{4} \phi^4 - \frac{2\kappa_{eff}}{3} \phi^3 + \frac{m^2}{2} \phi^2$$

Where

$$\lambda_{eff} = \frac{2\lambda}{{\rm Tr}J^2} = \frac{8\lambda}{N(N^2-1)} \ , \quad \kappa_{eff} = \frac{\kappa}{\sqrt{{\rm Tr}J^2}} = \frac{2\,\kappa}{\sqrt{N(N^2-1)}} \label{eq:lambda}$$

$$\Phi_i = \hat{\phi}(t)J_i , \qquad i = 1, 2, 3.$$

where J_i are the N-dimensional irreducible representation of SU(2) algebra.

$$[J_i, J_j] = i \, \epsilon_{ijk} J_k , \qquad \text{Tr}(J_i J_j) = \frac{N}{12} (N^2 - 1) \, \delta_{ij} .$$

$$S = \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R + {\rm Tr} J^2 \left(-\frac{1}{2} \partial_\mu \hat{\phi} \partial^\mu \hat{\phi} - \frac{\lambda}{2} \hat{\phi}^4 + \frac{2\kappa}{3} \hat{\phi}^3 - \frac{m^2}{2} \hat{\phi}^2 \right) \right]$$

where
$$\text{Tr}J^2 = \text{Tr}(J_i^2) = N(N^2 - 1)/4$$
.

Upon field re-definition

$$\hat{\phi} = (\text{Tr}J^2)^{-1/2} \phi = \left[\frac{N}{4}(N^2 - 1)\right]^{-1/2} \phi$$

The effective potential is

$$V_0(\phi) = \frac{\lambda_{eff}}{4} \phi^4 - \frac{2\kappa_{eff}}{3} \phi^3 + \frac{m^2}{2} \phi^2$$

Where

$$\lambda_{eff} = \frac{2\lambda}{{\rm Tr}J^2} = \frac{8\lambda}{N(N^2-1)} \;, \quad \kappa_{eff} = \frac{\kappa}{\sqrt{{\rm Tr}J^2}} = \frac{2\,\kappa}{\sqrt{N(N^2-1)}} \label{eq:lambda}$$

Examples:

I- Chaotic Inflation
$$V = \frac{1}{4}\lambda_{eff} \phi^4$$
 : $m = \kappa = 0$

To fit the CMB observation, we need

$$\lambda_{eff} \sim 10^{-14}$$
 $\Delta \phi \sim 10 M_P$.

On the other hand
$$\lambda_{eff} \sim \lambda N^{-3} \qquad \qquad \Delta \hat{\phi} \sim N^{-3/2} \Delta \phi$$

One obtains
$$N \sim 10^5$$
 $\Delta \hat{\phi} \sim 10^{-7} M_P$

The scalar spectral index is $n_R \simeq 0.949$

2- Symmetry breaking potential:

$$V_0 = \frac{\lambda_{eff}}{4} \phi^2 \left(\phi - \mu\right)^2$$

$$\mu \equiv \sqrt{2m}/\sqrt{\lambda_{eff}}$$
.

 $| \cdot \phi_i > \mu$

To fit the observational constraints

$$\phi_i \simeq 43.57 M_P$$
 , $\phi_f \simeq 27.07 M_P$, $\mu \simeq 26 M_P$.

$$\lambda_{eff} \simeq 4.91 \times 10^{-14}, \quad m \simeq 4.07 \times 10^{-6} M_P, \quad \kappa_{eff} \simeq 9.57 \times 10^{-13} M_P.$$

|-
$$\mu/2 < \phi_i < \mu$$

$$\phi_i \simeq 23.5 M_P$$
 , $\phi_f \simeq 35.03 M_P$, $\mu \simeq 36 M_P$.

$$\lambda_{eff} \simeq 7.18 \times 10^{-14}, \quad m \simeq 6.82 \times 10^{-6} M_P, \quad \kappa_{eff} \simeq 1.94 \times 10^{-12} M_P.$$

One finds

$$N \sim 10^5$$

$$N \sim 10^5$$
. $\Delta \hat{\phi} \sim 10^{-7} M_P$

3-Saddle-point Inflation $\kappa = \sqrt{2\lambda} m$

$$V(\phi) \simeq V(\phi_0) + \frac{1}{3!}V'''(\phi_0)(\phi - \phi_0)^3$$

$$V(\phi_0) = \frac{m^2}{12}\phi_0^2$$
 , $V'''(\phi_0) = \frac{2m^2}{\phi_0}$.

The CMB observables are given by

$$n_s \simeq 1 - \frac{4}{N_e}$$
 , $\delta_H \simeq \frac{2}{5\pi} \frac{\lambda_{eff} M_P}{m} N_e^2$.

$$\lambda_{eff} = (\frac{9\,r}{32})^{1/3} \left(\frac{5\pi}{8} \delta_H\right)^2 (1-n_s)^{8/3} \,.$$

The upper bound r < 0.2 from WMAP5, and ns=0.96, gives

$$\lambda_{eff} \lesssim 10^{-13}$$
 and $N \gtrsim 10^5$

Consistency of truncation to SU(2) sector

 Φ_i are hermitian matrices, so we have $3N^2$ real scalar fields.

We have considered ϕ as the inflaton field and turned off the remaining $3N^2-1$ fields. How consistent is this truncation?

Suppose
$$\Psi_i = \Phi_i - \hat{\phi} J_i$$
 where $\hat{\phi} = \frac{4}{N(N^2-1)} \text{Tr}(\Phi_i J_i)$

So

$$\operatorname{Tr}(\Psi_i J_i) = 0.$$

Then

$$V = V_0(\hat{\phi}) + V_{(2)}(\hat{\phi}, \Psi_i)$$

with

$$V_{(2)}(\hat{\phi},\Psi_i=0)=0\ , \qquad \left(\frac{\delta V_{(2)}}{\delta \Psi_i}\right)_{\Psi_i=0}=0. \label{eq:V2}$$

So there is no linear term of Ψ_i in potential.

How special are the SU(2) sectors?

Suppose

$$\Phi_i = \Upsilon_i + \Xi_i$$

such that

$$\operatorname{Tr}(\Upsilon_i\Xi_i)=0$$
 , $\operatorname{Tr}(\Upsilon_i)=0$

$$Tr(\Upsilon_i) = 0$$

The potential becomes

$$V = V_0(\Upsilon_i) + V_{(1)}(\Upsilon, \Xi)$$

with
$$V_0(\Upsilon_i) = V(\Xi_i = 0)$$

$$V_{(1)}(\Upsilon_i,\Xi_i) = \mathrm{Tr}\left[\left(-\lambda[\Upsilon_i,[\Upsilon_i,\Upsilon_k]] + i\kappa\epsilon_{ijk}[\Upsilon_i,\Upsilon_j]\right)\Xi_k\right] + \mathcal{O}(\Xi^2) \ .$$

The linear term can be killed if

$$[\Upsilon_i, \Upsilon_j] = f_{ijk} \Upsilon_k$$

Mass spectrum of the Ψ_i modes

Expanding the potential up to second order in Ψ_i one obtains

$$V_{(2)} = \text{Tr}\left[\frac{\lambda}{2}\hat{\phi}^2 \ \Omega_i\Omega_i + \frac{m^2}{2} \ \Psi_i\Psi_i + \left(-\frac{\lambda}{2}\hat{\phi}^2 + \kappa\hat{\phi}\right)\Psi_i\Omega_i \ \right]$$

where

$$\Omega_k \equiv i\epsilon_{ijk}[J_i, \Psi_j] .$$

The eigen-values problem: $\Omega_i = \omega \Psi_i$

$$V_{(2)} = \left(\frac{\lambda_{eff}}{4}\phi^2(\omega^2 - \omega) + \kappa_{eff}\,\omega\,\phi + \frac{m^2}{2}\right) \operatorname{Tr}\Psi_i\Psi_i \ .$$

The mass of Ψ_i modes are

$$\begin{split} M^2 &= \frac{\lambda_{eff}}{2} \phi^2(\omega^2 - \omega) + 2\kappa_{eff} \, \omega \phi + m^2 \\ &= V_0''(\omega+1)^2 - \frac{V_0'}{\phi} (4\omega+3)(\omega+2) + \frac{6V_0}{\phi^2} (\omega+1)(\omega+2) \end{split}$$

The classification of the Ψ_i modes

The modes are classified in three categories:

• "The zero modes"
$$\omega = -1$$
 $M^2 = \frac{V_0'}{\phi}$.

• "The α modes": $\omega = -(l+1), l \in \mathbb{Z}, 0 \leq l < N$, with the mass

$$M_l^2 = \frac{\lambda_{eff}}{2}(l+1)(l+2)\phi^2 - 2\kappa_{eff}(l+1)\phi + m^2 \,.$$

• "The β modes": $\omega = l, l \in \mathbb{Z}, 0 < l < N$, with the mass

$$M_l^2 = \frac{\lambda_{eff}}{2}l(l-1)\phi^2 - 2\kappa_{eff}l\phi + m^2.$$

Mass spectrum of the Ψ_i modes

Expanding the potential up to second order in Ψ_i one obtains

$$V_{(2)} = \text{Tr}\left[\frac{\lambda}{2}\hat{\phi}^2 \Omega_i \Omega_i + \frac{m^2}{2} \Psi_i \Psi_i + \left(-\frac{\lambda}{2}\hat{\phi}^2 + \kappa \hat{\phi}\right) \Psi_i \Omega_i\right]$$

where

$$\Omega_k \equiv i\epsilon_{ijk}[J_i, \Psi_j] .$$

The eigen-values problem: $\Omega_i = \omega \Psi_i$

$$V_{(2)} = \left(\frac{\lambda_{eff}}{4}\phi^2(\omega^2 - \omega) + \kappa_{eff}\,\omega\,\phi + \frac{m^2}{2}\right) \operatorname{Tr}\Psi_i\Psi_i .$$

The mass of Ψ_i modes are

$$\begin{split} M^2 &= \frac{\lambda_{eff}}{2} \phi^2(\omega^2 - \omega) + 2\kappa_{eff} \, \omega \phi + m^2 \\ &= V_0''(\omega+1)^2 - \frac{V_0'}{\phi} (4\omega+3)(\omega+2) + \frac{6V_0}{\phi^2} (\omega+1)(\omega+2) \end{split}$$

The classification of the Ψ_i modes

The modes are classified in three categories:

• "The zero modes"
$$\omega = -1$$
 $M^2 = \frac{V_0'}{\phi}$.

• "The α modes": $\omega = -(l+1), l \in \mathbb{Z}, 0 \leq l < N$, with the mass

$$M_l^2 = \frac{\lambda_{eff}}{2} (l+1)(l+2)\phi^2 - 2\kappa_{eff}(l+1)\phi + m^2 \,.$$

• "The β modes": $\omega = l, l \in \mathbb{Z}, 0 < l < N$, with the mass

$$M_l^2 = \frac{\lambda_{eff}}{2}l(l-1)\phi^2 - 2\kappa_{eff}l\phi + m^2.$$

The light modes:

$$\frac{M^2}{3H^2} = \left[\eta(\omega+1)^2 - sgn(V_0')\sqrt{2\epsilon} \; \frac{M_P}{\phi}(4\omega+3)(\omega+2) + 6\frac{M_P^2}{\phi^2}(\omega+1)(\omega+2) \right]$$

For the zero modes with $\omega=-1$

$$M^2/3H^2 \sim \sqrt{\epsilon}M_P/\phi \sim 0.01$$

so there are N^2 of such light zero modes.

For α and β modes, only those with $l \lesssim \epsilon^{-1/2}$, $\eta^{-1/2} \sim 10$ are light, while the modes with higher values of l are heavy.

Adiabatic and entropic power spectra

Our Lagrangian is

$$\mathcal{L} = -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} \partial_{\mu} \psi_{mn}^{(i)} \partial^{\mu} \psi_{nm}^{(i)} - V_0(\phi) - \frac{1}{2} M^2(\phi) \psi_{mn}^{(i)} \psi_{nm}^{(i)} .$$

Define

$$Q_{\phi} \equiv \delta \phi + \frac{\dot{\phi}}{H} \Phi .$$

The equations of motion are

$$\begin{split} \ddot{Q}_{\phi} + 3H\dot{Q}_{\phi} + \frac{k^2}{a^2}Q_{\phi} + \left[V_{0,\phi\phi} - \frac{1}{a^3M_P^2} \left(\frac{a^3}{H}\dot{\phi}^2\right)^{\cdot}\right]Q_{\phi} &= 0 \\ \ddot{\Psi}_{r,lm} + 3H\dot{\Psi}_{r,lm} + \left(\frac{k^2}{a^2} + M_{r,l}^2(\phi)\right)\Psi_{r,lm} &= 0 \; . \end{split}$$

Interestingly enough, the adiabatic and the iso-curvature modes decouple.

The normalized curvature and entropy perturbations are

$$\mathcal{R} \equiv \frac{H}{\dot{\phi}} Q_{\phi} \quad , \quad \mathcal{S}_{mn}^{(i)} \equiv \frac{H}{\dot{\phi}} \psi_{mn}^{(i)} \, .$$

with the initial conditions

$$\begin{split} \langle Q_{\phi\,\mathbf{k}}^{\star}\,Q_{\phi\,\mathbf{k}'}\rangle &= \frac{2\pi^2}{k^3}P_{Q_{\phi}}\delta^3(\mathbf{k}-\mathbf{k}') \\ \langle \Psi_{r,lm~\mathbf{k}}^{\star}\,\Psi_{r',l'm'~\mathbf{k}'}\rangle &= \frac{2\pi^2}{k^3}P_{\Psi_{r,l}}\,\delta_{rr'}\,\delta_{ll'}\delta_{mm'}\,\delta^3(\mathbf{k}-\mathbf{k}') \\ \langle Q_{\phi~\mathbf{k}}^{\star}\Psi_{r,lm~\mathbf{k}'}\rangle &= 0~, \end{split}$$

Using our equations of motion one obtains

$$\dot{\mathcal{R}} = \frac{H}{\dot{H}} \frac{k^2}{a^2} \Phi \,.$$

Compare this to general multiple-field case

$$\dot{\mathcal{R}} = \frac{H}{\dot{H}} \frac{k^2}{a^2} \Phi + 2 \sum_{\alpha=1}^{3N^2-1} \dot{\theta}_{\alpha} \mathcal{S}_{\alpha} .$$

Power Spectra:

Define
$$u \equiv aQ_{\phi}$$
 , $v_{r,lm} \equiv a\Psi_{r,lm}$.

Then the e.o.m. are

$$\begin{split} \frac{d^2 u}{d\tau^2} + \left[k^2 - \frac{2 - 3\eta + 9\epsilon}{\tau^2} \right] u &= 0 \\ \frac{d^2 v_{r,lm}}{d\tau^2} + \left[k^2 - \frac{2 - 3\eta_{r,l} + 3\epsilon}{\tau^2} \right] v_{r,lm} &= 0 \\ \eta_{r,l} &= M_{r,l}^2(\phi)/3H^2 \end{split}$$

At the time of Horizon crossing

$$\begin{split} P_{\mathcal{R}}|_{\star} &\simeq \left(\frac{H^2}{2\pi\dot{\phi}}\right)_{\star}^2 [1 + (-2 + 6C)\epsilon - 2C\eta]_{\star} \\ P_{\mathcal{S}_{mn}^{(i)}}|_{\star} &\simeq \left(\frac{H^2}{2\pi\dot{\phi}}\right)_{\star}^2 [1 + (-2 + 2C)\epsilon - 2C\eta_{ss}]_{\star} \end{split}$$

when the mode leaves the horizon till Ne before the end of inflation

$$P_{\mathcal{R}}(N_{\epsilon}) \simeq P_{\mathcal{R}}|_{\star}$$

$$P_{\mathcal{S}_{mn}^{(i)}}(N_e) \simeq P_{\mathcal{S}_{mn}^{(i)}}|_* \exp\left[-2\int_0^{N_e} dN_e' B(N_e')\right]$$

where $B_{r,l}(N_e) \equiv 2\epsilon - \eta + \eta_{r,l}$

$$B(N_e) \simeq 2\epsilon + (2\omega + \omega^2)\eta - sgn(V_0')\sqrt{2\epsilon}\frac{M_P}{\phi}(4\omega + 3)(\omega + 2) + 6\frac{M_P^2}{\phi^2}(\omega + 1)(\omega + 2)$$

The normalized curvature and entropy perturbations are

$$\mathcal{R} \equiv \frac{H}{\dot{\phi}} Q_{\phi} \quad , \quad \mathcal{S}_{mn}^{(i)} \equiv \frac{H}{\dot{\phi}} \psi_{mn}^{(i)} \, .$$

with the initial conditions

$$\begin{split} \langle Q_{\phi\,\mathbf{k}}^{\star}\,Q_{\phi\,\mathbf{k}'}\rangle &= \frac{2\pi^2}{k^3}P_{Q_{\phi}}\delta^3(\mathbf{k}-\mathbf{k}') \\ \langle \Psi_{r,lm~\mathbf{k}}^{\star}\,\Psi_{r',l'm'~\mathbf{k}'}\rangle &= \frac{2\pi^2}{k^3}P_{\Psi_{r,l}}\,\delta_{rr'}\,\delta_{ll'}\delta_{mm'}\,\delta^3(\mathbf{k}-\mathbf{k}') \\ \langle Q_{\phi~\mathbf{k}}^{\star}\Psi_{r,lm~\mathbf{k}'}\rangle &= 0\;, \end{split}$$

Using our equations of motion one obtains

$$\dot{\mathcal{R}} = \frac{H \, k^2}{\dot{H} \, a^2} \Phi \, .$$

Compare this to general multiple-field case

$$\dot{\mathcal{R}} = \frac{H}{\dot{H}} \frac{k^2}{a^2} \Phi + 2 \sum_{\alpha=1}^{3N^2-1} \dot{\theta}_{\alpha} \mathcal{S}_{\alpha} .$$

Power Spectra:

Define
$$u \equiv aQ_{\phi}$$
 , $v_{r,lm} \equiv a\Psi_{r,lm}$.

Then the e.o.m. are

$$\begin{split} \frac{d^2 u}{d\tau^2} + \left[k^2 - \frac{2 - 3\eta + 9\epsilon}{\tau^2} \right] u &= 0 \\ \frac{d^2 v_{r,lm}}{d\tau^2} + \left[k^2 - \frac{2 - 3\eta_{r,l} + 3\epsilon}{\tau^2} \right] v_{r,lm} &= 0 \\ \eta_{r,l} &= M_{r,l}^2(\phi)/3H^2 \end{split}$$

At the time of Horizon crossing

$$\begin{split} P_{\mathcal{R}|_{\star}} &\simeq \left(\frac{H^2}{2\pi\dot{\phi}}\right)_{\star}^2 [1 + (-2 + 6C)\epsilon - 2C\eta]_{\star} \\ P_{\mathcal{S}_{mn}^{(i)}|_{\star}} &\simeq \left(\frac{H^2}{2\pi\dot{\phi}}\right)_{\star}^2 [1 + (-2 + 2C)\epsilon - 2C\eta_{ss}]_{\star} \end{split}$$

when the mode leaves the horizon till Ne before the end of inflation

$$P_{\mathcal{R}}(N_e) \simeq P_{\mathcal{R}}|_{\star}$$

$$P_{\mathcal{S}_{mn}^{(i)}}(N_e) \simeq P_{\mathcal{S}_{mn}^{(i)}}|_* \exp\left[-2\int_0^{N_e} dN_e' B(N_e')\right]$$

where $B_{r,l}(N_e) \equiv 2\epsilon - \eta + \eta_{r,l}$

$$B(N_e) \simeq 2\epsilon + (2\omega + \omega^2)\eta - sgn(V_0')\sqrt{2\epsilon}\frac{M_P}{\phi}(4\omega + 3)(\omega + 2) + 6\frac{M_P^2}{\phi^2}(\omega + 1)(\omega + 2)$$

I. Chaotic inflation $\frac{m^2}{2}\phi^2$

$$S = -\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} \partial_\mu \psi_{mn}^{(i)} \partial^\mu \psi_{nm}^{(i)} - \frac{1}{2} m^2 \left[\phi^2 + \psi_{mn}^{(i)} \psi_{nm}^{(i)} \right] .$$

The system has SO $(3N^2)$ symmetry which is a specific realization of N-flation.

Physical observables: $n_R \simeq 0.966$ and $n_\psi \simeq 0.9998$. $r \simeq 0.132$.

To fit the WMAP bound one requires

$$m \simeq 6.304 \times 10^{-6} M_P$$
.

At the end of inflation Ps ~ 10^(-14) for mode of horizon scales.

Using our analytical formula

$$\frac{P_{\mathcal{S}_{mn}^{(i)}}(N_e)}{P_{\mathcal{R}}|_*} \simeq (1 - N_e/60)^2$$

II. Chaotic inflation: $\frac{\lambda_{eff}}{4}\phi^4$

The potential is
$$V = \frac{\lambda_{eff}}{4} \phi^4 + \frac{\lambda_{eff}}{4} (\omega^2 - \omega) \, \phi^2 \, \psi_{mn}^{(i)} \psi_{nm}^{(i)} \, .$$

The mass of entropy modes are different:

• "The zero modes"
$$\lambda_{eff}\phi^2$$

• "The
$$\alpha$$
 modes": $M_l^2 = \frac{\lambda_{eff}}{2}(l+1)(l+2)\phi^2$ $0 \le l < N$

• "The
$$\beta$$
 modes": $M_l^2 = \frac{\lambda_{eff}}{2} l(l-1)\phi^2$ $0 < l < N$

The lowest mass states

$$P_{S_{\beta,1m}} \simeq 3.949 \times 10^{-11}$$
 $n_{\Psi_{\beta,1m}} \simeq 0.966$

 \bullet zero mode, l=0 α -mode and l=2 β -mode # N^2+6

#

10

$$M_{\beta,2}^2(\phi) = \lambda_{eff}\phi^2$$

 $P_{S_{\beta,2m}} \simeq 4.449 \times 10^{-13}$ $n_{\Psi_{\beta,1m}} \simeq 0.9828$.

 $l = 1 \alpha$ -mode $l = 3 \beta$ -mode

$$M_{\beta,3}^2(\phi) = 3\lambda_{eff}\phi^2$$

 $P_{S_{\beta,3m}} \simeq 3.967 \times 10^{-18} \qquad n_{\Psi_{\beta,3m}} \simeq 1.016$

In general mass of a $l \ge 1$ α -mode is identical to the l + 2 β -mode.

Therefore, there are 4l + 6 iso-curvature modes with identical spectra

all of which have a blue tilt.

From our analytical solution

$$P_S = P_R = 1.0$$

0.6

 $V = \frac{\lambda}{4} \phi^4$
 $V = \frac{\lambda}{4} \phi^4$

$$\frac{P_{\mathcal{S}_{mn}^{(i)}}(N_e)}{P_{\mathcal{R}}|_*} \simeq (1-N_e/60)^{1+\frac{\omega^2-\omega}{2}} = \begin{cases} (1-N_e/60)^2 & \text{zero modes} \\ (1-N_e/60)^{(l^2+3l+4)/2} & \alpha-\text{modes} \\ (1-N_e/60)^{(l^2-l+2)/2} & \beta-\text{modes}, \end{cases}$$

III. Symmetry breaking potential:

 $\phi>\mu$

l	М	Ps	ns
$l = 0 \alpha$	$\lambda_{eff}\phi^2 - 2\kappa_{eff}\phi + m^2$	10-11	0.981
$l=1 \alpha$	$3\lambda_{eff}\phi^2 - 4\kappa\phi + m^2$	10-15	1.01
$l=1 \beta$	$2\kappa_{eff}\phi+m^2$	10-18.	1.002

 $\mu/2 < \phi < \mu$

l M Ps ns

$l = 0 \alpha$	10-11	0.987
$l=1 \alpha$	10 ⁻¹² .	0.988
$l=1$ β -	10-15	1.054

Motivation from string theory

 When N D-branes are located on top of each other the gauge symmetry enhances to U(N)

$$A_a = A_a^{(n)} T_n$$
 , $F_{ab} = \partial_a A_b - \partial_b A_a + i [A_a, A_b]$
$$D_a \Phi^i = \partial_a \Phi^i + i [A_a, \Phi^i]$$

The action for N coincident brane is

$$S = -T_3 \int d^4x \, \text{STr} \left(\sqrt{-|g_{ab}|} \sqrt{|Q_j^i|} \right) + \frac{\mu_3}{2} \int d^4x \, \text{STr} \left([\Phi_i, \Phi_j] C_{ij \, 0123}^{(6)} \right)$$

Where

$$Q_k^j = \delta_j^i + 2\pi i\,\alpha'\; [\Phi_j,\Phi_k]$$

Consider the RR background

$$C_{jk0123}^{(6)} = -\frac{2i}{3}\kappa \,\epsilon_{jkl} \,\Phi_l$$

Expanding the action up to leading terms, one obtains

$$\mathbf{S} = -\frac{1}{2} \sum_{i} \operatorname{Tr} \left(\partial_{\mu} \Phi_{i} \partial^{\mu} \Phi_{i} \right) - \frac{\lambda}{4} [\Phi_{i}, \Phi_{j}] [\Phi_{i}, \Phi_{j}] + \frac{i\kappa}{3} \epsilon_{jkl} [\Phi_{k}, \Phi_{l}] \Phi_{j}$$

with
$$\lambda = 2\pi g_s$$
, $\hat{\kappa} = \frac{\kappa}{g_s \cdot \sqrt{2\pi g_s}}$

 (t,x_1) N D3-branes

(t,x1)

RR background

Fuzzy D5-branes

As mentioned the potential is

$$V_0(\phi) = \frac{\lambda_{eff}}{4}\phi^4 - \frac{2\kappa_{eff}}{3}\phi^3 + \frac{m^2}{2}\phi^2$$

The condition $\lambda m^2 = 4\kappa^2/9$ is required for background to be susy.

$$V_0 = \frac{\lambda_{eff}}{4} \phi^2 \left(\phi - \mu\right)^2$$

The minimum $\phi = \mu$ is the susy vacuum.

This corresponds to the solution where N D-3 branes blow up into a fuzzy D5-branes.

Geometrically, ϕ is the radius of the fuzzy two-sphere.

Preheating

M-flation has a natural mechanism of preheating.

The time-dependence of $M(\phi)$, can leads to pair creation of ψ_{mn}

To be specific, let's consider $\lambda_{eff}\phi^4/4$ theory.

The preheating for $\lambda_{eff}\phi^4/4$ is studied by Greene et al, 1997

$$V_{\rm eff}(\phi,\chi) = \frac{1}{4}\lambda\phi^4 + \frac{1}{2}g^2\phi^2\chi^2$$

 g^2/λ .

The structure of parametric resonance is completely determined by

for our model

$$g^2/\lambda = n(n+1)/2$$

$$n = 1, l, l - 1$$

As mentioned the potential is

$$V_0(\phi) = \frac{\lambda_{eff}}{4}\phi^4 - \frac{2\kappa_{eff}}{3}\phi^3 + \frac{m^2}{2}\phi^2$$

The condition $\lambda m^2 = 4\kappa^2/9$ is required for background to be susy.

$$V_0 = \frac{\lambda_{eff}}{4} \phi^2 (\phi - \mu)^2$$

The minimum $\phi = \mu$ is the susy vacuum.

This corresponds to the solution where N D-3 branes blow up into a fuzzy D5-branes.

Geometrically, ϕ is the radius of the fuzzy two-sphere.

Consider the RR background

$$C_{jk0123}^{(6)} = -\frac{2i}{3}\kappa \,\epsilon_{jkl} \,\Phi_l$$

Expanding the action up to leading terms, one obtains

$$\mathbf{S} = -\frac{1}{2} \sum_{i} \operatorname{Tr} \left(\partial_{\mu} \Phi_{i} \partial^{\mu} \Phi_{i} \right) - \frac{\lambda}{4} [\Phi_{i}, \Phi_{j}] [\Phi_{i}, \Phi_{j}] + \frac{i\kappa}{3} \epsilon_{jkl} [\Phi_{k}, \Phi_{l}] \Phi_{j}$$

with
$$\lambda = 2\pi g_s$$
, $\hat{\kappa} = \frac{\kappa}{g_s \cdot \sqrt{2\pi g_s}}$

(t,x1)
N D3-branes

(t,xi)

Fuzzy D5-branes

RR background

As mentioned the potential is

$$V_0(\phi) = \frac{\lambda_{eff}}{4}\phi^4 - \frac{2\kappa_{eff}}{3}\phi^3 + \frac{m^2}{2}\phi^2$$

The condition $\lambda m^2 = 4\kappa^2/9$ is required for background to be susy.

$$V_0 = \frac{\lambda_{eff}}{4} \phi^2 (\phi - \mu)^2$$

The minimum $\phi = \mu$ is the susy vacuum.

This corresponds to the solution where N D-3 branes blow up into a fuzzy D5-branes.

Geometrically, ϕ is the radius of the fuzzy two-sphere.

Review of Greene et al:

$$V_{\rm eff}(\phi,\chi) = \frac{1}{4}\lambda\phi^4 + \frac{1}{2}g^2\phi^2\chi^2$$

The analytical results are only known for

$$g^2/\lambda = n(n+1)/2$$

Some examples:

 $\mu_{max} \approx 0.1470 \text{ at } \kappa^2 \approx 0.228$

$$\frac{q^2}{\lambda} = 3$$

$$\frac{3}{2} < \kappa^2 < \sqrt{3}$$

 $\mu_{max} \approx 0.03598 \text{ at } \kappa^2 \approx 1.615$

Motivation from string theory

 When N D-branes are located on top of each other the gauge symmetry enhances to U(N)

$$A_a = A_a^{(n)} T_n$$
 , $F_{ab} = \partial_a A_b - \partial_b A_a + i [A_a, A_b]$
$$D_a \Phi^i = \partial_a \Phi^i + i [A_a, \Phi^i]$$

The action for N coincident brane is

$$S = -T_3 \int d^4x \, \text{STr} \left(\sqrt{-|g_{ab}|} \sqrt{|Q_j^i|} \right) + \frac{\mu_3}{2} \int d^4x \, \text{STr} \left([\Phi_i, \Phi_j] C_{ij \, 0123}^{(6)} \right)$$

Where

$$Q_k^j = \delta_j^i + 2\pi i\,\alpha'\,\left[\Phi_j,\Phi_k\right]$$

lacktriangle zero mode, l=0 α -mode and l=2 β -mode # N^2+6

#

10

$$M_{\beta,2}^2(\phi) = \lambda_{eff}\phi^2$$

$$P_{\mathcal{S}_{\beta,2m}} \simeq 4.449 \times 10^{-13}$$
 $n_{\Psi_{\beta,1m}} \simeq 0.9828$.

• $l = 1 \alpha$ -mode $l = 3 \beta$ -mode

$$M_{\beta,3}^2(\phi) = 3\lambda_{eff}\phi^2$$

$$P_{S_{\beta,3m}} \simeq 3.967 \times 10^{-18} \qquad n_{\Psi_{\beta,3m}} \simeq 1.016$$

As mentioned the potential is

$$V_0(\phi) = \frac{\lambda_{eff}}{4}\phi^4 - \frac{2\kappa_{eff}}{3}\phi^3 + \frac{m^2}{2}\phi^2$$

The condition $\lambda m^2 = 4\kappa^2/9$ is required for background to be susy.

$$V_0 = \frac{\lambda_{eff}}{4} \phi^2 \left(\phi - \mu\right)^2$$

The minimum $\phi = \mu$ is the susy vacuum.

This corresponds to the solution where N D-3 branes blow up into a fuzzy D5-branes.

Geometrically, ϕ is the radius of the fuzzy two-sphere.

Reheating?

We have not provided a mechanism of reheating where the energy from the ψ_{mn} particles are transferred into SM particles.

One scenario in M-flation in string theory: We may imagine that SM fields are localized on branes as open strings gauge fields $A^{(a)}_{\mu}$

This can naturally be embedded in model noting that

$$D_a\Phi^i=\partial_a\Phi^i+i[A_a,\Phi^i]$$

As an estimate of Preheat temperature, suppose we have an instant preheating

$$N^2T^4 \sim 3H^2M_P^2$$

for large N one can get sufficiently small reheat temperature.

Non-Gaussianity?

Due to multiple-field nature of the model, there would be plenty of NG produced. It would be interesting to calculate primordial NGs and compare it with observation.

Conclusion

- All observations strongly support inflation as a theory of early Universe and structure formation. But there is no deep theoretical understanding of its origin.
- M-flation is an interesting realization of inflation which is strongly supported from string theory. M-flation, like N-flation, can solve the fine-tunings associated with chaotic inflation and produce super-Planckian field during inflation.
- Due to Matrix nature of the fields there would be many scalar fields in the model. This leads to novel effects such as entropy productions, and no-Gaussianities which both are under intense observational investigations.
- M-flation has a natural built-in mechanism of preheating to end inflation.
 However, a mechanism of reheating has yet to be implemented.