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Abstract: Abstract: In thistalk a model of inflation is presented where the inflaton fields are non-commutative matrices. The spectrum of adiabatic

and iso-curvature perturbations and their implications on CMB are studied. It is argued that our model of matrix inflation can naturally be embedded
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WMAP 2003-08

e All observations, specially
WMAP 2003-2008, strongly
support inflation.

Different inflationary models
predict different values for
cosmalogical parameters like
the scalar spectrum index 77 5 : - = ]
which can be measured in | Multipole moment I

CMB. WMAP 08

NG, T2 [k

=

® There is no compelling and theoretically well-motivated model of
inflation. There have been many attempts to embed inflation within
the context of string theory.

® [f it works, this would provide a unigue chance to test the relevance of
string theory to the real world.




Slow Roll Inflation

In most models, inflation is derived by a scalar field, the inflaton.
This creates a negative pressure required for acceleration.

For a scalar field

Qupmun Fhechanons

Slow-3oil Jemon

Simple models of chaotic inflation
suffers from fine-tuning and issues | o

O lariemns,

with super-Planckian field values. o




M-Flation

Suppose inflation is driven by non-commurtative matrices:
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where ®; are N < N matrices.

The equations of motion are




Truncation to SU(2)sector
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where .J; are the N-dimensional irreducible representation of SU(2) algebra.
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Plugging this ansatz into the action, we obtain
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where TrJ? = Tr(J?) = N(N?* —1)/4.




M-Flation

Suppose inflation is driven by non-commurtative matrices:
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where ®. are N x N matrices.

The equations of motion are
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Truncation to SU(2)sector
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where .J; are the N-dimensional irreducible representation of SU(2) algebra.
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M-Flation

Suppose inflation is driven by non-commurtative matrices:
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where ®; are N x N matrices.

The equations of motion are
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Truncation to SU(2)sector
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where .J; are the N-dimensional irreducible representation of SU(2) algebra.

Plugging this ansatz into the action, we obtain
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M-Flation

Suppose inflation is driven by non-commurtative matrices:
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Truncation to SU(2)sector
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where .J; are the N-dimensional irreducible representation of SU(2) algebra.
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Plugging this ansatz into the action, we obtain
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M-Flation

Suppose inflation is driven by non-commurtative matrices:
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Truncation to SU(2)sector
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Plugging this ansatz into the action, we obtain
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where TrJ?2 =Tr(J?) = N(N?2 — 1),



M-Flation

Suppose inflation is driven by non-commurtative matrices:
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Truncation to SU(2)sector
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where .J; are the N-dimensional irreducible representation of SU(2) algebra.
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Upon field re-definition




Truncation to SU(2)sector
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where .J; are the N-dimensional irreducible representation of SU(2) algebra.
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M-Flation

Suppose inflation is driven by non-commurtative matrices:
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Upon field re-definition

p— "] =

The effective potential is




Examples:

| - Chaotic Inflation
To fit the CMB observation, we need
eff T i'i.:]_l'_; Ad

On the other hand

One obtains

Due to large running of field values, a considerable
amount of gravity waves can be produced.

The scalar spectral index is ng =~ 0.949

a8



Upon field re-definition




Examples:

|- Chaotic Inflation V =Mo" e—n—0

To fit the CMB observation, we need

One obtains

Due to large running of field values, a considerable
amount of gravity waves can be produced.

[

The scalar spectral index is ngr = (0.949




2- Symmetry breaking potential:

Acff o
-




The upper bound r < 0.2 from WMAPS5, and ns=0.96, gives

Aepp S 1002 and N = 1(F




Consistency of truncation to SU(2) sector

-

&. are hermitian matrices, so we have 3V° real scalar fields.

We have considered © as the inflaton field and turned off the remaining
3N“—1 fields. How consistent is this truncation?

|
=

SUPPGSE W; ; —oJd; where D= NN —Tr(D; ],

So

So there is no linear term of V; in potential.




2- Symmetry breaking potential:

= v2m/\/ Ay




Examples:

| - Chaotic Inflation

To fit the CMB observation, we need

L s A

On the other hand

One obtains

Due to large running of field values, a considerable
amount of gravity waves can be produced.

o
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The scalar spectral index is ng =~ (0.949




Upon field re-definition

p = (TxJ?)

The effective potential is




Truncation to SU(2)sector

o, —o(t)J; .

where .J; are the N-dimensional irreducible representation of SU(2) algebra.

Plugging this ansatz into the action, we obtain
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2- Symmetry breaking potential:
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To fit the observational constraints
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Aeps~ T.18 x 107", m ~ 6.82 x 107 Kepr ~ 1.94 x 1072 Mp.

One finds




The upper bound r < 0.2 from WMAPS5, and ns=0.96, gives

\.;r < 1072 and N > 10°




Consistency of truncation to SU(2) sector

#. are hermitian matrices, so we have 3V° real scalar fields.

We have considered @ as the inflaton field and turned off the remaining
3N“—1 fields. How consistent is this truncation?

1
Suppose U;=®;—9ofi where = 3yaz_

Tr{(®;.J,

So

So there is no linear term of V; in potential.




Upon field re-definition




Truncation to SU(2)sector
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where .J; are the N-dimensional irreducible representation of SU(2) algebra.

Plugging this ansatz into the action, we obtain
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Upon field re-definition

p— ")

The effective potential is




Examples:

|- Chaotic Inflation V = _Aj0" m—x—0

To fit the CMB observation, we need

One obtains

Due to large running of field values, a considerable
amount of gravity waves can be produced.

The scalar spectral index is ngr = 0.949
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Actp == T 38 107", m~6.82 x 10°Mp. Kepp ~ 1.94 X Ll}_ii_‘lfp,

One finds N ~ 105. Ad ~ 107" Mg




3-Saddle-point Inflation x=v2\m

The upper bound r < 0.2 from WMAPS5, and ns=0.96, gives

\.¢r < 1072 and N = 10°




Consistency of truncation to SU(2) sector

. are hermitian matrices, so we have 3V° real scalar fields.

We have considered @ as the inflaton field and turned off the remaining
3N“—1 fields. How consistent is this truncation?

1
= -
=

SUPPDSE W i — O, where O = NV —TT(D; ],

So
Tr(0, J;) = 0.

So there is no linear term of W; in potential.




How special are the SU(2) sectors?

Suppose N

such that Tr(Y,=;) =0

The potential becomes
V =WlT:) + VlT,.=)

(T =) =Tr (—,‘x:‘f;. [:, Ta]] + f-'ga_,,;.j:;;.*f_,j) =| +O0=2) .

The linear term can be killed if

:T is T.: = -f"_f- k T k




Mass spectrum of the V¥; modes

Expanding the potential up to second order in ¥; one obtains

p m> T
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The mass of V: modes are




The classification of the ¥; modes

The modes are classified in three categories:
e “ The zero modes™ w = —1

e “The a modes”: w=—(l+1).l=Z. 0<I[ < N.with the mass
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o “The 3 modes™: w=I.l=Z. 0<I< N.with the mass
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Mass spectrum of the V¥; modes

Expanding the potential up to second order in ¥; one obtains
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The mass of V: modes are




The classification of the ¥; modes

The modes are classified in three categories:
e “ The zero modes™ w = —1

o “The o modes™: w=—(l+1).l=Z. 0<[ < N. with the mass

3 \,: F £ 3
M; = ;f" (I +2)0" — 26 ¢4(l + 1) +m".

e “The 3 modes”™: w=I.l=Z. 0 <[ < N.with the mass
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The light modes:

e : P

P = 5
I 2e (do+3Hw+2)+6 = 1

3= |t | -

For the zero modes with w = —1

M?/3H? ~ JeMp/o ~ 0.01

so thereare ~N* of such light zero modes.

3

For a and /3 modes. only those with [ < e /2 =12 ~. 10

are light. while the modes with higher values of [ are heavy.




Adiabatic and entropic power spectra

Our Lagrangian is

Define

The equations of motion are

Interestingly enough, the adiabatic and the iso-curvature modes decouple.




The normalized curvature and entropy perturbations are

Using our equations of motion one obtains

Compare this to general multiple-field case
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Power Spectra:

Define u=aQ,

Then the e.o.m. are
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At the time of Horizon crossing
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when the mode leaves the horizon till Ne before the end of inflation




The normalized curvature and entropy perturbations are

Using our equations of motion one obtains

Compare this to general multiple-field case
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Power Spectra:

Define




when the mode leaves the horizon till Ne before the end of inflation




3 = .

]
.

The system has SO ( 3.V" ) symmetry which is a specific realization of N-flation.

Physical observables: ngp ~ 0.966 and n, ~ 0.9998

To fit the WMAP bound one requires

m ~ 6.304 x 107" Mp.

At the end of inflation Ps ~ 10%(-14) for

mode of horizon scales.

Using our analytical formula

|D N
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ll. Chaotic inflation:

The potential is

“* The zero modes”

e “The @« modes™:

e “The 3 modes™:

The lowest mass states

. .'? — j—llh_u_b—_'
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zero mode. I = 0 a—mode and [ = 2 3—mode H N2+ 6

-15.: (@

l=1a mode [—=3 73 mode

MZ.(¢0) = 533\-; f'

P, = 295 ™




In general mass of a [ > 1 a—mode is identical to the [ +2 F—mode.

Therefore. there are 4l + 6 iso-curvature modes with identical spectra

all of which have a blue tilt.

ey

From our analytical solution

I
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1
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Y Fr—r

zero modes
¢ — modes

] — modes,




lll. Symmetry breaking potential:

Ps

0.987

0 988

1.054




Motivation from string theory

® When N D-branes are located on top of each other
the gauge symmetry enhances to U(N)
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The action for N coincident brane is
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Consider the RR background

Expanding the action up to leading terms, one obtains
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N D3-branes

Fuzzy D5-branes




As mentioned the potential is

. oy

x <} Pl

The condition Am? = 4x7/9 is required for background to be susy.

|

T

The minimum  © — [ is the susy vacuum.

This corresponds to the solution where N
D-3 branes blow up into a fuzzy D5-branes.

Geometrically, & is the radius of the fuzzy two-sphere.




Preheating

M-flation has a natural mechanism of preheating.

The time-dependence of M(©®) ,can leads to pair creation of Umn

To be specific, let’s consider A.;;9'/1 theory.

The preheating for A\.;;¢"/! is studied by Greene etal, 1997
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The structure of parametric resonance is completely determined by

for our model




As mentioned the potential is
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The condition Am? = 4x%/9 is required for background to be susy.

\

T

The minimum @ = [ is the susy vacuum.

This corresponds to the solution where N
D-3 branes blow up into a fuzzy D5-branes.

Geometrically, © is the radius of the fuzzy two-sphere.
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Fuzzy D5-branes




As mentioned the potential is

o : T o

The condition Am? = 4x%/9 is required for background to be susy.
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The minimum @ = [ is the susy vacuum.

This corresponds to the solution where N
D-3 branes blow up into a fuzzy D5-branes.

Geometrically, © is the radius of the fuzzy two-sphere.




Review of Greene et al:

The analytical results are only known for

=
:

ar = 0.1470 at K~




Motivation from string theory

® When N D-branes are located on top of each other
the gauge symmetry enhances to U(N)
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The action for N coincident brane is
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zero mode. [ = 0 a—mode and [ = 2 3—mode H NZ+6
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As mentioned the potential is

5
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The condition Am? = 4x%/9 is required for background to be susy.

\

T

H is the susy vacuum.

This corresponds to the solution where N
D-3 branes blow up into a fuzzy D5-branes.

Geometrically, © is the radius of the fuzzy two-sphere.




Reheating ?

We have not provided a mechanism of reheating where the energy
from the ©mn  particles are transferred into SM particles.

One scenario in M-flation in string theory: We may imagine that
SM fields are localized on branes as open strings gauge fields A

This can naturally be embedded in model noting that

As an estimate of Preheat temperature, suppose we have an instant preheating

N°T* ~3H M5

for large N one can get sufficiently small reheat temperature.
Non-Gaussianity?

Due to muitiple-field nature of the model, there would be plenty of NG produced. It
would be interesting to calculate primordial NGs and compare it with observation.




Conclusion

All observations strongly support inflation as a theory of early Universe
and structure formation. But there is no deep theoretical understanding
of its origin.

M-flation is an interesting realization of inflation which is strongly
supported from string theory. M-flation, like N-flation, can solve the
fine-tunings associated with chaotic inflation and produce super-
Planckian field during inflation.

Due to Matrix nature of the fields there would be many scalar fields in
the model. This leads to novel effects such as entropy productions, and
no-Gaussianities which both are under intense observational
investigations.

M-flation has a natural built-in mechanism of preheating to end inflation.
However, a mechanism of reheating has yet to be implemented.




